190 research outputs found

    Isosurface Extraction in the Visualization Toolkit Using the Extrema Skeleton Algorithm

    Get PDF
    Generating isosurfaces is a very useful technique in data visualization for understanding the distribution of scalar data. Often, when the size of the data set is really large, as in the case with data produced by medical imaging applications, engineering simulations or geographic information systems applications, the use of traditional methods like marching cubes makes repeated generation of isosurfaces a very time consuming task. This thesis investigated the use of the Extrema Skeleton algorithm to speed up repeated isosurface generation in the visualization package, Visualization Toolkit (VTK). The objective was to reduce the number of non-isosurface cells visited to generate isosurfaces, and to compare the Extrema Skeleton method with the Marching Cubes method by monitoring parameters like time taken for the isosurfacing process and number of cells visited. The results of this investigation showed that the Extrema Skeleton method was faster for most of the datasets tested. For simple datasets with less than 10% isosurface cells and complex datasets with less than 5% isosurface cells, the Extrema Skeleton method was found to be significantly faster than the Marching Cubes method. The time gained by the Extrema Skeleton method for datasets with greater than 15% isosurface cells was found to be insignificant. Based on the results of this study, implementing the Extrema Skeleton method for the VTK software is a change worth making because typical VTK users deal with datasets for which the Extrema Skeleton method is significantly faster and also with datasets for which it is marginally faster than the Marching Cubes method

    Computing contour trees in all dimensions

    Get PDF
    AbstractWe show that contour trees can be computed in all dimensions by a simple algorithm that merges two trees. Our algorithm extends, simplifies, and improves work of Tarasov and Vyalyi and of van Kreveld et al

    From 3D Point Clouds to Pose-Normalised Depth Maps

    Get PDF
    We consider the problem of generating either pairwise-aligned or pose-normalised depth maps from noisy 3D point clouds in a relatively unrestricted poses. Our system is deployed in a 3D face alignment application and consists of the following four stages: (i) data filtering, (ii) nose tip identification and sub-vertex localisation, (iii) computation of the (relative) face orientation, (iv) generation of either a pose aligned or a pose normalised depth map. We generate an implicit radial basis function (RBF) model of the facial surface and this is employed within all four stages of the process. For example, in stage (ii), construction of novel invariant features is based on sampling this RBF over a set of concentric spheres to give a spherically-sampled RBF (SSR) shape histogram. In stage (iii), a second novel descriptor, called an isoradius contour curvature signal, is defined, which allows rotational alignment to be determined using a simple process of 1D correlation. We test our system on both the University of York (UoY) 3D face dataset and the Face Recognition Grand Challenge (FRGC) 3D data. For the more challenging UoY data, our SSR descriptors significantly outperform three variants of spin images, successfully identifying nose vertices at a rate of 99.6%. Nose localisation performance on the higher quality FRGC data, which has only small pose variations, is 99.9%. Our best system successfully normalises the pose of 3D faces at rates of 99.1% (UoY data) and 99.6% (FRGC data)

    Flexible isosurfaces: Simplifying and displaying scalar topology using the contour tree

    Get PDF
    The contour tree is an abstraction of a scalar field that encodes the nesting relationships of isosurfaces. We show how to use the contour tree to represent individual contours of a scalar field, how to simplify both the contour tree and the topology of the scalar field, how to compute and store geometric properties for all possible contours in the contour tree, and how to use the simplified contour tree as an interface for exploratory visualization

    Semi-automatic transfer function generation for volumetric data visualization using contour tree analyses

    Get PDF

    09251 Abstracts Collection -- Scientific Visualization

    Get PDF
    From 06-14-2009 to 06-19-2009, the Dagstuhl Seminar 09251 ``Scientific Visualization \u27\u27 was held in Schloss Dagstuhl~--~Leibniz Center for Informatics. During the seminar, over 50 international participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general

    Towards Distributed Task-based Visualization and Data Analysis

    Get PDF
    To support scientific work with large and complex data the field of scientific visualization emerged in computer science and produces images through computational analysis of the data. Frameworks for combination of different analysis and visualization modules allow the user to create flexible pipelines for this purpose and set the standard for interactive scientific visualization used by domain scientists. Existing frameworks employ a thread-parallel message-passing approach to parallel and distributed scalability, leaving the field of scientific visualization in high performance computing to specialized ad-hoc implementations. The task-parallel programming paradigm proves promising to improve scalability and portability in high performance computing implementations and thus, this thesis aims towards the creation of a framework for distributed, task-based visualization modules and pipelines. The major contribution of the thesis is the establishment of modules for Merge Tree construction and (based on the former) topological simplification. Such modules already form a necessary first step for most visualization pipelines and can be expected to increase in importance for larger and more complex data produced and/or analysed by high performance computing. To create a task-parallel, distributed Merge Tree construction module the construction process has to be completely revised. We derive a novel property of Merge Tree saddles and introduce a novel task-parallel, distributed Merge Tree construction method that has both good performance and scalability. This forms the basis for a module for topological simplification which we extend by introducing novel alternative simplification parameters that aim to reduce the importance of prior domain knowledge to increase flexibility in typical high performance computing scenarios. Both modules lay the groundwork for continuative analysis and visualization steps and form a fundamental step towards an extensive task-parallel visualization pipeline framework for high performance computing.Wissenschaftliche Visualisierung ist eine Disziplin der Informatik, die durch computergestützte Analyse Bilder aus Datensätzen erzeugt, um das wissenschaftliche Arbeiten mit großen und komplexen Daten zu unterstützen. Softwaresysteme, die dem Anwender die Kombination verschiedener Analyse- und Visualisierungsmodule zu einer flexiblen Pipeline erlauben, stellen den Standard für interaktive wissenschaftliche Visualisierung. Die hierfür bereits existierenden Systeme setzen auf Thread-Parallelisierung mit expliziter Kommunikation, sodass das Feld der wissenschaftlichen Visualisierung auf Hochleistungsrechnern meist spezialisierten Direktlösungen überlassen wird. An dieser Stelle scheint Task-Parallelisierung vielversprechend, um Skalierbarkeit und Übertragbarkeit von Lösungen für Hochleistungsrechner zu verbessern. Daher zielt die vorliegende Arbeit auf die Umsetzung eines Softwaresystems für verteilte und task-parallele Visualisierungsmodule und -pipelines ab. Der zentrale Beitrag den die vorliegende Arbeit leistet ist die Einführung zweier Module für Merge Tree Konstruktion und topologische Datenbereinigung. Solche Module stellen bereits einen notwendigen ersten Schritt für die meisten Visualisierungspipelines dar und werden für größere und komplexere Datensätze, die im Hochleistungsrechnen erzeugt beziehungsweise analysiert werden, erwartungsgemäß noch wichtiger. Um eine Task-parallele, verteilbare Konstruktionsmethode für Merge Trees zu entwickeln musste der etablierte Algorithmus grundlegend überarbeitet werden. In dieser Arbeit leiten wir eine neue Eigenschaft für Merge Tree Knoten her und entwickeln einen neuartigen Konstruktionsalgorithmus, der gute Performance und Skalierbarkeit aufweist. Darauf aufbauend entwickeln wir ein Modul für topologische Datenbereinigung, welche wir durch neue, alternative Bereinigungsparameter erweitern, um die Flexibilität im Einstaz auf Hochleistungsrechnern zu erhöhen. Beide Module ermöglichen weiterführende Analyse und Visualisierung und setzen einen Grundstein für die Entwicklung eines umfassenden Task-parallelen Softwaresystems für Visualisierungspipelines auf Hochleistungsrechnern

    Computer implemented empirical mode decomposition method, apparatus, and article of manufacture for two-dimensional signals

    Get PDF
    A computer implemented method of processing two-dimensional physical signals includes five basic components and the associated presentation techniques of the results. The first component decomposes the two-dimensional signal into one-dimensional profiles. The second component is a computer implemented Empirical Mode Decomposition that extracts a collection of Intrinsic Mode Functions (IMF's) from each profile based on local extrema and/or curvature extrema. The decomposition is based on the direct extraction of the energy associated with various intrinsic time scales in the profiles. In the third component, the IMF's of each profile are then subjected to a Hilbert Transform. The fourth component collates the Hilbert transformed IMF's of the profiles to form a two-dimensional Hilbert Spectrum. A fifth component manipulates the IMF's by, for example, filtering the two-dimensional signal by reconstructing the two-dimensional signal from selected IMF(s)
    corecore