405 research outputs found

    Learning and reasoning with graph data

    Get PDF
    Reasoning about graphs, and learning from graph data is a field of artificial intelligence that has recently received much attention in the machine learning areas of graph representation learning and graph neural networks. Graphs are also the underlying structures of interest in a wide range of more traditional fields ranging from logic-oriented knowledge representation and reasoning to graph kernels and statistical relational learning. In this review we outline a broad map and inventory of the field of learning and reasoning with graphs that spans the spectrum from reasoning in the form of logical deduction to learning node embeddings. To obtain a unified perspective on such a diverse landscape we introduce a simple and general semantic concept of a model that covers logic knowledge bases, graph neural networks, kernel support vector machines, and many other types of frameworks. Still at a high semantic level, we survey common strategies for model specification using probabilistic factorization and standard feature construction techniques. Based on this semantic foundation we introduce a taxonomy of reasoning tasks that casts problems ranging from transductive link prediction to asymptotic analysis of random graph models as queries of different complexities for a given model. Similarly, we express learning in different frameworks and settings in terms of a common statistical maximum likelihood principle. Overall, this review aims to provide a coherent conceptual framework that provides a basis for further theoretical analyses of respective strengths and limitations of different approaches to handling graph data, and that facilitates combination and integration of different modeling paradigms

    Reasoning on graph-structured data with deep-learning, path-based methods, and tensor factorization

    Get PDF

    Acta Cybernetica : Volume 19. Number 4.

    Get PDF

    Self-Evaluation Applied Mathematics 2003-2008 University of Twente

    Get PDF
    This report contains the self-study for the research assessment of the Department of Applied Mathematics (AM) of the Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS) at the University of Twente (UT). The report provides the information for the Research Assessment Committee for Applied Mathematics, dealing with mathematical sciences at the three universities of technology in the Netherlands. It describes the state of affairs pertaining to the period 1 January 2003 to 31 December 2008

    Vlasov moment flows and geodesics on the Jacobi group

    Full text link
    By using the moment algebra of the Vlasov kinetic equation, we characterize the integrable Bloch-Iserles system on symmetric matrices (arXiv:math-ph/0512093) as a geodesic flow on the Jacobi group. We analyze the corresponding Lie-Poisson structure by presenting a momentum map, which both untangles the bracket structure and produces particle-type solutions that are inherited from the Vlasov-like interpretation. Moreover, we show how the Vlasov moments associated to Bloch-Iserles dynamics correspond to particular subgroup inclusions into a group central extension (first discovered in arXiv:math/0410100), which in turn underlies Vlasov kinetic theory. In the most general case of Bloch-Iserles dynamics, a generalization of the Jacobi group also emerges naturally.Comment: 45 page
    • …
    corecore