1,751 research outputs found

    Logic Meets Algebra: the Case of Regular Languages

    Full text link
    The study of finite automata and regular languages is a privileged meeting point of algebra and logic. Since the work of Buchi, regular languages have been classified according to their descriptive complexity, i.e. the type of logical formalism required to define them. The algebraic point of view on automata is an essential complement of this classification: by providing alternative, algebraic characterizations for the classes, it often yields the only opportunity for the design of algorithms that decide expressibility in some logical fragment. We survey the existing results relating the expressibility of regular languages in logical fragments of MSO[S] with algebraic properties of their minimal automata. In particular, we show that many of the best known results in this area share the same underlying mechanics and rely on a very strong relation between logical substitutions and block-products of pseudovarieties of monoid. We also explain the impact of these connections on circuit complexity theory.Comment: 37 page

    The Structure of Models of Second-order Set Theories

    Full text link
    This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of T-realizations of a fixed countable model of ZFC, where T is a reasonable second-order set theory such as GBC or KM, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and Mostowski from KM to weaker theories. They showed that every model of KM plus the Class Collection schema “unrolls” to a model of ZFC− with a largest cardinal. I calculate the theories of the unrolling for a variety of second-order set theories, going as weak as GBC + ETR. I also show that being T-realizable goes down to submodels for a broad selection of second-order set theories T. Third, I show that there is a hierarchy of transfinite recursion principles ranging in strength from GBC to KM. This hierarchy is ordered first by the complexity of the properties allowed in the recursions and second by the allowed heights of the recursions. Fourth, I investigate the question of which second-order set theories have least models. I show that strong theories—such as KM or Π11-CA—do not have least transitive models while weaker theories—from GBC to GBC + ETROrd —do have least transitive models

    The Structure of Models of Second-order Set Theories

    Full text link
    This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of TT-realizations of a fixed countable model of ZFC\mathsf{ZFC}, where TT is a reasonable second-order set theory such as GBC\mathsf{GBC} or KM\mathsf{KM}, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and Mostowski from KM\mathsf{KM} to weaker theories. They showed that every model of KM\mathsf{KM} plus the Class Collection schema "unrolls" to a model of ZFC−\mathsf{ZFC}^- with a largest cardinal. I calculate the theories of the unrolling for a variety of second-order set theories, going as weak as GBC+ETR\mathsf{GBC} + \mathsf{ETR}. I also show that being TT-realizable goes down to submodels for a broad selection of second-order set theories TT. Third, I show that there is a hierarchy of transfinite recursion principles ranging in strength from GBC\mathsf{GBC} to KM\mathsf{KM}. This hierarchy is ordered first by the complexity of the properties allowed in the recursions and second by the allowed heights of the recursions. Fourth, I investigate the question of which second-order set theories have least models. I show that strong theories---such as KM\mathsf{KM} or Π11-CA\Pi^1_1\text{-}\mathsf{CA}---do not have least transitive models while weaker theories---from GBC\mathsf{GBC} to GBC+ETROrd\mathsf{GBC} + \mathsf{ETR}_\mathrm{Ord}---do have least transitive models.Comment: This is my PhD dissertatio
    • 

    corecore