thesis

The Structure of Models of Second-order Set Theories

Abstract

This dissertation is a contribution to the project of second-order set theory, which has seen a revival in recent years. The approach is to understand second-order set theory by studying the structure of models of second-order set theories. The main results are the following, organized by chapter. First, I investigate the poset of TT-realizations of a fixed countable model of ZFC\mathsf{ZFC}, where TT is a reasonable second-order set theory such as GBC\mathsf{GBC} or KM\mathsf{KM}, showing that it has a rich structure. In particular, every countable partial order embeds into this structure. Moreover, we can arrange so that these embedding preserve the existence/nonexistence of upper bounds, at least for finite partial orders. Second I generalize some constructions of Marek and Mostowski from KM\mathsf{KM} to weaker theories. They showed that every model of KM\mathsf{KM} plus the Class Collection schema "unrolls" to a model of ZFCāˆ’\mathsf{ZFC}^- with a largest cardinal. I calculate the theories of the unrolling for a variety of second-order set theories, going as weak as GBC+ETR\mathsf{GBC} + \mathsf{ETR}. I also show that being TT-realizable goes down to submodels for a broad selection of second-order set theories TT. Third, I show that there is a hierarchy of transfinite recursion principles ranging in strength from GBC\mathsf{GBC} to KM\mathsf{KM}. This hierarchy is ordered first by the complexity of the properties allowed in the recursions and second by the allowed heights of the recursions. Fourth, I investigate the question of which second-order set theories have least models. I show that strong theories---such as KM\mathsf{KM} or Ī 11-CA\Pi^1_1\text{-}\mathsf{CA}---do not have least transitive models while weaker theories---from GBC\mathsf{GBC} to GBC+ETROrd\mathsf{GBC} + \mathsf{ETR}_\mathrm{Ord}---do have least transitive models.Comment: This is my PhD dissertatio

    Similar works

    Full text

    thumbnail-image