8 research outputs found

    Noise facilitation in associative memories of exponential capacity

    Get PDF
    Recent advances in associative memory design through structured pattern sets and graph-based inference al- gorithms have allowed reliable learning and recall of an exponential number of patterns. Although these designs correct external errors in recall, they assume neurons that compute noiselessly, in contrast to the highly variable neurons in brain regions thought to operate associatively such as hippocampus and olfactory cortex. Here we consider associative memories with noisy internal computations and analytically characterize performance. As long as the internal noise level is below a specified threshold, the error probability in the recall phase can be made exceedingly small. More surprisingly, we show that internal noise actually improves the performance of the recall phase while the pattern retrieval capacity remains intact, i.e., the number of stored patterns does not reduce with noise (up to a threshold). Computational experiments lend additional support to our theoretical analysis. This work suggests a functional benefit to noisy neurons in biological neuronal networks

    Nonbinary Associative Memory With Exponential Pattern Retrieval Capacity and Iterative Learning

    Get PDF
    We consider the problem of neural association for a network of nonbinary neurons. Here, the task is to first memorize a set of patterns using a network of neurons whose states assume values from a finite number of integer levels. Later, the same network should be able to recall the previously memorized patterns from their noisy versions. Prior work in this area consider storing a finite number of purely random patterns, and have shown that the pattern retrieval capacities (maximum number of patterns that can be memorized) scale only linearly with the number of neurons in the network. In our formulation of the problem, we concentrate on exploiting redundancy and internal structure of the patterns to improve the pattern retrieval capacity. Our first result shows that if the given patterns have a suitable linear-algebraic structure, i.e., comprise a subspace of the set of all possible patterns, then the pattern retrieval capacity is exponential in terms of the number of neurons. The second result extends the previous finding to cases where the patterns have weak minor components, i.e., the smallest eigenvalues of the correlation matrix tend toward zero. We will use these minor components (or the basis vectors of the pattern null space) to increase both the pattern retrieval capacity and error correction capabilities. An iterative algorithm is proposed for the learning phase, and two simple algorithms are presented for the recall phase. Using analytical methods and simulations, we show that the proposed methods can tolerate a fair amount of errors in the input while being able to memorize an exponentially large number of patterns

    Iterative learning and denoising in convolutional neural associative memories

    Get PDF
    The task of a neural associative memory is to retrieve a set of previously memorized patterns from their noisy versions by using a network of neurons. Hence, an ideal network should be able to 1) gradually learn a set of patterns, 2) retrieve the correct pattern from noisy queries and 3) maximize the number of memorized patterns while maintaining the reliability in responding to queries. We show that by considering the inherent redundancy in the memorized patterns, one can obtain all the mentioned properties at once. This is in sharp contrast with the previous work that could only improve one or two aspects at the expense of the third. More specifically, we devise an iterative algorithm that learns the redundancy among the patterns. The resulting network has a retrieval capacity that is exponential in the size of the network. Lastly, by considering the local structures of the network, the asymptotic error correction performance can be made linear in the size of the network. 1
    corecore