46,230 research outputs found

    Understanding the Influence of Data Characteristics on the Performance of Point-of-Interest Recommendation Algorithms

    Full text link
    The performance of recommendation algorithms is closely tied to key characteristics of the data sets they use, such as sparsity, popularity bias, and preference distributions. In this paper, we conduct a comprehensive explanatory analysis to shed light on the impact of a broad range of data characteristics within the point-of-interest (POI) recommendation domain. To accomplish this, we extend prior methodologies used to characterize traditional recommendation problems by introducing new explanatory variables specifically relevant to POI recommendation. We subdivide a POI recommendation data set on New York City into domain-driven subsamples to measure the effect of varying these characteristics on different state-of-the-art POI recommendation algorithms in terms of accuracy, novelty, and item exposure. Our findings, obtained through the application of an explanatory framework employing multiple-regression models, reveal that the relevant independent variables encompass all categories of data characteristics and account for as much as R2=R^2 = 85-90\% of the accuracy and item exposure achieved by the algorithms. Our study reaffirms the pivotal role of prominent data characteristics, such as density, popularity bias, and the distribution of check-ins in POI recommendation. Additionally, we unveil novel factors, such as the proximity of user activity to the city center and the duration of user activity. In summary, our work reveals why certain POI recommendation algorithms excel in specific recommendation problems and, conversely, offers practical insights into which data characteristics should be modified (or explicitly recognized) to achieve better performance

    Using Stable Matching to Optimize the Balance between Accuracy and Diversity in Recommendation

    Full text link
    Increasing aggregate diversity (or catalog coverage) is an important system-level objective in many recommendation domains where it may be desirable to mitigate the popularity bias and to improve the coverage of long-tail items in recommendations given to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items across recommendation lists produced by the system. Unfortunately, attempts to increase aggregate diversity often result in lower recommendation accuracy for end users. Thus, addressing this problem requires an approach that can effectively manage the trade-offs between accuracy and aggregate diversity. In this work, we propose a two-sided post-processing approach in which both user and item utilities are considered. Our goal is to maximize aggregate diversity while minimizing loss in recommendation accuracy. Our solution is a generalization of the Deferred Acceptance algorithm which was proposed as an efficient algorithm to solve the well-known stable matching problem. We prove that our algorithm results in a unique user-optimal stable match between items and users. Using three recommendation datasets, we empirically demonstrate the effectiveness of our approach in comparison to several baselines. In particular, our results show that the proposed solution is quite effective in increasing aggregate diversity and item-side utility while optimizing recommendation accuracy for end users

    Item-based Variational Auto-encoder for Fair Music Recommendation

    Full text link
    We present our solution for the EvalRS DataChallenge. The EvalRS DataChallenge aims to build a more realistic recommender system considering accuracy, fairness, and diversity in evaluation. Our proposed system is based on an ensemble between an item-based variational auto-encoder (VAE) and a Bayesian personalized ranking matrix factorization (BPRMF). To mitigate the bias in popularity, we use an item-based VAE for each popularity group with an additional fairness regularization. To make a reasonable recommendation even the predictions are inaccurate, we combine the recommended list of BPRMF and that of item-based VAE. Through the experiments, we demonstrate that the item-based VAE with fairness regularization significantly reduces popularity bias compared to the user-based VAE. The ensemble between the item-based VAE and BPRMF makes the top-1 item similar to the ground truth even the predictions are inaccurate. Finally, we propose a `Coefficient Variance based Fairness' as a novel evaluation metric based on our reflections from the extensive experiments.Comment: 6pages, CIKM 2022 Data challeng

    Modeling mutual feedback between users and recommender systems

    Get PDF
    Recommender systems daily influence our decisions on the Internet. While considerable attention has been given to issues such as recommendation accuracy and user privacy, the long-term mutual feedback between a recommender system and the decisions of its users has been neglected so far. We propose here a model of network evolution which allows us to study the complex dynamics induced by this feedback, including the hysteresis effect which is typical for systems with non-linear dynamics. Despite the popular belief that recommendation helps users to discover new things, we find that the long-term use of recommendation can contribute to the rise of extremely popular items and thus ultimately narrow the user choice. These results are supported by measurements of the time evolution of item popularity inequality in real systems. We show that this adverse effect of recommendation can be tamed by sacrificing part of short-term recommendation accuracy

    News Session-Based Recommendations using Deep Neural Networks

    Full text link
    News recommender systems are aimed to personalize users experiences and help them to discover relevant articles from a large and dynamic search space. Therefore, news domain is a challenging scenario for recommendations, due to its sparse user profiling, fast growing number of items, accelerated item's value decay, and users preferences dynamic shift. Some promising results have been recently achieved by the usage of Deep Learning techniques on Recommender Systems, specially for item's feature extraction and for session-based recommendations with Recurrent Neural Networks. In this paper, it is proposed an instantiation of the CHAMELEON -- a Deep Learning Meta-Architecture for News Recommender Systems. This architecture is composed of two modules, the first responsible to learn news articles representations, based on their text and metadata, and the second module aimed to provide session-based recommendations using Recurrent Neural Networks. The recommendation task addressed in this work is next-item prediction for users sessions: "what is the next most likely article a user might read in a session?" Users sessions context is leveraged by the architecture to provide additional information in such extreme cold-start scenario of news recommendation. Users' behavior and item features are both merged in an hybrid recommendation approach. A temporal offline evaluation method is also proposed as a complementary contribution, for a more realistic evaluation of such task, considering dynamic factors that affect global readership interests like popularity, recency, and seasonality. Experiments with an extensive number of session-based recommendation methods were performed and the proposed instantiation of CHAMELEON meta-architecture obtained a significant relative improvement in top-n accuracy and ranking metrics (10% on Hit Rate and 13% on MRR) over the best benchmark methods.Comment: Accepted for the Third Workshop on Deep Learning for Recommender Systems - DLRS 2018, October 02-07, 2018, Vancouver, Canada. https://recsys.acm.org/recsys18/dlrs

    Time-Sensitive Collaborative Filtering Algorithm with Feature Stability

    Get PDF
    In the recommendation system, the collaborative filtering algorithm is widely used. However, there are lots of problems which need to be solved in recommendation field, such as low precision, the long tail of items. In this paper, we design an algorithm called FSTS for solving the low precision and the long tail. We adopt stability variables and time-sensitive factors to solve the problem of user's interest drift, and improve the accuracy of prediction. Experiments show that, compared with Item-CF, the precision, the recall, the coverage and the popularity have been significantly improved by FSTS algorithm. At the same time, it can mine long tail items and alleviate the phenomenon of the long tail

    A probabilistic model to resolve diversity-accuracy challenge of recommendation systems

    Full text link
    Recommendation systems have wide-spread applications in both academia and industry. Traditionally, performance of recommendation systems has been measured by their precision. By introducing novelty and diversity as key qualities in recommender systems, recently increasing attention has been focused on this topic. Precision and novelty of recommendation are not in the same direction, and practical systems should make a trade-off between these two quantities. Thus, it is an important feature of a recommender system to make it possible to adjust diversity and accuracy of the recommendations by tuning the model. In this paper, we introduce a probabilistic structure to resolve the diversity-accuracy dilemma in recommender systems. We propose a hybrid model with adjustable level of diversity and precision such that one can perform this by tuning a single parameter. The proposed recommendation model consists of two models: one for maximization of the accuracy and the other one for specification of the recommendation list to tastes of users. Our experiments on two real datasets show the functionality of the model in resolving accuracy-diversity dilemma and outperformance of the model over other classic models. The proposed method could be extensively applied to real commercial systems due to its low computational complexity and significant performance.Comment: 19 pages, 5 figure
    corecore