
doi: 10.1016/j.procs.2015.05.306 

Numerical Treatment of Two-Phase Flow in Porous Media

Including Specific Interfacial Area

M. F. El-Amin1∗, R. Meftah1,2, A. Salama1, and S Sun1

1 Computational Transport Phenomena Laboratory (CTPL), Division of Physical Sciences and
Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal

23955-6900, Jeddah, Kingdom of Saudi Arabia
2 University Pierre Marie Curie, Paris, France

mohamed.elamin@kaust.edu.sa

Abstract
In this work, we present a numerical treatment for the model of two-phase flow in porous
media including specific interfacial area. For numerical discretization we use the cell-centered
finite difference (CCFD) method based on the shifting-matrices method which can reduce the
time-consuming operations. A new iterative implicit algorithm has been developed to solve the
problem under consideration. All advection and advection-like terms that appear in saturation
equation and interfacial area equation are treated using upwind schemes. Selected simulation
results such as pc−Sw−awn surface, capillary pressure, saturation and specific interfacial area
with various values of model parameters have been introduced. The simulation results show a
good agreement with those in the literature using either pore network modeling or Darcy scale
modeling.

Keywords: Interfacial area, Two-phase flow, Porous media, Capillary pressure, CCFD method, Shifting-

matrices method

1 Introduction

The model of flow and transport in porous media, Darcy’s law, was originally proposed empir-
ically for one-dimensional isothermal flow of an incompressible fluid in a rigid, homogeneous
and isotropic porous medium. The extended Darcy’s Law is used for highly complex situations
like non-isothermal, multiphase and multicomponent flow and transport, without introducing
any additional driving forces. The resisting force, which balances the driving force, is assumed
to be linearly proportional to the relative fluid velocity with respect to the solid. This results
in a linear relationship between the flow velocity and driving forces. While these assumptions
are reasonable for single-phase flow, one may expect many other factors to affect the balance of
forces in the case of multiphase flow. Hassanizadeh and Gray [7, 8] developed a unified model
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based on rational thermodynamics leading to additional driving forces. The macroscale effects
of interfacial forces were included and the momentum balance equations are derived for both
phases and interfaces. They found that the driving forces for the flow of a phase were the gradi-
ents of Gibbs free energy of the phase plus gravity. In the case of single-phase flow, the gradient
of Gibbs free energy reduces to the gradient of pressure. Moreover, capillary pressure is not a
hysteretic function of saturation only, but uniquely defined by a capillary pressure-saturation-
specific interfacial area surface. In Hassanizadeh and Gray [7], the equations constitute a very
complex model that includes many different effects. However, some of these effects are being of
second order, whereas several of the involved constitutive relationships have not been investi-
gated so far. In Hassanizadeh and Gray [8], the momentum balance equations were simplified.
These studies were followed by a number of other studies (e.g. [9, 10]). Most of these works
were done using pore–network modeling and/or experiments and very few attempts were done
to simulate the macroscale multiphase flow model including the specific interfacial area such
as Ref. [17]. The IMplicit Pressure Explicit Saturation (IMPES) approach solves the pres-
sure equation implicitly and updates the saturation explicitly. In IMPES method, the time
step size should be very small, in particular, for highly heterogeneous permeable media. Be-
cause the decoupling between the pressure equation and the saturation equation, the IMPES
method is conditionally stable. Iterative IMPES splits the equation system into a pressure and
a saturation equation that are solved sequentially as IMPES [14, 15, 13].

The objective of this work is to develop an accurate numerical simulator for two-phase flow
in porous media including specific interfacial area using appropriate numerical methods. The
cell-centered finite difference (CCFD) method together with the shifting-matrices approach are
used for spacial discretization, while the upwind scheme is used to treat the advection terms in
the differential system.

2 Modeling and Mathematical Formulation

Hassanizadeh and Gray [7] have used a thermodynamic approach using the concept of Gibbs
free energy. They concluded that the movement of each phase or interface is governed by its
gradient in Gibbs free energy. Now, let us consider the flow of two immiscible and compressible
fluids including interfacial area. Assuming that the porosity is constant; the interfacial mass
density is constant; the gravity does not have effect on interfacial movement; all material
properties are neglected; mass exchange between phases and interfaces has negligible effect on
mass balance of phases; and the cross-coupling terms are negligible. Therefore, the governing
equations describing the above system can be written as follows [16],

φ
∂Sα

∂t
+∇ · vα = qα, α = w, n (1)

vα = −Kkrα
μα

(∇pα − ραg), α = w, n (2)

∂awn

∂t
+∇ · awnvwn = Ewn (3)

vwn = −Kwn · ∇awn (4)

where φ is porosity, Sα, vα and qα denote, respectively, to the saturation, the Darcy’s velocity
and the source term of the α phase. α stands for the wetting–phase (w) or the nonwetting–
phase (n). K is the intrinsic permeability, μα is the dynamic viscosity, krα denotes the relative
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permeability, ρα the density and pα the pressure of the phase α. awn[m
−1] is the specific inter-

facial area. vwn[m · s−1] is the interfacial velocity. Kwn[m
3 · s−1] is the interfacial permeability.

Ewn[m
−1 · s−1] is the production rate of specific interfacial area. For the production rate of

specific interfacial area Joekar-Niasar et al. [11] have defined it as,

Ewn = −ewn
∂Sw

∂t
(5)

To estimate the production rate of specific interfacial area they neglect the advective flux term
of Eq.(3). Also the term is calculated as the rate of change of specific interfacial area with
time. They defined a linear relationship between Ewn and −∂Sw/∂t. In their work, they also
defined ewn as being a linear function of Sw : ewn = e1 + e2Sw. The coefficients e1 and e2
depend on wetting-phase and non-wetting phase viscosity. On the other hand, in order to
close the above system of equations three relations have been added. The first relation is the
the sum of wetting-phase and non-wetting phase saturations equals one. The second relation
is the difference between non-wetting phase and wetting-phase pressure which is equal to the
capillary pressure. The last relation indicates that interfacial specific area is a function of the
wetting-phase saturation and the capillary pressure.

Sw + Sn = 1 (6)

pc = pn − pw (7)

awn = awn(Sw, pc) (8)

For the last relation of closure one can use a bi-quadratic relationship depends on Sw and pc
(see Ref. [12]). Instead of the above complicated formula, we will use the following flexible
form Ref. [10],

awn(Sw, pc) = α1Sw(1− Sw)
α2pc

α3 (9)

where α1, α2 and α3 are constants.

Now, let us define the potential phase α pressure as Φα = pα − ραg, and the potential
capillary pressure as Φc = pc− (ρn − ρw)g. Also, the total velocity is defined as vt = vw +vn,
the total mobility λt = λw + λn. Adding the saturation equation of wetting phase to the
saturation equation of nonwetting phase (1) with the aid of (6), one may obtain,

∇ · vt ≡ −∇ · λt (Sw)K∇Φw −∇ · λn (Sw)K∇Φc (Sw, anw) = Qt (10)

where Qt = qw + qn. Also, the wetting phase velocity may be defined as,

vw = −λwK∇Φw,

Therefore, saturation equation of the wetting phase may be written as,

φ
∂Sw

∂t
−∇ · λwK∇Φw ≡ φ

∂Sw

∂t
−∇ · vw = qw. (11)

From (3), (5) and (11), we can write the equation of specific interfacial area as,

φ
∂anw
∂t

+ φ∇ · (vwnanw) + enw∇ · (vw) = enwqw. (12)
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The saturation of the wetting phase at the beginning of the flow displacing process is initially
defined by,

Sw = S0
w at t = 0. (13)

Also, the initial specific interfacial area is zero, i.e.,

awn = a0wn at t = 0. (14)

The general boundary conditions considered in this study are summarized as follow,

pw (or pn) = pD on ΓD, (15)

vt · n = qN on ΓN , (16)

vwn · n = wN on ΓN , (17)

where ΓD is the Dirichlet boundary and ΓN is the Neumann boundary. n is the outward
unit normal vector to ΓN , pD is the pressure on ΓD and qN the imposed inflow rate on ΓN ,
respectively. The saturations on the boundary are subject to,

Sw (or Sn) = SN on ΓN , (18)

and the specific interfacial area on the boundary is subject to,

awn = aNwn on ΓN . (19)

3 Iterative Implicit Scheme

Define the time step length Δtn = nn+1 − tn, the total time interval [0, T ] may be divided into
N time steps as 0 = t0 < t1 < · · · < tN = T . The current time step is represented by the
superscript n+ 1. The backward Euler time discretization is used for the equations (10)-(12),
to obtain,

−∇ · λt

(
Sn+1
w

)
K∇Φn+1

w −∇ · λn

(
Sn+1
w

)
K∇Φc

(
Sn+1
w , an+1

nw

)
= Qn+1

t , (20)

φ
Sn+1
w − Sn

w

Δtn
−∇ · λw

(
Sn+1
w

)
K∇Φn+1

w = qn+1
w , (21)

and,

φ
an+1
nw − annw

Δtn
+ φ∇ · (vn+1

wn an+1
nw

)− en+1
nw ∇ · λw

(
Sn+1
w

)
K∇Φn+1

w = en+1
nw qn+1

w . (22)

The system (20)–(22) is fully implicit, coupled and highly nonlinear, so it can not be solved
directly. Hence, iterative methods are often employed to solve such kind of complicated sys-
tems. Now, let us introduce the iterative Implicit Pressure Explicit Saturation-Interfacial Area
IMPESA formulation for the equations (20)–(22) that is given as,

−∇ · λt

(
Sn+1,k
w

)
K∇Φn+1,k+1

w −∇ · λn

(
Sn+1,k
w

)
K∇Φ̃c

(
S̃n+1,k+1
w , ãn+1,k+1

nw

)
= Qn+1

t , (23)

φ
S̃n+1,k+1
w − Sn

w

Δt
−∇ · λw

(
Sn+1,k
w

)
K∇Φn+1,k+1

w = qn+1
w , (24)
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φ
ãn+1,k+1
nw −an

nw

Δtn + φ∇ · (vn+1,k
wn an+1,k

nw

)− en+1,k
nw ∇ · λw

(
Sn+1,k
w

)
K∇Φn+1,k+1

w

= en+1,k
nw qn+1

w .
(25)

The superscripts k and k+1 represent the iterative steps within the current time step n+1.
For each iteration, the variables λw, λn and λt are calculated using the saturation from the
previous iteration. However, we may consider the saturation and the specific interfacial area at
the current iteration step instead of the previous iteration to obtain the capillary potential Φc.
We may linearize the capillary potential Φc as follows,

Φ̃c

(
S̃n+1,k+1
w , ãn+1,k+1

nw

) ∼= Φc

(
Sn+1,k
w , an+1,k

nw

)
+ ∂Φc

∂Sw

(
Sn+1,k
w , an+1,k

nw

)
[
S̃n+1,k+1
w − Sn+1,k

w

]
+ ∂Φc

∂anw

(
Sn+1,k
w , an+1,k

nw

) [
ãn+1,k+1
nw − an+1,k

nw

] (26)

The changes of saturation and interfacial area in a time step are often very small, and hence
the linear approximation is reasonable. Moreover, the relaxation approach is often applied to
control the convergence of nonlinear iterative solvers. In this algorithm we use the following
two relaxation relationships for saturation and interfacial area as,

Sn+1,k+1
w = Sn+1,k

w + θs

(
S̃n+1,k+1
w − Sn+1,k

w

)
, (27)

and,
an+1,k+1
nw = an+1,k

nw + θa
(
ãn+1,k+1
nw − an+1,k

nw

)
, (28)

where θs, θa ∈ (0, 1] are relaxation factors.

4 Spatial Discretization

Now, let us apply the CCFD scheme to the system of equations (23)–(28) to obtain the iterative
discretization. The discretization form of the pressure equation may be given as,

Awt

(
Sn+1,k
w

)
Φn+1,k+1

w +Ac

(
Sn+1,k
w

)
Pc

(
S̃n+1,k+1
w , ãn+1,k+1

nw

)
= Qn+1

ct . (29)

It is noted from above algebraic equations that the matrices Aw and Ac depend on the vector
Sn+1,k
w at the previous iteration step, while the vector Pc depends on both vectors Sn+1,k+1

w

and an+1,k+1
nw at the current iteration step, which may be written as, in a matrix-vector form

as follows,

P̃c

(
S̃n+1,k+1
w , ãn+1,k+1

nw

) ∼= Φc

(
Sn+1,k
w , an+1,k

nw

)
+Ps

(
Sn+1,k
w , an+1,k

nw

)
[
S̃n+1,k+1
w − Sn+1,k

w

]
+Pa

(
Sn+1,k
w , an+1,k

nw

) [
ãn+1,k+1
nw − an+1,k

nw

] (30)

where the matrices Ps and Pa are diagonal resulted from the discretization of ∂Φc

∂Sw
and ∂Φc

∂anw
,

respectively. In fact, the derivatives of Φc are viewed as functions of Φc when the saturation
and the interfacial area at each spatial point vary with time. At the same time, the saturation
and the interfacial area are smoothly changing along with time at each spatial point even they
are discontinuously distributed in space.

Also, the CCFD discretization of the saturation equation (24) may lead to,

M
S̃n+1,k+1
w − Sn

w

Δtn
+Aw

(
Sn+1,k
w

)
Φn+1,k+1

w = Qn+1
w , (31)
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where M is a diagonal matrix replaces the porosity that appears in the saturation equation and
also it is a function of cell area. It is worth mentioning that the above equation of saturation
is coupled with the pressure equation to be solved implicitly together, however it is not used to
update the saturation.

Similarly, the CCFD discretization of the interfacial area equation (25) can be given as,

M
ãn+1,k+1
nw −an

nw

Δtn +M
[
Anw,a

(
an+1,k
nw

)
an+1,k
nw +Anw,s

(
an+1,k
nw

)
Sn+1,k
w

]
+

E
(
Sn+1,k
w

)
Aw

(
Sn+1,k
w

)
Φn+1,k+1

w = E
(
Sn+1,k
w

)
Qn+1

w ,

(32)

where E
(
Sn+1,k
w

)
is a diagonal matrix.

The above equation of saturation is coupled with the pressure equation to be solved implicitly
together, however it is not used to update the saturation. Substituting from (30)-(32) into (29),
the coupled pressure equation becomes,

At

(
Sn+1,k
w , an+1,k

nw

)
Φn+1,k+1

w = Qt

(
Sn+1,k
w , an+1,k

nw

)
. (33)

where

At

(
Sn+1,k
w , an+1,k

nw

)
= Awt −ΔtnAc

(
Sn+1,k
w

) [
Ps

(
Sn+1,k
w , an+1,k

nw

)
M−1+

Pa

(
Sn+1,k
w , an+1,k

nw

)
M−1E

]
Aw

(
Sn+1,k
w

) (34)

and
Qt

(
Sn+1,k
w , an+1,k

nw

)
= Qn+1

ct −Ac

(
Sn+1,k
w

) {
Φc

(
Sn+1,k
w

)
+

Ps

(
Sn+1,k
w

) (
Sn
w − Sn+1,k

w

)
+Pa

(
Sn+1,k
w

) (
annw − an+1,k

aw

)

−ΔtnPa

(
Sn+1,k
w

) [
Anw,a

(
an+1,k
nw

)
an+1,k
nw +Anw,s

(
an+1,k
nw

)
Sn+1,k
w

]
+

Δtn
[
Ps

(
Sn+1,k
w , an+1,k

nw

)
M−1 +Pa

(
Sn+1,k
w , an+1,k

nw

)
M−1E

]
Qn+1

w

}
.

(35)

After updating the velocity un+1,k+1
w , we can update the saturation, we consider the follow-

ing explicit scheme,

φ
Sn+1,k+1
w −Sn

w

Δtn +∇ · un+1,k+1
w = qn+1

w . (36)

Now, we can update all variables that are functions in Sw. Then, after updating wn+1,k+1
nw , the

interfacial area can be updated by the following explicit scheme,

φ
an+1,k+1
nw −an

nw

Δtn + φ∇ · (wn+1,k+1
nw an+1,k

nw

)
+ en+1,k+1

nw ∇ · un+1,k+1
w = en+1,k+1

nw qn+1
w . (37)

The upwind CCFD discretization of the above two equations (36) and (37) are,

M
S̃n+1,k+1
w − Sn

w

Δtn
+Au

(
Sn+1,k
w , an+1,k

nw

)
= Qn+1

s , (38)

and,

M
ãn+1,k+1
nw − annw

Δtn
+MAw

(
Sn+1,k
w , an+1,k

nw

)
an+1,k
nw +EAu

(
Sn+1,k
w , an+1,k

nw

)
= EQn+1

a ,

(39)
respectively.

The Shifting–Matrices method [19] is used in the implementation of the above discretized
system.
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5 Numerical Experiments

This section analyzes some results of saturation, capillary pressure and specific interfacial area.
For example, we choose fluid parameters (densities, viscosities, and diffusion constants) of wa-
ter and air; for the matrix parameters, we take typical soil parameters, here k = 10−10m2 and
φ = 0.3. We take a rough estimate of knw = 10−5 m3s−1. We set the interfacial permeabil-
ity Kwn to 10−5 m3/s. The ratio between non-wetting phase and wetting-phase viscosity is
μn/μw = 0.1. The coefficients for the production rate of specific interfacial area we use the
values from Ref. [10]. The initial condition for the specific interfacial awn is taken as 5790 [1/m]
and at the boundary conditions are given as: 1000 [1/m] on the west boundary; 5790 [1/m]
on the east boundary; and 0 [1/m] on the north and south boundary. Also, the boundary
conditions of the interface velocity vwn, is considered 0.001 [m/year] on the west boundary and
0 [m/year] on the east, north and south boundaries. The parameters in the capillary pressure
formula are set to α1 = 250 000, α2 = 1.18 and α3 = −0.8. Figure 1 represents relation be-
tween specific interfacial area, saturation and capillary pressure. It is interesting to note that
this 3D surface is comparable to previous experimental and computational studies, [1, 10, 18].
Figure 2(a) shows the variation of capillary pressure with saturation. From this figure we may
conclude that the capillary pressure increases with decreasing wetting-phase saturation. The
variations of the specific interfacial area with wetting-phase saturation are plotted in Fig. 2(b).
According to this figure, one can observe that the specific interfacial area decreases with in-
creasing the wetting-phase saturation.

In another example, we choose counter-current imbibition model [3, 4, 5, 6, 2]. In the case
of considering the specific–interfacial–area, the capillary pressure formula pc(Sw, awn) is very
sensitive to its parameters. The values of these parameters may be modified based on the type
of porous media and other physical and computational aspects. So, here we investigate the
sensitivity of the capillary pressure parameters, namely, α1, α2 and α3. In Fig. 3a, the specific
interfacial area is plotted against the capillary pressure with different values of α1, at α2 = 1.18
and α3 = −0.8. This figure shows that the specific interfacial area could has same values for
different capillary pressure ranges based on the values of the parameter α1. Fig. 3b shows
the specific interfacial area profiles against the capillary pressure with various values of the
parameter α2, at α1 = 2.5× 107 and α3 = −0.8. It is interesting to note from Fig. 3b that the
behavior of the interfacial area profiles with small values of α2 is totally different from those
with bigger values of α2. The specific interfacial area decreases as the parameter α2 decreases
and opposite is true for the capillary pressure. The specific interfacial area is plotted in Fig. 3c
against the capillary pressure with different values of α3, at α1 = 2.5 × 107 and α2 = 1.18.
It can be seen from this figure that as the parameter α3 increases the interfacial area slightly
increases with bigger values of the capillary pressure. Also, Fig. Fig. 3c illustrates the capillary
pressure variation against the water saturation at different values of α1, at α2 = 1.18 and
α3 = −0.8. It is clear from this figure that as the parameter α1 increases the capillary pressure
increases. Moreover, it is interesting to note from the same figure that the capillary pressure
has reasonable physical values of α1 ≥ o(105). The profiles of the capillary pressure are plotted
in Fig. 3d against the water saturation with different values of the parameter α2 = 0.01 : 2.5, at
α1 = 2.5×107 and α3 = −0.8. It is clear here that when α2 > 1, the behavior of the Pc−S curve
deviates from the standard behavior. Fig. 3e shows the capillary pressure against the water
saturation with different values of the α3, with α1 = 2.5 × 107 and α2 = 1.18. From Fig. 3f,
it can be noted that the behavior of the Pc − S curve deviates from the standard behavior at
α3 > −0.8.
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Figure 1: Distribution of Sw − pc − awn surface

Figure 2: Variation of (a) capillary pressure with saturation, and (b) Variation of specific
interfacial area with saturation
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