9 research outputs found

    Atomic Transfer for Distributed Systems

    Get PDF
    Building applications and information systems increasingly means dealing with concurrency and faults stemming from distribution of system components. Atomic transactions are a well-known method for transferring the responsibility for handling concurrency and faults from developers to the software\u27s execution environment, but incur considerable execution overhead. This dissertation investigates methods that shift some of the burden of concurrency control into the network layer, to reduce response times and increase throughput. It anticipates future programmable network devices, enabling customized high-performance network protocols. We propose Atomic Transfer (AT), a distributed algorithm to prevent race conditions due to messages crossing on a path of network switches. Switches check request messages for conflicts with response messages traveling in the opposite direction. Conflicting requests are dropped, obviating the request\u27s receiving host from detecting and handling the conflict. AT is designed to perform well under high data contention, as concurrency control effort is balanced across a network instead of being handled by the contended endpoint hosts themselves. We use AT as the basis for a new optimistic transactional cache consistency algorithm, supporting execution of atomic applications caching shared data. We then present a scalable refinement, allowing hierarchical consistent caches with predictable performance despite high data update rates. We give detailed I/O Automata models of our algorithms along with correctness proofs. We begin with a simplified model, assuming static network paths and no message loss, and then refine it to support dynamic network paths and safe handling of message loss. We present a trie-based data structure for accelerating conflict-checking on switches, with benchmarks suggesting the feasibility of our approach from a performance stand-point

    Energy-efficient electrical and silicon-photonic networks in many core systems

    Full text link
    Thesis (Ph.D.)--Boston UniversityDuring the past decade, the very large scale integration (VLSI) community has migrated towards incorporating multiple cores on a single chip to sustain the historic performance improvement in computing systems. As the core count continuously increases, the performance of network-on-chip (NoC), which is responsible for the communication between cores, caches and memory controllers, is increasingly becoming critical for sustaining the performance improvement. In this dissertation, we propose several methods to improve the energy efficiency of both electrical and silicon-photonic NoCs. Firstly, for electrical NoC, we propose a flow control technique, Express Virtual Channel with Taps (EVC-T), to transmit both broadcast and data packets efficiently in a mesh network. A low-latency notification tree network is included to maintain t he order of broadcast packets. The EVC-T technique improves the NoC latency by 24% and the system energy efficiency in terms of energy-delay product (EDP) by 13%. In the near future, the silicon-photonic links are projected to replace the electrical links for global on-chip communication due to their lower data-dependent power and higher bandwidth density, but the high laser power can more than offset these advantages. Therefore, we propose a silicon-photonic multi-bus NoC architecture and a methodology that can reduce the laser power by 49% on average through bandwidth reconfiguration at runtime based on the variations in bandwidth requirements of applications. We also propose a technique to reduce the laser power by dynamically activating/deactivating the 12 cache banks and switching ON/ OFF the corresponding silicon-photonic links in a crossbar NoC. This cache-reconfiguration based technique can save laser power by 23.8% and improves system EDP by 5.52% on average. In addition, we propose a methodology for placing and sharing on-chip laser sources by jointly considering the bandwidth requirements, thermal constraints and physical layout constraints. Our proposed methodology for placing and sharing of on-chip laser sources reduces laser power. In addition to reducing the laser power to improve the energy efficiency of silicon-photonic NoCs, we propose to leverage the large bandwidth provided by silicon-photonic NoC to share computing resources. The global sharing of floating-point units can save system area by 13.75% and system power by 10%

    Design and implementation of in-network coherence

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Title as it appears in MIT Commencement Exercises program, June 2013: Design and implementation of in-network coherence. Cataloged from PDF version of thesis.Includes bibliographical references (p. 101-104).CMOS technology scaling has enabled increasing transistor density on chip. At the same time, multi-core processors that provide increased performance, vis-a'-vis power efficiency, have become prevalent in a power constrained environment. The shared memory model is a predominant paradigm in such systems, easing programmability and increasing portability. However with memory being shared by an increasing number of cores, a scalable coherence mechanism is imperative for these systems. Snoopy coherence has been a favored coherence scheme owing to its high performance and simplicity. However there are few viable proposals to extend snoopy coherence to unordered interconnects - specifically, modular packet-switched interconnects that have emerged as a scalable solution to the communication challenges in the CMP era. This thesis proposes a distributed in-network global ordering scheme that enables snoopy coherence on unordered interconnects. The proposed scheme is realized on a two-dimensional mesh interconnection network, referred to as OMNI (Ordered Mesh Network Interconnect). OMNI is an enabling solution for the SCORPIO processor prototype developed at MIT - a 36-core chip multi-processor supporting snoopy coherence, and fabricated in a commercial 45nm technology. OMNI is shown to be effective, reducing runtime by 36% in comparison to directory and Hammer coherence protocol implementations. The OMNI network achieves an operating frequency of 833 MHz post-layout, occupies 10% of the chip area, and consumes less than 100mW of power.by Suvinay Subramanian.S.M

    Highly Concurrent Cache Coherence Protocols

    No full text
    : We describe a family of hardware, directory, write-update cache coherence protocols for MIN-based multiprocessors. These protocols, called delta -cache protocols, are more highly concurrent than other protocols. They allow more operations to be pipelined, support multiple readers and writers to the same cache block, and allow processes to execute atomic actions on multiple shared variables without acquiring exclusive access rights to the variables. The protocols are based on the isotach network, a network implementing a logical time system in which all operations travel at the same velocity, one switch per logical time pulse. Isotach networks are feasible. They can be implemented by applying a standard list-merge algorithm to the operations arriving on the inputs to each switch. We prove the correctness of delta-cache protocols with a new correctness criterion that integrates cache coherence with other aspects of concurrency control. We also describe a highly concurrent migra..

    An Isotach Network Simulator

    No full text
    We have developed a simulator of Isotach systems which run on a Myrinet network. The simulator allows us to study the performance characteristics of the system and provides a means for experimenting with alternative implementations of Isotach networks. The rate at which tokens flow through the network determines the rate at which Isotach logical time progresses; therefore, token behavior is of keen interest. The simulator gathers performance data that is used to examine the behavior of tokens within the network under several different conditions. The simulator is also capable of obtaining similar data on barriers that make use of the Isotach network. These barriers are of interest, because they can be used to establish network-wide checkpoints in addition to other application-level uses. The simulator can provide data on characteristics of the network that most affect barrier completion time. Furthermore, the simulator can be used to compare the Isotach barrier algorithm to a simple ce..
    corecore