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Abstract—We consider the problem of neural association for
a network of non-binary neurons. Here, the task is to first
memorize a set of patterns using a network of neurons whose
states assume values from a finite number of integer levels.
Later, the same network should be able to recall previously
memorized patterns from their noisy versions. Prior work in this
area consider storing a finite number of purely random patterns,
and have shown that the pattern retrieval capacities (maximum
number of patterns that can be memorized) scale only linearly
with the number of neurons in the network.

In our formulation of the problem, we concentrate on exploit-
ing redundancy and internal structure of the patterns in order to
improve the pattern retrieval capacity. Our first result shows that
if the given patterns have a suitable linear-algebraic structure,
i.e. comprise a sub-space of the set of all possible patterns, then
the pattern retrieval capacity is in fact exponential in terms of
the number of neurons. The second result extends the previous
finding to cases where the patterns have weak minor components,
i.e. the smallest eigenvalues of the correlation matrix tend toward
zero. We will use these minor components (or the basis vectors
of the pattern null space) to both increase the pattern retrieval
capacity and error correction capabilities.

An iterative algorithm is proposed for the learning phase, and
two simple algorithms are presented for the recall phase. Using
analytical methods and simulations, we show that the proposed
methods can tolerate a fair amount of errors in the input
while being able to memorize an exponentially large number
of patterns.

Index Terms—Neural associative memory, Error correcting
codes, Message passing, Stochastic learning, Dual-space method

I. INTRODUCTION

Neural associative memory is a particular class of neural
networks capable of memorizing (learning) a set of patterns
and recalling them later in presence of noise, i.e. retrieve
the correct memorized pattern from a given noisy version.
Starting from the seminal work of Hopfield in 1982 [1],
various artificial neural networks have been designed to mimic
the task of the neuronal associative memory (see for instance
[2], [3], [4], [5], [6]).

In essence, the neural associative memory problem is very
similar to the one faced in communication systems where the
goal is to reliably and efficiently retrieve a set of patterns (so
called ”codewords”) form noisy versions. More interestingly,
the techniques used to implement an artificial neural associa-
tive memory looks very similar to some of the methods used in
graph-based modern codes to decode information. This makes

the pattern retrieval phase in neural associative memories very
similar to iterative decoding methods in modern coding theory.

However, despite the similarity in the task and techniques
employed in both problems, there is a huge gap in terms
of efficiency. Using binary codewords of length n, one can
construct codes that are capable of reliably transmitting 2rn

codewords over a noisy channel, where 0 < r < 1 is the
code rate [7]. The optimal r (i.e. the largest value that permits
the almost sure recovery) depends on the noise characteristics
of the channel and is known as the Shannon capacity [8]. In
fact, the Shannon capacity is achievable in certain cases, for
example by LDPC codes over AWGN channels.

In current neural associative memories, however, with a
network of size n one can only memorize O(n) binary patterns
of length n [9], [2]. To be fair, it must be mentioned that these
networks are designed such that they are able to memorize any
possible set of randomly chosen patterns(e.g., [1], [2], [3],
[4]). Therefore, although humans cannot memorize random
patterns, these methods provide artificial neural associative
memories with a pleasant sense of generality.

However, this generality severely restricts the efficiency of
the network since even if the input patterns have some internal
redundancy or structure, current neural associative memories
could not exploit this redundancy in order to increase the
number of memorizable patterns or improve error correction
during the recall phase. In fact, concentrating on redundancies
within patterns is a fairly new viewpoint, which is in harmony
with coding techniques where one designs codewords with
certain degree of redundancy and then use this redundancy to
correct corrupted signals at the receiver’s side.

In this paper, we focus on bridging the performance gap be-
tween the coding techniques and neural associative memories.
Our proposed neural network exploits the inherent structure
of the input patterns in order to increase the pattern retrieval
capacity from O(n) to O(an), where a > 1. More specifically,
the proposed neural network is capable of learning and reliably
recalling given patterns when they come from a subspace
with dimension k < n of all possible n-dimensional patterns.
Thus, although the model does not have the versatility of the
traditional associative memories, the capacity is boosted by
a great extent. Furthermore, traditional associative memories
will still have linear pattern retrieval capacity even if the
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patterns have good linear algebraic structures.
In [10], we presented some preliminary results in which two

efficient recall algorithms were proposed for the case where
the neural graph had the structure of an expander [11]. Here,
we extend the previous results to general sparse neural graphs
as well as proposing a simple learning algorithm to capture
the internal structure of the patterns (which will be used later
in the recall phase).

Due to their structure and capability to retrieve patterns
from partially available information, associative memories
have natural applications in content-addressable memories [12]
as well as search engine algorithms that use not only user’s
inputs but also the association between the objects in the
search domain (see [13] for example). Furthermore, they have
also some strong links to modern error correcting codes [7]
which use message passing over (bipartite) graphs to eliminate
noise in communication channels. However, the inefficiency of
current neural associative memories in reliably memorizing a
large number of patterns acts as a barrier in deploying them
in large-scale practical systems. We expect that improving
the pattern retrieval capacity, even if it comes with some
mild restrictions, will bring us one step closer to widespread
adoption in practical systems.

The remainder of this paper is organized as follows: In
Section II, we will discuss the neural model used in this
paper and formally define the associative memory problem.
We explain the proposed learning algorithm in Section III.
Sections IV and V are respectively dedicated to the recall
algorithm and analytically investigating its performance in
retrieving corrupted patterns. In Section VI we address the
pattern retrieval capacity and show that it is exponential in
n. Simulation results are discussed in Section VII. Section
VIII concludes the paper and discusses future research topics.
Finally, the Appendix containsthe proofs for certain lemmas.

II. PROBLEM FORMULATION AND THE NEURAL MODEL

A. The Model

In the proposed model, we work with neurons whose
states are integers from a finite set of non-negative values
Q = {0, 1, . . . , Q − 1}. A natural way of interpreting this
model is to think of the integer states as the short-term firing
rate of neurons (possibly quantized).

Like in other neural networks, neurons can only perform
simple operations. We consider neurons that can do linear
summation over the input and possibly apply a non-linear
function (such as thresholding) to produce the output. More
specifically, neuron x updates its state based on the states of
its neighbors {si}ni=1 as follows:

1) It computes the weighted sum h =
∑n
i=1 wisi, where

wi is the weight of the input link from the ith neighbor.
2) It updates its state as x = f(h), where f : R→ Q is a

possibly non-linear function.

We will refer to these two as ”neural operations” in the sequel.

y1 y2 . . . ym

x1 x2 x3 . . . xn

Fig. 1. A bipartite graph that represents the constraints on the training set.
The weights are bidirectional. However, depending on the recall algorithm
(which is explained later), the weight from yi to xj (W b

ij ) could be either
equal to the weight from xj to yi (Wij ) or its sign. In other words, we have
either W b

ij = sign(Wij) or W b
ij = Wij , depending on the algorithm used

in the recall phase.

B. The Problem

The neural associative memory problem consists of two
parts: learning and pattern retrieval.

1) The learning phase: We assume to be given C vectors of
length n with integer-valued entries belonging to Q. Further-
more, we assume these patterns belong to a subspace of Qn
with dimension k < n. Let XC×n be the matrix that contains
the set of patterns in its rows. Note that if k = n we are back
to the original associative memory problem. Let us denote the
model specification by a triplet (Q, n, k).

The learning phase then comprises a set of steps to de-
termine the connectivity of the neural graph (i.e. finding
a set of weights) as a function of the training patterns in
X such that these patterns are stable states of the recall
process. More specifically, in the learning phase we would
like to memorize the patterns in X by finding a set of non-
zero vectors w1, . . . , wm ∈ Rn, with m ≤ n − k, that are
orthogonal to the set of given patterns. Note that such vectors
are guaranteed to exist, one example being a basis for the
null-space.

The inherent structure of the patterns are captured in the
obtained null-space vectors, denoted by the matrix W ∈
Rm×n, whose ith row is wi. This matrix can be interpreted
as the adjacency matrix of a bipartite graph which represents
our neural network. The graph is comprised of pattern and
constraint neurons (nodes). Pattern neurons, as their name
suggests, correspond to the states of the patterns we would like
to learn or recall. The constraint neurons, on the other hand,
should verify if the current pattern belongs to the database
X . If not, they should send proper feedback messages to the
pattern neurons in order to help them converge to the correct
pattern in the dataset. The overall model is shown in Fig. 1.

2) The recall phase: In the recall phase, the neural network
should retrieve the correct memorized pattern from a possibly
corrupted version. In this case, the states of the pattern neurons
x1, x2, . . . , xn are initialized with the given (noisy) input
pattern. Here, we assume that the noise is integer valued



and additive1. Therefore, assuming the input to the network
is a corrupted version of pattern xµ, the state of the pattern
nodes are x = xµ + z, where z is the noise. Now the neural
network should use the given states together with the fact that
Wxµ = 0 to retrieve pattern xµ, i.e. it should estimate z from
Wx = Wz and return xµ = x−z. Any algorithm designed for
this purpose should be simple enough to be implemented by
neurons. Therefore, our objective is to find a simple algorithm
capable of eliminating noise using only neural operations.

C. Related Work

Designing a neural associative memory has been an active
area of research for the past three decades. Hopfield was
among the first to design an artificial neural associative mem-
ory in his seminal work in 1982 [1]. The so-called Hopfield
network is inspired by Hebbian learning [14] and is composed
of binary-valued (±1) neurons, which together are able to
memorize a certain number of patterns. In our terminology,
the Hopfield network corresponds to a ({−1, 1}, n, n) neural
model. The pattern retrieval capacity of a Hopfield network of
n neurons was derived later by Amit et al. [15] and shown to
be 0.13n, under vanishing bit error probability requirement.
Later, McEliece et al. [9] proved that under the requirement
of vanishing pattern error probability, the capacity of Hopfield
networks is n/(2 log(n))) = O(n/ log(n)).

In addition to neural networks with online learning capa-
bility, offline methods have also been used to design neural
associative memories. For instance, in [2] the authors assume
the complete set of pattern is given in advance and calculate
the weight matrix using the pseudo-inverse rule [16] offline.
In return, this approach helps them improve the capacity of a
Hopfield network to n/2, under vanishing pattern error proba-
bility condition, while being able to correct one bit of error in
the recall phase. Although this is a significant improvement, it
comes at the price of much higher computational complexity
and the lack of online learning ability.

While the connectivity graph of a Hopfield network is a
complete graph, Komlos and Paturi [17] extended the work
of McEliece to sparse neural graphs. Their results are of
particular interest as physiological data is also in favor of
sparsely interconnected neural networks. They have considered
a network in which each neuron is connected to d other
neurons, i.e., a d-regular network. Assuming that the network
graph satisfies certain connectivity measures, they prove that
it is possible to store C = O(d/ log n) random patterns with
vanishing pattern error probability. Furthermore, they show
that in spite of the capacity reduction, the error correction
capability remains the same as the network can still tolerate a
number of errors which is linear in n.

It is also known that the capacity of neural associative
memories could be enhanced if the patterns are of low-
activity nature, in the sense that at any moment many of

1It must be mentioned that neural states below 0 and above Q − 1 will
be clipped to 0 and Q − 1, respectively. This is biologically justified as the
firing rate of neurons can not exceed an upper bound and of course can not
be less than zero.

the neurons are silent [16]. However, even these schemes fail
when required to correct a fair amount of erroneous bits as the
information retrieval is not better than that of normal networks.

Extension of associative memories to non-binary neural
models has also been explored in the past. Hopfield addressed
the case of continuous neurons and showed that similar to
the binary case, neurons with states between −1 and 1 can
memorize a set of random patterns, albeit with less capacity
[18]. In [3] the authors investigated a multi-state complex-
valued neural associative memory for which the estimated
capacity is C < 0.15n. Under the same model but using a
different learning method, Muezzinoglu et al. [4] showed that
the capacity can be increased to C = n. However the complex-
ity of the weight computation mechanism is prohibitive. To
overcome this drawback, a Modified Gradient Descent learning
Rule (MGDR) was devised in [19]. In our terminology, all
of these models are ({e2πjs/k|0 ≤ s ≤ k − 1}, n, n) neural
associative memories.

Given that even very complex offline learning methods
can not improve the capacity of binary or multi-state neural
associative memories, a group of recent works has made con-
siderable efforts to exploit the inherent structure of the patterns
in order to increase capacity and improve error correction
capabilities. Such methods focus merely on memorizing those
patterns that have some sort of inherent redundancy. As a
result, they differ from previous methods in which the network
was designed to be able to memorize any random set of
patterns. Pioneering this approach, Berrou and Gripon [20]
achieved considerable improvements in the pattern retrieval
capacity of Hopfield networks, by utilizing Walsh-Hadamard
sequences. Walsh-Hadamard sequences are a particular type of
low correlation sequences and were initially used in CDMA
communications to overcome the effect of noise. The only
slight downside to the proposed method is the use of a
decoder based on the winner-take-all approach which requires
a separate neural stage, increasing the complexity of the
overall method. Using low correlation sequences has also
been considered in [5], where the authors introduced two
novel mechanisms of neural association that employ binary
neurons to memorize patterns belonging to another type of low
correlation sequences, called Gold family [21]. The network
itself is very similar to that of Hopfield. However, the authors
failed to increase the pattern retrieval capacity beyond C = n.

Later, Gripon and Berrou came up with a different approach
based on neural cliques, which increased the pattern retrieval
capacity to O(n2) [6]. Their method is based on dividing a
neural network of size n into c clusters of size n/c each. Then,
the messages are chosen such that only one neuron in each
cluster is active for a given message. Therefore, one can think
of messages as a random vector of length c log(n/c), where
the log(n/c) part specifies the index of the active neuron in a
given cluster. The authors also provide a learning algorithm,
similar to that of Hopfield, to learn the pairwise correlations
within the patterns. Using this technique and exploiting the fact
that the resulting patterns are very sparse, they could boost
the capacity to O(n2) while maintaining the computational



simplicity of Hopfield networks.
Modification of neural architecture has been also used in

[22] to increased the capacity. Here, the network is divided
into b smaller fully interconnected disjoint blocks of size n/b.
Using this approach, the capacity is increased to Θ

(
bn/b

)
(for random patterns), with b = ω(lnn). This is a huge im-
provement but comes at the price of limited worst-case noise
tolerance capabilities. More specifically, since the network is
a set of disjoint Hopfield networks of size b, the amount of
error each block could correct is in the order of εb, for some
constant ε > 0. As a result, in worst-case scenarios where
the error is not spread uniformly over the network and is
concentrated on some clusters, the error correction is limited
by the performance of individual blocks.

In contrast to the pairwise correlation of the Hopfield model,
Peretto et al. [23] deployed higher order neural models: the
models in which the state of the neurons not only depends on
the state of their neighbors, but also on the correlation among
them. Under this model, they showed that the storage capacity
of a higher-order Hopfield network can be improved to C =
O(np−2), where p is the degree of correlation considered. The
main drawback of this approach is the huge computational
complexity required in the learning phase, as one has to keep
track of O(np−2) neural links and their weights during the
learning period.

Recently, the present authors introduced a novel model
inspired by modern coding techniques in which a neural
bipartite graph is used to memorize the patterns that belong
to a subspace [10]. The proposed model can be also thought
of as a way to capture higher order correlations in given
patterns while keeping the computational complexity to a
minimal level (since instead of O(np−2) weights one needs
to only keep track of O(n2) of them). Under the assumptions
that the bipartite graph is known, sparse, and expander, the
proposed algorithm increased the pattern retrieval capacity to
C = O(an), for some a > 1. The main drawbacks in the
proposed approach were the lack of a learning algorithm as
well as the expansion assumption on the neural graph.

Although the model proposed in [10] is based on bipartite
graphs, it performs auto-association and, thus, differs from
(hetero-associative) Bidirectional Associative Memory [24]
and other associative memories performing Self-Organizing
Maps [25] for the purpose of classification or clustering [26],
[27]. Furthermore, the model in [10] also differs from feed-
forward associative memories in the sense that it uses back
and forward message passing to perform the recall task.

In this paper, we focus on extending the results of [10]
in several directions: first, we suggest an iterative learning
algorithm to find the neural connectivity matrix from the
patterns in the training set. Secondly, we provide an analysis
of the proposed error correcting algorithm in the recall phase
and investigate its performance for different network models.
We also show that our proposed algorithm is capable of
memorizing an exponential number of patterns Finally, we
discuss some variants of the error correcting method which
achieve better performance in practice.

It is worth mentioning that an extension of this approach
to a multi-level neural network is considered in [28]. There,
the novel structure enables better error correction. However,
the learning algorithm lacks the ability to learn the patterns
one by one and requires the patterns to be presented all at the
same time in the form of a big matrix. In [29] we have further
extended this approach to a modular single-layer architecture
with online learning capabilities, which is very similar to the
learning algorithm we are going to explain later. The modular
structure makes the recall algorithm much more efficient.

Another important point to note is that learning linear
constraints by a neural network is hardly a new topic as one
can learn a matrix orthogonal to the patterns in the training set
(i.e. Wxµ = 0) using simple neural learning rules (we refer
the interested readers to [30] and [31]). However, to the best
of our knowledge, finding such a matrix subject to the sparsity
constraints has not been investigated before. This problem can
also be regarded as an instance of compressed sensing [32], in
which the measurement matrix is the big patterns matrix XC×n
and the set of measurements are the orthogonality constraints.
Thus, we are interested in finding a sparse vector w such that
Xw = 0. Nevertheless, many decoders proposed in this area
are very complex and cannot be implemented by a neural
network using simple neuron operations. Some exceptions
are [33] and [34] which are closely related to the learning
algorithm proposed in this paper.

D. Solution Overview

Before going through the details of the algorithms, let us
give an overview of the proposed solution. To learn the set of
given patterns, we have adopted the neural learning algorithm
proposed in [35] and modified it to favor sparse solutions.
In each iteration of the algorithm, a random pattern from
the data set is picked and the neural weights corresponding
to constraint neurons are adjusted is such a way that the
projection of the pattern along the current weight vectors is
reduced, while trying to make the weights sparse as well.

In the recall phase, we exploit the fact that the learned
neural graph is sparse and orthogonal to the set of patterns.
Therefore, when a query is given, if it is not orthogonal to the
connectivity matrix of the weighted neural graph, it must have
been corrupted by noise. We will use the sparsity of the neural
graph to eliminate this noise using a simple iterative algorithm.
In each iteration, there is a set of violated constraint neurons,
i.e. those that receive a non-zero weighted sum over their input
links. These nodes will send feedback to the pattern neurons
that they are connected to (i.e. their neighbors), where the
feedback is the sign of the received input-sum. At this point,
the pattern nodes that receive feedback from a majority of
their neighbors update their state according to the sign of the
sum of received messages. This process continues until noise
is eliminated completely or a failure is declared.

III. LEARNING PHASE

Since the patterns are assumed to be coming from a sub-
space in the n-dimensional space, we adapt the algorithm



proposed by Oja and Karhunen [35] to learn the null-space
basis of the subspace defined by the patterns. In fact, a very
similar algorithm is also used in [30] for the same purpose.
However, since we need the basis vectors to be sparse (due to
requirements of the recall algorithms), we add an additional
term to penalize non-sparse solutions during the learning.

Another difference with the proposed method and that of
[30] is that the learning algorithm proposed in [30] yields
dual vectors that form an orthogonal set. Although one can
easily extend our suggested method to such a case as well,
we find this requirement unnecessary in our case. This gives
us the additional advantage to make the algorithm parallel
and adaptive. Parallel in the sense that we can repeat the
same algortihm separately several times to find all constraints
with high probability. And adaptive in the sense that we can
determine the number of constraints on-the-go, i.e. start by
learning just a few constraints. If needed (for instance due to
bad performance in the recall phase), the network can easily
learn additional constraints. This increases the flexibility of
the algorithm and provides a nice trade-off between the time
spent on learning and the performance in the recall phase.
Both these points make an approach biologically realistic.

It should be mentioned that the core of our learning algo-
rithm is virtually the same as the one we proposed in [29].

A. Overview of the proposed algorithm

The problem to find one sparse constraint vector w is given
by equations (1a), (1b), in which pattern µ is denoted by xµ.

min

C∑
µ=1

|xµ · w|2 + ηg(w) (1a)

subject to:
‖w‖2 = 1 (1b)

In the above problem, · is the inner-product, ‖.‖2 represent the
`2 vector norm, g(w) a penalty function to encourage sparsity
and η is a positive constant. There are various ways to choose
g(w). For instance one can pick g(w) to be ‖.‖1, which leads
to `1-norm penalty and is widely used in compressed sensing
applications [33], [34]. Here, we will use a different penalty
function, as explained later.

To form the basis for the null space of the patterns, we need
m = n−k vectors, which we can obtain by solving the above
problem several times, each time from a random initial point2.

As for the sparsity penalty term g(w) in this problem, in
this paper we consider the function

g(w) =

n∑
i=1

tanh(σw2
i ),

where σ is a constant that should be chosen appropriately.
Intuitively, tanh(σw2

i ) approximates |sign(wi)| in `0-norm.
Therefore, the larger σ is, the closer g(w) will be to ‖.‖0.

2It must be mentioned that in order to have exactly m = n − k linearly
independent vectors, we should pay some additional attention when repeating
the proposed method several times. This issue is addressed later in the paper.

By calculating the derivative of the objective function, and by
considering the update due to each randomly picked pattern
x, we will get the following iterative algorithm:

y(t) = x(t) · w(t) (2a)

w̃(t+ 1) = w(t)− αt (2y(t)x(t) + ηΓ(w(t))) (2b)

w(t+ 1) =
w̃(t+ 1)

‖w̃(t+ 1)‖2
(2c)

In the above equations, t is the iteration number, x(t) is the
sample pattern chosen at iteration t uniformly at random from
the patterns in the training set X , and αt is a small positive
constant. Finally, Γ(w) : Rn → Rn = ∇g(w) is the gradient
of the penalty term for non-sparse solutions. This function has
the interesting property that for very small values of wi(t),
Γ(wi(t)) ' 2σwi(t). To see why, consider the ith entry of the
function Γ(w(t)))

Γi(w(t)) = ∂g(w(t))/∂wi(t) = 2σtwi(t)(1−tanh2(σwi(t)
2))

It is easy to see that Γi(w(t)) ' 2σwi(t) for relatively small
wi(t)’s. And for larger values of wi(t), we get Γi(w(t)) ' 0.
Therefore, by proper choice of η and σ, equation (2b) sup-
presses small entries of w(t) by pushing them towards zero,
thus, favoring sparser results. To simplify the analysis, and
with some abuse of notation, we approximate the function
Γ(w(t)) with the following function:

Γi(w(t)) =

{
wi(t) if |wi(t)| ≤ θt;
0 otherwise, (3)

where θt is a small positive threshold.
Following the same approach as [35] and assuming αt to

be small enough such that equation (2c) can be expanded
as powers of αt, we can approximate equation (2) with the
following simpler version:

y(t) = x(t) · w(t) (4a)

w(t+1) = w(t)−αt
(
y(t)

(
x(t)− y(t)w(t)

‖w(t)‖22

)
+ ηΓ(w(t))

)
(4b)

In the above approximation, we also omitted the term
αtη (w(t) · Γ(w(t)))w(t) since w(t) · Γ(w(t)) would be neg-
ligible, specially as θt in equation (3) becomes smaller.

The overall learning algorithm for one constraint node is
given by Algorithm 1. In words, in Algorithm 1 y(t) is the
projection of x(t) on the basis vector w(t). If for a given
data vector x(t), y(t) is equal to zero, namely, the data is
orthogonal to the current weight vector w(t), then according to
equation (4b) the weight vector will not be updated. However,
if x(t) has some projection over w(t) then the weights are
updated towards the direction to reduce this projection.

Since we are interested in finding m basis vectors, we have
to do the above procedure at least m times in parallel.3

3In practice, we may have to repeat this process more than m times to
ensure the existence of a set of m linearly independent vectors. However, our
experimental results suggest that most of the time, repeating m times would
be sufficient.



Algorithm 1 Iterative Learning
Input: Set of patterns xµ ∈ X with µ = 1, . . . , C, stopping

point ε.
Output: w

while
∑
µ |xµ · w(t)|2 > ε do

Choose x(t) at random from patterns in X
Compute y(t) = x(t) · w(t)

Update w(t + 1) = w(t) − αty(t)
(
x(t)− y(t)w(t)

‖w(t)‖22

)
−

αtηΓ(w(t)).
t← t+ 1.

end while

Remark 1. Although we are interested in finding a sparse
graph, note that too much sparseness is not desired. This is
because we are going to use the feedback sent by the constraint
nodes to eliminate input noise during the recall phase. If the
graph is too sparse, the number of feedback messages received
by each pattern node is too small to be relied upon. Therefore,
we must adjust the penalty coefficient η properly to get a
sufficiently sparse neural graph.

B. Convergence analysis

To prove the convergence of Algorithm 1, let A =
E{xxT |x ∈ X} be the correlation matrix for the pat-
terns in the training set. Also, denote At = x(t)(x(t))>,
(hence, A = E(At)). Furthermore, let E(t) = E(w(t)) =
1
C

∑C
µ=1(w(t)>xµ)2 be the objective function. Finally, as-

sume that the learning rate αt is small enough so that terms
that are O(α2

t )can be neglected, similar to approximation we
made in deriving equation (4). In general, we pick the learning
rate αt ∝ 1/t so that αt > 0,

∑
αt → ∞ and

∑
α2
t < ∞.

We first show that the weight vector w(t) never becomes zero,
i.e. ‖w(t)‖2 > 0 for all t.

Lemma 1. Assume we initialize the weights such that
‖w(0)‖2 > 0. Furthermore, assume αt < α0 < 1/(2η). Then,
for all iterations t we have ‖w(t)‖2 > 0.

Proof: We proceed by induction. To this end, as-
sume ‖w(t)‖2 > 0 and denote w′(t) = w(t) −
αty(t)

(
x(t)− y(t)w(t)

‖w(t)‖22

)
. Note that ‖w′(t)‖22 = ‖w(t)‖22 +

α2
t y(t)2‖x(t)− y(t)w(t)

‖w(t)‖22
‖22 ≥ ‖w(t)‖22 > 0. Now,

‖w(t+ 1)‖22 = ‖w′(t)‖2 + α2
t η

2‖Γ(w(t))‖2

− 2αtηΓ(w(t))>w′(t)

≥ ‖w′(t)‖22 − 2αtηΓ(w(t))>w′(t)

≥ ‖w′(t)‖2(‖w′(t)‖2 − 2αtη‖Γ(w(t))‖2)

Thus, in order to have ‖w(t + 1)‖2 > 0, we must have that
‖w′(t)‖2 − 2αtη‖Γ(w(t))‖2 > 0. Given that, ‖Γ(w(t))‖2 ≤
‖w(t)‖2 ≤ ‖w′(t)‖2, it is sufficient to have 2αtη < 1 in order
to achieve the desired inequality. This proves the lemma.

Next, the following theorem proves the convergence of
Algorithm 1 to a minimum w∗ such that E(w∗) = 0.

Theorem 2. Suppose the learning rate αt is sufficiently small
and both the learning rate αt and the sparsity threshold θt
decay according to 1/t. Then, Algorithm 1 converges to a
local minimum w∗ for which E(w∗) = 0. At this point, w∗ is
orthogonal to the patterns in the data set X .

Proof: From equation (4b) recall that

w(t+1) = w(t)−αt
(
y(t)

(
x(t)− y(t)w(t)

‖w(t)‖22

)
+ ηΓ(w(t))

)
.

Let Y (t) = Ex(Xw(t)). Thus, we will have

Y (t+ 1) = Y (t)

(
1 + αt

w(t)>Aw(t)

‖w(t)‖22

)
− αt (XAw(t) + ηXΓ(w(t)))

Noting that E(t) = 1
C ‖Y (t)‖22 we obtain

E(t+ 1) = E(t)

(
1 + αt

w(t)>Aw(t)

‖w(t)‖22

)2

+
α2
t

C
‖XAw(t) + ηXΓ(w(t))‖22

− 2αt

(
1 + αt

w(t)>Aw(t)

‖w(t)‖22

)(
w(t)>A2w(t)

)
− 2αt

(
1 + αt

w(t)>Aw(t)

‖w(t)‖22

)(
ηw(t)>AΓ(w(t))

)
a' E(t)

(
1 + 2αt

w(t)>Aw(t)

‖w(t)‖22

)
− 2αt

(
w(t)>A2w(t) + ηw(t)>AΓ(w(t))

)
= E(t)− 2αt

(
w(t)>A2w(t)− w(t)>Aw(t)

‖w(t)‖22
E(t)

)
− 2αtηw(t)>AΓ(w(t))

b' E(t)− 2αt

(
w(t)>A2w(t)− w(t)>Aw(t)

‖w(t)‖22
E(t)

)
.

In the above equations, approximation (a) is obtained
by omitting all terms that are O(αt)

2. Approximation
(b) follows by noting that αtη‖(w(t))>AΓ(w(t))‖2 ≤
αtη‖w(t)‖2‖A‖2‖Γ(w(t))‖2 ≤ αtη‖w(t)‖2‖A‖2(nθt). Now
since θt = Θ(αt), αtη‖(w(t))>AΓ(w(t))‖2 = O(α2

t ) and,
hence, can be eliminated as well.

Therefore, in order to show that the algorithm converges,
we need to show that

(
w(t)>A2w(t)− w(t)>Aw(t)

‖w(t)‖22
E(t)

)
≥ 0

to have E(t + 1) ≤ E(t). Noting that E(t) = w(t)>Aw(t),
we must show that w>A2w ≥ (w>Aw)2/‖w‖22. Note that the
left hand side is ‖Aw‖22. For the right hand side, we have

‖w>Aw‖22
‖w‖22

≤ ‖w‖
2
2‖Aw‖22
‖w‖22

= ‖Aw‖22.

The above inequality shows that E(t+1) ≤ E(t), which shows
that for sufficiently large number of iterations, the algorithm
converges to a local minimum w∗ where E(w∗) = 0. From
Lemma 1 we know that ‖w∗‖2 > 0. Thus, the only solution for
E(w∗) = ‖Xw∗‖22 = 0 would be to for w∗ to be orthogonal
to the patterns in the data set.



Remark 2. Note that the above theorem only proves that
the obtained vector is orthogonal to the dataset and says
nothing about its degree of sparsity. The reason is that there
is no guarantee that the dual basis of a subspace be sparse.
However, our experimental results in section VII show that
the introduction of a sparsity penalty function (Γ(w)) works
perfectly well and the learning algorithm results in sparse
solutions.

C. Running the Algorithm in Parallel

In order to find m constraints, we need to repeat Algorithm
1 several times. Fortunately, we can repeat this process in
parallel, which speeds up the algorithm and is more mean-
ingful from a biological point of view as each constraint
neuron can act independently of other neighbors. Although
doing the algorithm in parallel may result in linearly dependent
constraints once in a while, our experimental results show
that starting from different random initial points, the algorithm
converges to different distinct constraints most of the time.

IV. RECALL PHASE

In the recall phase, we are going to exploit the fact
that our learning algorithm has resulted in the connectivity
matrix of a neural graph which is sparse and orthogonal
to the memorized patterns. Therefore, given a noisy version
of the learned patterns, we can use the feedback from the
constraint neurons in Fig. 1 to design an algorithm which
eliminates noise. More specifically, the linear input sums to
the constraint neurons are given by the elements of the vector
W (xµ + z) = Wxµ + Wz = Wz, with z being the integer-
valued input noise (biologically speaking, the noise can be
interpreted as a neuron skipping some spikes or firing more
spikes than it should). Based on observing the elements of
Wz, each constraint neuron feeds back a message (containing
info about z) to its neighboring pattern neurons. Based on this
feedback, and exploiting the fact that W is sparse, the pattern
neurons update their states in order to reduce the noise z.

It must also be mentioned that we initially assume asymmet-
ric neural weights during the recall phase. More specifically,
we assume the backward weight from constraint neuron i to
pattern neuron j, denoted by W b

ij , to be equal to the sign
of the weight from pattern neuron i to constraint neuron
j, i.e. W b

ij = sign(Wij), where sign(x) is equal to +1, 0
or −1 if x > 0, x = 0 or x < 0, respectively. This
assumption simplifies the theoretical analysis of the algorithm.
Later in section IV-B, we are going to consider another version
of the algorithm which works with symmetric weights, i.e.
W b
ij = Wij . We will compare the performance of all suggested

algorithms together in section VII.

A. The Recall Algorithms

The proposed algorithm for the recall phase comprises
a series of forward and backward iterations. Two different
methods are suggested in this paper, which slightly differ from
each other in the way pattern neurons are updated. The first
one is based on the Winner-Take-All approach (WTA) and

Algorithm 2 Recall Algorithm: Winner-Take-All
Input: Connectivity matrix W , iteration tmax

Output: x1, x2, . . . , xn
1: for t = 1→ tmax do
2: Forward iteration: Calculate hi =

∑n
j=1Wijxj , for

each constraint neuron and set yi = sign(hi).
3: Backward iteration: Each neuron xj with degree dj

computes

g
(1)
j =

∑m
i=1W

b
ijyi

dj
, g

(2)
j =

∑m
i=1 |W b

ijyi|
dj

4: Find
j∗ = arg max

j
g
(2)
j .

5: Update the state of winner: set xj∗ = xj∗−sign(g
(1)
j∗ ).

6: end for

Algorithm 3 Recall Algorithm: Majority-Voting
Input: Connectivity matrix W , threshold ϕ, iteration tmax

Output: x1, x2, . . . , xn
1: for t = 1→ tmax do
2: Forward iteration: Calculate hi =

∑n
j=1Wijxj , for

each constraint neuron and set yi = sign(hi).
3: Backward iteration: Each neuron xj with degree dj

computes

g
(1)
j =

∑m
i=1W

b
ijyi

dj
, g

(2)
j =

∑m
i=1 |W b

ijyi|
dj

4: Update the state of each pattern neuron j according to
xj = xj − sign(g1j ) only if |g(2)j | > ϕ.

5: end for

is given by Algorithm 2. In this version, only the pattern
node that receives the highest amount of normalized feedback
updates its state while the other pattern neurons maintain
their current states. The normalization is done with respect
to the degree of each pattern neuron, i.e. the number of edges
connected to each pattern neuron in the neural graph. The
WTA circuitry can be easily added to the neural model shown
in Fig. 1 using any of the classic WTA methods [16].

The second approach, given by Algorithm 3, is much
simpler: in every iteration, each pattern neuron decides locally
whether or not to update its current state. More specifically, if
the amount of feedback received by a pattern neuron exceeds
a threshold, the neuron updates its state; otherwise, it remains
unchanged.4 In both algorithms, the quantity g

(2)
j can be

interpreted as the number of feedback messages received by
pattern neuron xj from the constraint neurons. On the other
hand, the sign of g(1)j provides an indication of the sign of the

4Note that in order to maintain the current value of a neuron in case no
input feedback is received, we can add self-loops to pattern neurons in Fig. 1.
These self-loops are not shown in the figure for clarity.



noise that affects xj , and |g(1)j | indicates the confidence level
in the decision regarding the sign of the noise.

It is worthwhile mentioning that the Majority-Voting decod-
ing algorithm is very similar to the Bit-Flipping algorithm of
Sipser and Spielman to decode LDPC codes [37] and a similar
approach in [38] for compressive sensing methods.

Remark 3. To give the reader some insight about why
the neural graph should be sparse in order for the above
algorithms to work, consider the backward iteration of both
algorithms: it is based on counting the fraction of received
input feedback messages from the neighbors of a pattern
neuron. In the extreme case, if the neural graph is complete,
then a single noisy pattern neuron results in the violation of
all constraint neurons in the forward iteration. Consequently,
in the backward iteration all pattern neurons receive feedback
from their neighbors and it is impossible to tell which of them
is the noisy one.

However, if the graph is sparse, a single noisy pattern
neuron only makes some of the constraints unsatisfied. As a
result, in the backward iteration only the nodes which share
the neighborhood of the noisy node receive some feedback.
And the fraction of the received feedback messages would be
much larger for the original noisy node. Therefore, by merely
looking at this fraction, one can identify the noisy pattern
neuron with high probability as long as the graph is sparse
and the input noise is reasonably bounded.

B. Some Practical Modifications

Although Algorithm 3 is fairly simple and practical, each
pattern neuron still needs two types of information: the number
of received feedbacks and the net input sum. We can modify
the recall algorithm to make it more practical and simpler by
replacing the term ‖wj‖0 = dj with ‖wj‖1. Furthermore, we
assume symmetric weights, i.e W b

ij = Wij .
Interestingly, in some of our experimental results corre-

sponding to denser graphs, this approach performs better, as
will be illustrated in section VII. One possible reason behind
this improvement might be the fact that using the `1-norm
instead of the `0-norm will result in better differentiation
between two vectors that have the same number of non-zero
elements but differ in magnitudes of the elements.

V. PERFORMANCE ANALYSIS

In order to obtain analytical estimates on the recall prob-
ability of error, we assume that the connectivity graph W is
sparse. With respect to this graph, we define the pattern and
constraint degree distributions as follows.

Definition 1. For the bipartite graph W , let λi (ρj) denote
the fraction of edges that are adjacent to pattern (constraint)
nodes of degree i (j). We call {λ1, . . . , λm} and {ρ1, . . . , ρn}
the pattern and constraint degree distribution form the edge
perspective, respectively. Furthermore, it is convenient to
define the degree distribution polynomials as

λ(z) =
∑
i

λiz
i−1 and ρ(z) =

∑
i

ρiz
i−1.

The degree distributions are determined after the learning
phase is finished and in this section we assume they are
given. Furthermore, we consider an ensemble of random neural
graphs with a given degree distribution and investigate the av-
erage performance of the recall algorithms over this ensemble.
Here, the word ”ensemble” refers to the assumption of having
a number of random neural graphs with the given degree
distributions and do the analysis for the average scenario.

To simplify analysis, we assume that the noise entries are
±1. However, the proposed recall algorithms can work with
any integer-valued noise and our experimental results suggest
that this assumption is not necessary in practice.

Finally, we assume that the errors do not cancel each other
out in the constraint neurons (as long as the number of
errors is fairly bounded). This is in fact a realistic assumption
because the neural graph is weighted, with weights belonging
to the real field, and the noise values are integers. Thus, the
probability that the weighted sum of some integers be equal
to zero is negligible.

We do the analysis only for the Majority-Voting algorithms
since if we choose the Majority-Voting update threshold ϕ =
1, roughly speaking, we will have the WTA algorithm.5

As mentioned earlier, in this paper we will perform the
analysis for general sparse bipartite graphs. However, restrict-
ing ourselves to a particular type of sparse graphs known as
”expander” allows us to prove stronger results on the recall
error probabilities. More details can be found in [39] and in
[10]. However, since it is very difficult, if not impossible in
certain cases, to make a graph expander during an iterative
learning method, we focus on the more general case of sparse
neural graphs.

To start the analysis, let Et denote the set of erroneous
pattern nodes at iteration t, and N (Et) be the set of constraint
nodes that are connected to the nodes in Et, i.e. these are
the constraint nodes that have at least one neighbor in Et.
In addition, let N c(Et) denote the (complimentary) set of
constraint neurons that do not have any connection to any
node in Et. Denote also the average neighborhood size of Et
by St = E(|N (Et)|). Finally, let Ct be the set of correct pattern
nodes in round t.

Based on the error correcting algorithm and the above
notations, in a given iteration two types of errors are possible:

1) Type-1 errors: A node x ∈ Ct decides to update its value.
The probability of this event is denoted by Pe1(t).

2) Type-2 errors: A node x ∈ Et updates its value in the
wrong direction. Let Pe2(t) denote the probability of
error for this type.

We start the analysis by finding explicit expressions and
upper bounds on the average of Pe1(t) and Pe2(t) over all
nodes as a function St. We then find an exact relationship
for St as a function of |Et|, which will provide us with the

5It must be mentioned that choosing ϕ = 1 does not yield the WTA
algorithm exactly because in the original WTA, only one node is updated
in each round. However, in this version with ϕ = 1, all nodes that receive
feedback from all their neighbors are updated. Nevertheless, the performance
of the both algorithms is rather similar.



required expressions on the average bit error probability as a
function of the number of noisy input symbols, |E0|. Having
found the average bit error probability, we can easily bound
the block error probability for the recall algorithm.

A. Error probability - type 1

To begin, let P x1 (t) be the probability that a node x ∈ Ct
with degree dx updates its state. We have:

P x1 (t) = Pr{ |N (Et) ∩N (x)|
dx

≥ ϕ} (5)

where N (x) is the neighborhood of x. Assuming random
construction of the graph and relatively large graph sizes, one
can approximate P x1 (t) by

P x1 (t) ≈
dx∑

i=dϕdxe

(
dx
i

)(
St
m

)i(
1− St

m

)dx−i
. (6)

In the above equation, St/m represents the probability of
having one of the dx edges connected to the St constraint
neurons that are neighbors of the erroneous pattern neurons.

As a result of the above equations, we have:

Pe1(t) = Edx(P x1 (t)), (7)

where Edx denote the expectation over the degree distribution
{λ1, . . . , λm}.

Note that if ϕ = 1, the above equation simplifies to

Pe1(t) = λ

(
St
m

)
B. Error probability - type 2

A node x ∈ Et makes a wrong decision if the net
input sum it receives has a different sign than the sign of
noise it experiences. Instead of finding an exact relation, we
bound this probability by the probability that the neuron x
shares at least half of its neighbors with other neurons, i.e.
Pe2(t) ≤ Pr{ |N (E∗t)∩N (x)|

dx
≥ 1/2}, where E∗t = Et \ x.

Letting P x2 (t) = Pr{ |N (E∗t)∩N (x)|
dx

≥ 1/2|deg(x) = dx}, we
will have:

P x2 (t) =

dx∑
i=ddx/2e

(
dx
i

)(
S∗t
m

)i(
1− S∗t

m

)dx−i
(8)

where S∗t = E(|N (E∗t )|)
Therefore, we will have:

Pe2(t) ≤ Edx(P x2 (t)) (9)

Combining equations (7) and (9), the bit error probability
at iteration t would be

Pb(t+ 1) = Pr{x ∈ Ct}Pe1(t) + Pr{x ∈ Et}Pe2(t)

=
n− |Et|

n
Pe1(t) +

|Et|
n
Pe2(t) (10)

And finally, the average block error rate is given by the
probability that at least one pattern node x is in error. There-
fore:

Pe(t) = 1− (1− Pb(t))n (11)

Equation (11) gives the probability of making a mistake in
iteration t. Therefore, we can bound the overall probability of
error, PE , by setting PE = limt→∞ Pe(t). To this end, we
have to recursively update Pb(t) in equation (10) and using
|Et+1| ≈ nPb(t + 1). However, since we have assumed that
the noise values are ±1, we can provide an upper bound on
the total probability of error by considering

PE ≤ Pe(1) (12)

In other words, we assume that the recall algorithms either
eliminate the input noise in the first iteration or a recall error
is declared. Obviously, this bound is not as tight as possible
and one might be able to correct errors in later iterations. In
fact simulation results confirm this expectation. However, this
approach provides a nice analytical upper bound since it only
depends on the initial number of noisy nodes. As the initial
number of noisy nodes grow, the above bound becomes tight.
Thus, in summary we have

PE ≤ 1− (1− n− |E0|
n

P̄ x1 −
|E0|
n
P̄ x2 )n (13)

where P̄ xi = Edx(P xi ) and |E0| is the number of noisy nodes
in the input pattern initially.

Now, what remains to do is to find an expression for St and
S∗t as a function of |Et|. The following lemma will provide us
with the required relationship.

Lemma 3. The average neighborhood size St in iteration t
is given by:

St = m

(
1− (1− d̄

m
)|Et|

)
(14)

where d̄ is the average degree for pattern nodes.

Proof: The proof is given in Appendix A.
To obtain S∗t we could apply the above lemma with |Et|−1

as the exponent in the right-hand side expression.

VI. PATTERN RETRIEVAL CAPACITY

It is interesting to see that, except for its obvious influence
on the learning time, the number of patterns C does not have
any effect in the learning or recall algorithm. As long as the
patterns come from a subspace, the learning algorithm will
yield a matrix which is orthogonal to all of the patterns in the
training set. And in the recall phase, all we deal with is Wz,
with z being the noise which is independent of the patterns.

Therefore, in order to show that the pattern retrieval capacity
is exponential with n, all we need to show is that there exists
a ”valid” training set X with C patterns of length n for which
C ∝ arn, for some a > 1 and 0 < r. By valid we mean
that the patterns should come from a subspace with dimension
k < n and the entries in the patterns should be non-negative
integers. The next theorem proves the desired result.

Theorem 4. Let X be a C × n matrix, formed by C vectors
of length n with non-negative integers entries between 0 and
Q − 1. Furthermore, let k = rn for some 0 < r < 1. Then,



there exists a set of such vectors for which C = arn, with
a > 1, and rank(X ) = k < n.

Proof: The proof is based on construction: we construct
a data set X with the required properties. To start, consider a
matrix G ∈ Rk×n with rank k and k = rn, with 0 < r < 1.
Let the entries of G be non-negative integers, between 0 and
γ − 1, with γ ≥ 2.

We start constructing the patterns in the data set as follows:
consider a set of random vectors uµ ∈ Rk, µ = 1, . . . , C, with
integer-valued entries between 0 and υ− 1, where υ ≥ 2. We
set the pattern xµ ∈ X to be xµ = uµ · G, if all the entries
of xµ are between 0 and Q−1. Obviously, since both uµ and
G have only non-negative entries, all entries in xµ are non-
negative. Therefore, it is the Q− 1 upper bound that we have
to worry about.

The jth entry in xµ is equal to xµj = uµ ·Gj , where Gj is
the jth column of G. Suppose Gj has dj non-zero elements.
Then, we have:

xµj = uµ ·Gj ≤ dj(γ − 1)(υ − 1)

Therefore, denoting d∗ = maxj dj , we could choose γ, υ
and d∗ such that

Q− 1 ≥ d∗(γ − 1)(υ − 1) (15)

to ensure all entries of xµ are less than Q.
As a result, since there are υk vectors u with integer entries

between 0 and υ−1, we will have υk = υrn patterns forming
X . Which means C = υrn, which would be an exponential
number in n if υ ≥ 2.

As an example, if G can be selected to be a sparse 200×400
matrix with 0/1 entries (i.e. γ = 2) and d∗ = 10, and u is
also chosen to be a vector with 0/1 elements (i.e. υ = 2), then
it is sufficient to choose Q ≥ 11 to have a pattern retrieval
capacity of C = 2rn.

VII. SIMULATION RESULTS

A. Simulation Scenario

We have simulated the proposed learning and recall algo-
rithms for three different network sizes n = 200, 400, 800,
with k = n/2 for all cases. For each case, we considered a
few different setups with different values for α, η, and θ in the
learning algorithm 1, and different ϕ for the Majority-Voting
recall algorithm 3. For brevity, we do not report all the results
for various combinations but present only a selection of them
to give insight on the performance of the proposed algorithms.

In all cases, we generated 50 random training sets using the
approach explained in the proof of theorem 4, i.e. we generated
a generator matrix G at random with 0/1 entries and d∗ = 10.
We also used 0/1 generating message words u and put Q = 11
to ensure the validity of the generated training set.

However, since in this setup we will have 2k patterns to
memorize, doing a simulation over all of them would take
a lot of time. Therefore, we have selected a random sample
sub-set X each time with size C = 105 for each of the 50
generated sets and used these subsets as the training set.

For each setup, we performed the learning algorithm and
then investigated the average sparsity of the learned constraints
over the ensemble of 50 instances. As explained earlier, all the
constraints for each network were learned in parallel, i.e. to
obtain m = n− k constraints, we executed Algorithm 1 from
random initial points m time.

As for the recall algorithms, the error correcting perfor-
mance was assessed for each set-up, averaged over the en-
semble of 50 instances. The empirical results are compared to
the theoretical bounds derived in Section V as well.

B. Learning Phase Results

In the learning algorithm, we go over the patterns in the
dataset several times to make sure that update for one pattern
does not adversely affect the other learned patterns. Let t be
the number of times we have gone over the training set so far.
Then we set αt ∝ α0/t to ensure the conditions of Theorem 2
is satisfied. Interestingly, all of the constraints converged in at
most two learning iterations for all different setups. Therefore,
the learning is very fast in this case.

Fig. 2 illustrates the percentage of pattern nodes with the
specified sparsity degree defined as % = κ/n, where κ is the
number of non-zero elements. From the figure we notice two
trends: Increasing the sparsity threshold θ0 makes the network
sparser and larger networks become sparser in general.
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n = 800, α0 = 0.75, θ0 = 0.036
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Fig. 2. The percentage of variable nodes with the specified sparsity degree
and different values of network sizes and sparsity thresholds. The sparsity
degree is defined as % = κ/n, where κ is the number of non-zero elements.

C. Recall Phase Results

For the recall phase, in each trial we pick a pattern randomly
from the training set, corrupt a given number of its symbols
with ±1 noise and use the suggested algorithms to correct
the errors. A pattern error is declared if the output does not
match the correct pattern. We compare the performance of the
two recall algorithms: Winner-Take-All (WTA) and Majority-
Voting (MV). Table VII-C shows the simulation parameters in
the recall phase for all scenarios (unless specified otherwise).



TABLE I
SIMULATION PARAMETERS

Parameter ϕ tmax ε η
Value 1 20‖z‖0 0.001 1
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Fig. 3. Pattern error rate against the initial number of erroneous nodes for
two different values of θ0. Here, the network size is n = 400 and k = 200.
The blue curves correspond to the sparser network (larger θ0) and clearly
shows a better performance.

Fig. 3 illustrates the effect of the sparsity threshold θ on the
performance of the recall algorithm. Here, we have n = 400
and k = 200. Two different sparsity thresholds are compared
together, namely θt ∝ 0.031/t and θt ∝ 0.021/t. Clearly, as
network becomes sparser, i.e. θ increases, the performance of
both recall algorithms improve.

Fig. 4 illustrates the effect of network size on the perfor-
mance of recall algorithms. As obvious from the figure, the
performance improves to a great extent when we have a larger
network. This is partially because of the fact that in larger
networks, the connections are relatively sparser.

Fig. 5 compares the results obtained in simulation with the
upper bound derived in Section V. Note that as expected, the
bound is quite loose since in deriving inequality (11) we only
considered the first iteration of the algorithm.
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Fig. 4. Pattern error rate against the initial number of erroneous nodes for
two different network sizes n = 800 and k = 400. In both cases k = n/2.
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Fig. 5. Pattern error rate against the initial number of erroneous nodes and
comparison with theoretical upper bounds for n = 800, k = 400, α0 = 0.95
and θ0 = 0.029.
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Fig. 6. Pattern error rate against the initial number of erroneous nodes for
two different values of θ0. Here, the network size is n = 400 and k = 200.
The blue curves correspond to the sparser network (larger θ0) and clearly
show a better performance.

We also investigate the performance of the modified and
more practical version of the Majority-Voting algorithm, which
was explained in Section IV-B. Fig. 6 compares the perfor-
mance of the WTA and original MV algorithms with the
modified version of MV algorithm for a network with size
n = 200, k = 100 and learning parameters αt ∝ 0.45/t,
η = 0.45 and θt ∝ 0.015/t. The neural graph of this particular
example is rather dense, because of small n and θ. Here, the
modified MV algorithm performs better because of the extra
information provided by the `1-norm (compared to the `0-
norm in the original MV algorithm). However, note that we
did not observe this trend for the other simulation scenarios
where the neural graph was sparser.

Finally, in Fig. 7 we compare perfromance of the proposed
method in this paper and the multi-state complex-valued neural
networks in [3] and [19]. To have a fair comparison, we first
applied the methods of [3] and [19] to a dataset of randomly
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Fig. 7. Recall error rate against the initial number of errors for the method
proposed in this paper and those of [3] and [19]. Different pattern retrieval
capacities are considered to investigate their effect on the recall error rate.

generated patterns, which is the setting that these methods are
designed for, and compared the results to that of our method
in its natural setting, i.e. patterns belonging to a subspace.
As seen from Fig. 7 the proposed method in this paper could
achieve very small recall errors while having a much larger
pattern retrieval capacity at the same time.

We then applied the methods of [3] and [19] to the dataset
in which patterns belong to a subspace. Interestingly, the
performance of the method in [3] deteriorates while that of
[19] becomes better in certain cases (e.g. for C = 2000).
However, neither of the approaches can achieve the small error
rates obtained by the method proposed in this paper. Thus,
even though redundancy and structure exists in this particular
set of patterns, the mentioned approaches could not exploit it
to achieve better pattern retrieval capacities or smaller recall
error rates.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a neural associative memory
which is capable of exploiting inherent redundancy in input
patterns to enjoy an exponentially large pattern retrieval ca-
pacity. Furthermore, the proposed method uses simple iter-
ative algorithms for both learning and recall phases which
makes gradual learning possible and maintain rather good
recall performances. The convergence of the proposed learning
algorithm was proved using techniques from stochastic ap-
proximation. We also analytically investigated the performance
of the recall algorithm by deriving an upper bound on the
probability of recall error as a function of input noise. Our
simulation results confirms the consistency of the theoretical
results with those obtained in practice, for different network
sizes and learning/recall parameters.

Improving the error correction capabilities of the proposed
network is definitely a subject of our future research. We
have already started investigating this issue and proposed a
different network structure which reduces the error correction
probability by a factor of 10 in many cases [28]. In [29] we
proposed a more robust recall algorithms which achieves linear

error correction capabilities.
Extending this method to capture other sorts of redundancy,

i.e. other than belonging to a subspace, will be another topic
which we would like to explore in future.

Finally, considering some practical modifications to the
learning and recall algorithms is of great interest. One good
example is simultaneous learn and recall capability, i.e. to
have a network which learns a subset of the patterns in the
subspace and move immediately to the recall phase. Now
during the recall phase, if the network is given a noisy version
of the patterns previously memorized, it eliminates the noise.
However, if the given pattern is new and had not learned
before, the network adjusts the weights in order to learn this
pattern as well. Such model is of practical interest and closer
to real-world neuronal networks.
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APPENDIX A
AVERAGE NEIGHBORHOOD SIZE

In this appendix, we find an expression for the average
neighborhood size for erroneous nodes, St = E(|N (Et)|). To
this end, we assume the following procedure for constructing
a right-irregular bipartite graph:
• In each iteration, we pick a variable node x with a de-

gree randomly determined according to the given degree
distribution.

• Based on the given degree dx, we pick dx constraint
nodes uniformly at random with replacement and connect
x to the constraint node.

• We repeat this process n times, until all variable nodes
are connected.

Note that the assumption that we do the process with replace-
ment is made to simplify the analysis.

Now we are interested in finding the average number of
constraint nodes in each round of the above procedure. With
some abuse of notations, let Se denote the number of constraint
nodes connected to pattern nodes in round e. We write Se
recursively in terms of e as follows:

Se+1 = Edx(

dx∑
j=0

(
dx
j

)(
Se
m

)dx−j (
1− Se

m

)j
(Se + j))

= Edx(Se + dx(1− Se/m))

= Se + d̄(1− Se/m), (16)

where d̄ = Edx(dx) is the average degree of the pattern
nodes. In words, the first line calculates the average growth of
the neighborhood when a new variable node is added to the
graph. The proceeding equalities follows from relationships on
binomial sums. Noting that S1 = d̄, one obtains:

St = m

(
1− (1− d̄

m
)|Et|

)
(17)



In order to verify the correctness of the above analysis, we
have performed some simulations for different network sizes
and degree distributions obtained from the graphs returned by
the learning algorithm. We generated 2000 random graphs and
calculated the average neighborhood size in each iteration. The
result for n = 200, m = 100 is shown in Figure 8, where the
average neighborhood size in each iteration is illustrated and
compared with theoretical estimations given by equation (17).
From the figure, it is obvious that the theoretical value is a
very good approximation of the simulation results.
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Fig. 8. The theoretical estimation and simulation results for the average
neighborhood size of irregular graphs with a given degree-distribution for
n = 200, m = 100 and over 2000 random graphs.
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