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Learning and reasoning with
graph data

Manfred Jaeger*

Department of Computer Science, Aalborg University, Aalborg, Denmark

Reasoning about graphs, and learning from graph data is a field of artificial

intelligence that has recently received much attention in the machine learning

areas of graph representation learning and graph neural networks. Graphs are

also the underlying structures of interest in a wide range of more traditional

fields ranging from logic-oriented knowledge representation and reasoning to

graph kernels and statistical relational learning. In this review we outline a broad

map and inventory of the field of learning and reasoning with graphs that spans

the spectrum from reasoning in the form of logical deduction to learning node

embeddings. To obtain a unified perspective on such a diverse landscape we

introduce a simple and general semantic concept of a model that covers logic

knowledge bases, graph neural networks, kernel support vector machines, and

many other types of frameworks. Still at a high semantic level, we survey common

strategies for model specification using probabilistic factorization and standard

feature construction techniques. Based on this semantic foundation we introduce

a taxonomy of reasoning tasks that casts problems ranging from transductive

link prediction to asymptotic analysis of random graph models as queries of

di�erent complexities for a given model. Similarly, we express learning in di�erent

frameworks and settings in terms of a common statistical maximum likelihood

principle. Overall, this review aims to provide a coherent conceptual framework

that provides a basis for further theoretical analyses of respective strengths and

limitations of di�erent approaches to handling graph data, and that facilitates

combination and integration of di�erent modeling paradigms.

KEYWORDS

graph data, representation learning, statistical relational learning, graph neural networks,

neuro-symbolic integration, inductive logic programming

1. Introduction

Graphs are a very general mathematical abstraction for real world networks such as

social-, sensor-, biological- or traffic-networks. These types of networks often generate large

quantities of observational data, and using machine learning techniques to build predictive

models for them is an area of substantial current interest. Graphs also arise as abstract models

for knowledge, e.g., in the form of semantic models for a logic knowledge base, or directly as

a knowledge graph. In most cases, an appropriate representation as a graph will require that

one goes beyond the fundamental graph model, and allows that nodes are annotated with

attributes, and that there are several distinct edge relation.

Evidently, in machine learning the main interest is in learning from graph data, whereas

in knowledge representation and reasoning the primary focus is on deductive reasoning.

However, both learning and reasoning play a role in all disciplines: making class label

predictions from a learned model is a highly specialized (and limited) form of reasoning,

and learning logic rules from examples has a long history in symbolic AI. It is the goal of this

review to survey the large and diverse area of approaches for learning and reasoning with
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graphs in different areas of AI and adjacent fields of mathematics.

Given the scope of the subject, our discussion will be mostly

at a high, conceptual level. For more technical details, and

more comprehensive literature reviews, we will point to relevant

specialized surveys. The main objective of this review is to establish

a coherent formal framework that facilitates a unified analysis

of a wide variety of learning and reasoning frameworks. Even

though this review aims to cover a broad range of methods and

disciplines, there will be a certain focus on graph neural networks

(GNNs) and statistical relational learning (SRL), whereas the fields

of graph kernels and purely logic-based approaches receive a little

less attention than they deserve.

The following examples illustrate the range of modeling,

learning, and reasoning approaches that we aim to cover in this

review. Each example describes a general task, a concrete instance

of that task, and a particular approach for solving the task. The

examples should not be construed in the way that the described

solution approach is the only or even most suited one to deal with

the given task. The intention is to illustrate the diversity of tasks and

solution techniques.

Example 1.1. (Node classification with graph neural networks)

One of the most common tasks in machine learning with graphs

is node classification, i.e., predicting an unobserved node label. A

standard instance of such a classification task is subject prediction

in a bibliographic data graph: nodes are scientific papers that are

connected by citation links, and the node labels consist of a subject

area classification of the paper. In the inductive version of this

task, one is given one or several training graphs containing labeled

training nodes. The task is to learn amodel that allows one to predict

class labels of unlabeled nodes that are not already contained in the

training graphs. For example, the training graph may consist of the

current version of a bibliographic database, whereas the unlabeled

nodes are new publications when they are added to the database.

In the transductive version of the task, both the labeled training

nodes and the unlabeled test nodes reside in the same graph, which

is already fully known at the time of learning. This is the case when

an incomplete subject area labeling is to be completed for a given

bibliographic database. Graph neural networks are a state-of-the-

art approach to solve such classification tasks (e.g., Niepert et al.,

2016; Hamilton et al., 2017; Welling and Kipf, 2017; Veličković

et al., 2018).

Example 1.2. (Link prediction via node embeddings) Here the

task is to predict whether two nodes are connected by an edge.

This prediction problem is usually considered in a transductive

setting, where all the nodes and some of the edges are given, and

edges between certain test pairs of nodes have to be predicted.

Bibliographic data graphs are again a popular testbed for link

prediction approaches (Kipf and Welling, 2016; Pan et al., 2021).

Recommender systems also can be seen as handling a link prediction

problem: the underlying graph here contains user and product

nodes, and edges connect users with products that the user

has bought (or provided some other type of positive feedback

for). The link prediction problem then amounts to predicting

positive user/product relationships that have not yet been observed.

Numerous different link prediction approaches exist (Kumar

et al., 2020 gives a comprehensive survey). A variety of different

approaches is based on constructing for each node in the graph

a d-dimensional real-valued embedding vector, and to score the

likelihood of the existence of an edge between two nodes by

considering the proximity (according to a suitable metric) of

their embedding vectors. This general paradigm encompasses

approaches such as matrix factorization (Koren and Bell, 2015) and

random walk based approaches (Perozzi et al., 2014; Grover and

Leskovec, 2016).

A good and concise monograph that covers the modern

machine learning methods described in the preceding two

examples is (Hamilton, 2020).

Example 1.3. (Graph Classification with inductive logic

programming) One may also want to predict a class label

associated with a whole graph. A classic example is predicting

properties of molecules, where molecules are represented as

graphs consisting of nodes representing the atoms, and links

representing bonds between the atoms. The famous Mutagenesis

dataset (Srinivasan et al., 1996), for example, consists of 188

molecules with a Boolean mutagenic class label. A predictor for

this label may be given in the form of a logic program, such as the

following:

carbon_path(A,B) ← carbon(A), carbon(B), bond(A,B)

carbon_path(A,B) ← carbon(B), carbon_path(A,C), bond(B,C)

carbon_cycle ← carbon_path(A,A)

mutagenic ← carbon_cycle

(this program here is purely given for expository purposes, and

does not resemble realistic classification programs for this task).

A particular molecule specified by a list of ground facts, such

as carbon(at_1), carbon(at_2), nitrogen(at_3), . . . , bond(at_1, at_3),

would then be classified as mutagenic, if mutagenic can be proven

by the program from the ground facts. This will be the case if and

only if the molecule contains a cycle consisting of carbon atoms.

Parts of the program (e.g., the definitions of carbon path and cycle)

may be provided by experts as background knowledge, whereas

other parts (e.g., the dependence of mutagenic on the existence of a

carbon cycle) would be learned from labeled examples.

Example 1.4. (Graph similarity and classification with graph

kernels) The problem of graph classification (especially in

bio-molecular application domains) has also extensively been

approached with kernel techniques. Graph kernels (see Kriege et al.,

2020 for an excellent survey) are functions k that map pairs of

graphs G,H to a value k(G,H) ∈ R that is usually interpreted as

a similarity measure for G and H, and which must be of the form

k(G,H) = φ(G) · φ(H) for some finite or infinite dimensional

real-valued feature vectors φ(G),φ(H). The graph kernel can then

be used for graph classification by using it as input for a support

vector machine classifier. Based on its interpretation as a similarity

measure, graph kernels can also support other types of similarity-

based analyses, e.g., clustering. Most graph kernels are defined by

an explicit definition of the mapping from graphs G to feature

vectors φ(G). Important examples are theWeisfeiler-Lehman kernel

(WLK) (Shervashidze et al., 2011), the graphlet kernel (Shervashidze

et al., 2009), and the random walk kernel (Gärtner et al., 2003).

The components of the feature vectors in the first two contain
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statistics on the occurrence of local neighborhood structures in G,

whereas the features of the random walk kernel represent statistics

on node label sequences that are generated by random walks on the

graph.

The previous examples were concerned with specific prediction

tasks. In the following examples we move toward more general

forms of reasoning.

Example 1.5. (Probabilistic inference with SRL) The task is to learn

a probabilistic graph model that supports a rich class of queries. An

example is a probabilistic model for the genotypes of people in a

pedigree graph. The model should support a spectrum of queries.

A basic type are conditional probability queries of the form: given

(partial) genotype information for some individuals, what are the

probabilities for the genotypes of the other individuals? This is

still very similar to the node classification task of Example 1.1.

A query that goes beyond what has been described in previous

examples is a most probable explanation (MPE) query: again,

given partial genotype information, what is the most probable

joint configuration of the genotypes for all individuals? Statistical

relational learning (SRL) approaches such as Relational Bayesian

Networks (RBNs) (Jaeger, 1997), Markov logic networks (MLNs)

(Richardson and Domingos, 2006), or ProbLog (De Raedt et al.,

2007) provide modeling and inference frameworks for solving such

tasks.

Example 1.6. (Logical reasoning with first-order logic) Going

beyond the flexible, but still rather structured type of queries

considered in Example 3.6, we can consider more general logical

reasoning tasks. There are no standard example instances of this,

so we illustrate this task and its solution by deduction in first-order

logic by the following example: given the following knowledge

about a social network:

• Every user follows at least one other user. Expressed as a

first-order logic formula, this reads as:

∀x∃y follows(x, y). (1)

• There is a user who is not followed by anyone:

∃y¬∃x follows(x, y) (2)

Does this knowledge imply that there must be a user who has at

least two followers, or there must be at least four different users:

(∃y∃≥2x follows(x, y)) ∨ ∃≥4x? (3)

Considering first all finite graphs, one finds that when (1) and

(2) are true there must be a node with at least two incoming edges,

i.e., the first part of the disjunction in (3) is true. When the graph is

infinite, then this implication no longer holds, but then the second

disjunct of (3) will be true (where the number 4 may be replaced

with any natural number). Thus, we find that (1) and (2) logically

entail (3). This inference can be performed by automated theorem

provers. For example the SPASS prover (Weidenbach et al., 2009)

can answer our query.

Example 1.7. (Limit behavior of random graphs) Many

probabilistic models have been developed for the temporal

evolution of growing networks. The simplest possible model

is to assume that every new node is connected to the already

existing nodes with a fixed probability p, and these connections are

formed independently of each other. One may then ask how the

probabilities of certain graph properties develop, as the size of the

graph grows to infinity. Classic results of the Erdős-Rényi random

graph theory establish, for example, that the limiting probability

for the evolving graph to be connected is 1 (Erdős and Rényi, 1960)

[the actual results of the Erdős-Rényi random graph theory are

actually much more sophisticated, as they pertain to models where

the edge probability is a function p(n) of the number n of vertices].

Similarly, it is known that the probability of every property that

can be expressed in first-order logic converges to either 0 or

1 (Fagin, 1976). Reasoning about such limiting probabilities goes

beyond reasoning about all graphs as in Example 1.6, since we now

consider probability distributions over infinite sequences of graphs.

Some types of queries about the limit behavior of random graphs

are formally decidable. This is the case, for example, for the limit

probability of a first-order sentence (Grandjean, 1983). However,

the computational complexity of these reasoning tasks puts them

outside the range of practically feasible implementations.

Figure 1 arranges the landscape of reasoning scenarios we have

considered in the preceding examples in two dimensions: one

dimension characterizes the domain of graphs that we reason

about: at the bottom of this dimension is the transductive setting

of Examples 1.1 and 1.2 in which reasoning is limited to a single

given graph. At the next level, labeled “one graph at a time,” any

single reasoning task is about a specific graph, but this graph

under consideration can vary without the need to change or

retrain the model. This corresponds to the inductive setting in

Example 1.1, as well as the tasks described in Examples 1.4 and 3.6.

At the third level, the reasoning concerns several or all graphs at

once (Example 1.6). Finally, we may go beyond reasoning about

properties of individual graphs, and consider global properties

of the space of all graphs. This is exemplified by Example 1.7,

where the reasoning pertains to the relationship between different

probability distributions on graphs. These informal distinctions

about the domain of reasoning will be partly formalized by

technical definitions in Section 5.

The second dimension in Figure 1 is correlated with the first,

but describes the type of reasoning that is performed. The most

restricted type here is to perform a narrowly defined prediction

task such as node classification or link prediction. Based on the

distinction between “model checking” and “theorem proving”

promoted by Halpern and Vardi (1991) we label the next level as

“model checking”: this refers to evaluating properties of a single

given structure, where the class of properties that can be queried

is defined by a rich and flexible query language. “Deduction”

then refers to (logical) inference about a class of structures, and

in “model theory” such a class of structure becomes the object

of reasoning itself. Within this two-dimensional schema, Figure 1

indicates what areas of reasoning are covered by different types

of frameworks. The reasoning landscape here delineated extends

beyond the boundaries of what can currently be tackled with

automated, algorithmic reasoning methods in AI, and extends to
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FIGURE 1

Reasoning landscape.

human mathematical inference. In the remainder of this review

we will focus on algorithmic reasoning. However, it is an always

open challenge to extend the scope of what can be accomplished by

algorithmic means.

Figure 1 focuses on reasoning rather than learning. This is for

two reasons: first, reasoning covers a somewhat wider ground that

includes scenarios (e.g., logical deduction) not yet supported by

learning methods. Second, a taxonomy of learning scenarios in

terms of data requirements and learning objectives will naturally

follow from the reasoning taxonomy (cf. Section 6). The link

between reasoning and learning is amodel that can be learned from

data and that supports the reasoning tasks under consideration.

In this review we use a general probabilistic concept of a model

formally defined in in Section 3, that allows us to express a wide

range of reasoning tasks as different forms of querying a model

(Section 5). Similarly, a wide range of learning scenarios can be

understood in a coherent manner as constructing models from data

under a maximum likelihood objective (Section 6). This review

is partly based on Jaeger (2022), which already contains an in-

depth exploration of GNN and SRL methods for learning and

reasoning with graphs. The current review takes a much broader

high-level perspective. It contains fewer technical details on GNNs

and SRL, and instead develops a general conceptual framework

for describing a much wider range of learning and reasoning

frameworks.

2. Graphs

In this section we establish the basic definitions and

terminology we use for graphs. Table 1 collects the main notations.

TABLE 1 Overview of notation.

[n] The (node) set {1, . . . , n}

R Signature of relation symbols

Rin ,Rout Sets of designated input and output relations

e, r, . . . (Lower case) specific symbols inR

i, j, . . . Nodes

i, j, . . . Tuples of nodes

E,R, . . . (Upper case) interpretations of e, r, . . . in a specific graph

R Tuple of interpretations for all r ∈R

R̃, R̃ Partial interpretation(s)

R̃ � R̃′ R̃′ Extends partial interpretation R̃

IntV (R) Set of interpretations ofR over domain V

G(V ,R) Set of graphs for signatureR with domain V

G(<∞,R) Set of all finite graphs for signatureR

G(R) Set of all graphs for signatureR

G̃(. . .) Corresponding sets of partial graphs

1G(V ,R) Space of probability distributions on G(V ,R)

Int(V ,R̃)(R) Set of completions of partial interpretation R̃

{| . . . |} Delimiters for multisets

Our graphs will actually be multi-relational, attributed hyper-

graphs, but we just say shortly “graphs.”

Different attributes and (hyper-) edge relations are collected in

a signature: a setR = {r1, . . . , rm} of relation symbols. Each relation

symbol has an arity(ri) ∈ {0, 1, . . .}. Relations of arity 0 are global
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graph attributes, such as toxic for a graph representing a chemical

molecule. Relations of arity 1 are node attributes. Relations of

arities ≥ 3, can in principle be reduced to a set of binary relations

by materializing tuples as nodes. For example, the 3-ary relation

shortest_path(a, b, c) representing that node b lies on the shortest

path from a to c can be encoded by creating a new shortest path

node sp, and three binary relations start, on, end, so that start(sp, a),

on(sp, b), end(sp, c) are true. However, this leads to very un-natural

encodings, and therefore we allow relations of arities ≥ 3.

A R-graph is a structure (V ,R), where V is a finite or

countably infinite set of nodes (also referred to as a domain), and

R = (R1, . . . ,Rm) are the interpretations of the relation symbols:

Ri :V
arity(ri) → {0, 1}. In the case of arity(ri) = 0 this is just a

constant 0 or 1.

We write IntV (r) for the set of possible interpretations of the

relation symbol r ∈ R over the domain V , and IntV (R) =

×r∈RIntV (r) for the set of all interpretations of the whole signature

R. In most cases it is sufficient to consider the domains V =

[n] : = {1, . . . , n} for n ∈ N. We use i, j, . . . as generic symbols

for nodes, and bold face i, j, . . . for tuples of nodes. We here

use somewhat logic-inspired terminology and notation. Taking

the logic conventions even further, we can equivalently define

an interpretation of r as an assignment of true/false values to

ground atoms r(i) [i ∈ |V|arity(r)]. Going in the opposite direction

toward the terminological conventions of neural networks, such an

interpretation also can be seen as a |V| × · · · × |V|-dimensional

(arity(r) many factors) tensor.

In the following, we usually take the signature R as given by

the context, and do not refer to it explicitly, thus saying “graph”

rather than R-graph, and also abbreviating IntV (R) by IntV Also,

when the intended meaning is clear from the context, we use the

simple term “relation” to either refer to a relation symbol r, or an

interpretation R in a specific graph.

Note that according to our definitions all relations are directed.

Undirected edges/relations are obtained as the special case where

the interpretation Ri for a tuple i only depends on the elements of

i, not their order. Furthermore, only Boolean node attributes are

permitted. Multi-valued attributes can be represented by multiple

Boolean ones in a one-hot encoding.

For a given domainV and signatureRwe denote with G(V ,R)

the set of all R-graphs with domain V , with G(< ∞,R) the set

of all finite R-graphs, and with G(R) the set of all graphs, also

allowing (countably) infinite domainsV . As a basis for probabilistic

graph models, we denote with 1G(V ,R) the set of probability

distributions over G(V ,R) (in the case of infinite V this must

be based on suitable measure-theoretic definitions that we do not

elaborate here).

3. Models

We introduce a general concept of a model, so that all reasoning

tasks become different forms of querying a model. Ours will be

a high-level, purely semantic notion of a model that imposes

no restrictions on how models are represented, implemented or

constructed. Our model definition is probabilistic in nature. As we

shall see, this still allows us to capture purely qualitative, logic-

based frameworks, although at the cost of casting them in a slightly

contrived way into the probabilistic mold via extreme 0, 1-valued

probabilities. Roughly speaking, a model in our sense will be a

mapping from partly specified graphs to probability distributions

over their possible completions.

A partial graph is a structure (V , R̃) where V is a finite or

countably infinite domain, and R̃ = (R̃1, . . . , R̃m) are partial

interpretations of the relation symbols: R̃i :V
arity(ri) → {0, 1, ?}. We

write R̃i � R̃′i (R̃
′
i extends R̃i) nif

∀i : R̃i(i) 6=? ⇒ R̃′i(i) = R̃i(i).

If R̃i � R̃′i for i = 1, . . . ,m we write R̃ � R̃
′
.

G̃(V ,R) denotes the set of all partial R-graphs with domain

V , and G̃(< ∞,R) the set of all finite partial R-graphs. Finally,

Int(V ,R̃)(R) denotes the set of complete interpretations R ∈

IntV (R) with R̃ � R.

Definition 3.1. AR-modelM = (I ,µ) consists of

• a subset I ⊆ G̃(<∞,R)

• a mapping

µ : (V , R̃) 7→ P(V ,R̃) ∈ 1G(V ,R)

defined for all (V , R̃) ∈ I , such that

P(V ,R̃)(Int(V ,R̃)(R)) = 1.

In the case where the input just consists of a domain V (i.e., R̃

is completely unspecified), we simply write PV for P(V ,R̃).

Definition 3.1 has several important special cases: when amodel

is for classification of a specific label relation l, then I = G(<

∞,R \ {l}). The model then defines for every input graph with

complete specifications of relations r ∈ R \ {l} a distribution over

interpretations L for l. We refer to such models as discriminative.

A model that, in contrast, takes as input only a finite domain, i.e.,

I = G(< ∞, ∅), and thereby maps a domain V to a probability

distribution over G(V ,R) is called fully generative. In between these

two extremes are models whereR is partitioned into a set of input

relations Rin and output relations Rout, and I = G(< ∞,Rin).

This is the typical case for SRL models. We refer to such models

as conditionally generative (discriminative then is just a borderline

case of conditionally generative). In all these special cases the input

graph contains complete specifications of a selected set of relations.

This covers many, but not all models used in practice: e.g., models

for link prediction (cf. Example 3.3 below) operate on inputs with

partial specifications of the edge relation. Transductive models are

characterized as the special case |I| = 1.

The abstract definition 3.1 accommodates a multitude of

concrete approaches for learning and reasoning about graphs.

We call a modeling framework any approach that provides

computational tools for representing, learning, and reasoning with

models. Figure 2 gives an overview of several classes of modeling

frameworks, and representatives for each class. The selection of

representatives does not attempt a complete coverage of even

the most important examples. In the following we continue the

examples of Section 1 to illustrate how these frameworks indeed

fit into our general Definition 3.1.
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FIGURE 2

Framework classes and representatives.

Example 3.2. (Node classification; GNNs) In the standard node

classification scenario, the signature R consists of one binary edge

relation e, observed node attributes a = a1, . . . , al, and a node

label l. A partial input graph has the form (V , R̃), where in the

partial interpretation R̃ = (E,A, L̃) the edge relation and node

attributes are fully observed, and the node label is unobserved for

some (possibly all) nodes. Given a Graph neural networks then

define label probabilities

P(l(i)|(V , (E,A))) (i : L̃(i) =?).

for the unlabeled nodes. Since these predictions are independent for

all nodes, they define a distribution over completions L of L̃ via

P(V ,R̃)(L) = 5i : L̃(i)=?P(l(i) = L(i)|(V , (E,A))). (4)

In Figure 2, the class of GNN frameworks is divided into the

sub-classes of message-passing and recurrent GNNs. MP-GNNs

compute node feature vectors in a fixed number of iterations,

whereas R-GNNs perform feature updates until a fixed point is

reached. We return to this distinction in Section 4.2.

Example 3.3. (Link prediction; shallow embeddings) In its most

basic form, a transductive link prediction problem is given by

a single input graph I = {(V , Ẽ)} with an partially observed

edge relation. Usually, all edges that are not observed as existent

are candidates for being predicted, so that Ẽ(i, j) ∈ {1, ?} for all

i, j ∈ V (in practice, however, represented in the form Ẽ(i, j) ∈

{1, 0}, with the understanding that Ẽ(i, j) = 0 still allows the

prediction E(i, j) = 1). Shallow embeddings construct for each

node i ∈ V an embedding vector em(i), and define a scoring

function score[em(i), em(j)] for the likelihood of E(i, j) = 1. As the

objective usually is to just rank candidates edges, this score need not

necessarily be probabilistic [concrete examples are the dot product

or cosine similarity of em(i), em(j)]. However, turning the scores

into probabilities by applying a sigmoid function does not affect

the ranking and hence we may assume that the link prediction

model defines edge probabilities P[e(i, j)|(V , Ẽ)] (i, j : Ẽ(i, j) =?).
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Via the same implicit independence assumptions as in the previous

example, then a distribution in the sense of Definition 3.1 is defined

as

P(V ,Ẽ)(E) = 5i,j : Ẽ(i,j)=?P(e(i, j) = E(i, j)|(V , Ẽ)). (5)

Example 3.4. (ILP) A logic program as shown in Example 1.3 can

be interpreted as a model in our sense. For any input (V , R̃), where

R̃ is specified by a list of true ground facts, the program defines the

unique interpretation R∗ in which a ground fact r(i) is true, iff it

is provable from the program and R̃. This can be expressed in the

form of a degenerate probability distribution with

P(V ,R̃)(R
∗) = 1.

The set I of possible inputs for this model consists of all (V , R̃)

where R̃ is defined by positive ground facts only, i.e., R̃(i) ∈ {1, ?}

for all R̃, i.

Example 3.5. (Graph Classification; graph kernels) A graph kernel

k(G,H) alone is not a model in our sense. However, a support-

vector machine classifier built on the kernel (denoted k-SVM) is

such a model: a k-SVM maps graphs to label values in {0, 1}, which

similar to Example 3.4 can be seen as a degenerate probabilistic

model. Alternatively, since the k-SVM actually produces numeric

scores for the labels (as the distance to the decision boundary), one

can transform the score by a sigmoid function to non-degenerate

probability values.

Example 3.6. (SRL) To solve the probabilistic inference tasks

of Example an SRL model will be defined for input structures

(V ,E) with a fully observed edge relation e defining the pedigree

structure. The model will then define a distribution P(V ,E)(A) over

interpretations A of node attributes a. In a typical solution for

this type of problem this will be done by defining a marginal

distribution over genotypes for the individuals in V whose parents

are not included in V , and a conditional distribution over

child genotypes given parent genotypes. In order to solve the

reasoning tasks described in Example , the frameworkmust support

queries about conditional probabilities of the form P(V ,E)(a(i)|Ã)

(genotype probabilities for individual i given partial information Ã

about genotypes in the pedigree) and argmaxA P(V ,E)(A|Ã) (MPE

inference).

The model outlined here falls into the sub-class of directed SRL

frameworks, where the distributions defined by a model can be

represented in the form of directed probabilistic graphical models.

Other important sub-classes of SRL distinguished in Figure 2 are

frameworks based on undirected probabilistic graphical models,

and probabilistic generalizations of inductive logic programming.

Because of their close relationship with the most popular

undirected SRL framework, Markov logic networks, Figure 2 also

lists exponential random graph models under the U-SRL class,

even though in terms of historical background and applications,

exponential random graphs rather fall into the random graph

model category.

Example 3.7. (First-order logic) A logical knowledge base KB as

exemplified by (1) and (2) in Example 1.6 can be seen as a

discriminative model in our sense: for any graph G = (V ,R) ∈

G(R) the semantics of the logic defines whether KB is true in

G.1 To formalize this as a discriminative model we augment the

signature R with a binary graph label lKB, set I = G(R), and

PG(lKB = 1) = 1 ifKB is true inG, and PG(lKB = 0) = 1, otherwise.

Logical inference as described in Example 1.6 then amounts to

determining whether for all graphs G in which (3) is false one has

PG(lKB = 0) = 1. This is a probabilistic rendition of the task of

automated theorem proving.

Example 3.8. (Random graph models) Classical random graph

models are generative models in our sense for the signature R =

{e} containing a single edge relation.

The preceding examples show that the quite simple

Definition 3.1 is sufficient as a unifying semantic foundation

for a large variety of frameworks for reasoning about graphs. Of

course, most of these frameworks also (or primarily) are designed

for learning models from graph data, but our initial focus here is on

modeling and reasoning, before we turn to learning in Section 6.

4. Modeling tools

Our Definition 3.1 of a model is completely abstract and

does not entail any assumptions or prescriptions about the

syntactic form and computational tools for model specification

and reasoning. In the following, we consider several key modeling

elements that are used across multiple concrete frameworks.

4.1. Factorization

We first consider conditionally generative models that for an

input graph (V ,Rin) define a probability distribution P(V ,Rin) (in

the following abbreviated as P) over interpretations Rout of output

relations. EnumeratingRout as r1, . . . , rn, one can factorize P as

P(Rout|Rin) = P(R1|Rin)P(R2|R1,Rin)P(R3|R1,R2,Rin) · · ·

P(Rn|R1, . . . ,Rn−1,Rin). (6)

Thus, a generative model is decomposed into a product of

discriminative models. This factorization at the relation level is

often used in SRL models that are based on directed graphical

models (Breese et al., 1994; Ngo and Haddawy, 1995; Jaeger, 1997;

Laskey and Mahoney, 1997; Friedman et al., 1999; Kersting and

De Raedt, 2001; Heckerman et al., 2007; Laskey, 2008).

Individual discriminative factors P(Rk|R1, . . . ,Rk−1) can

further be decomposed into a product of atom probabilities:

P(Rk|R1, . . . ,Rk−1,Rin) =
∏

i∈Varity(Rk)

P(rk(i) =

Rk(i)|R1, . . . ,Rk−1,Rin) (7)

1 In logic terminology, these graphs would be called themodels of KB. This

is in direct conflict with our terminology, where rather the knowledge base is

considered a model; therefore we avoid to use the term “model” in the sense

of logic.
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We have seen that this factorization is implicitly present in

GNNs (4) and shallow embeddings (5). Unlike (6), which is a

generally valid application of the chain rule, the factorization (7)

represents a quite restrictive assumption that the Rk-atoms are

conditionally independent given relations R1, . . . ,Rk−1. This leads

to some challenges, e.g., for modeling homophily properties of Rk.

A useful strategy to address such limitations of (7) is to include

among the R1, . . . ,Rk−1 latent relations that only serve to induce

dependencies among the Rk-atoms.

Frameworks that are based on undirected probabilistic models,

notably exponential random graph models and the closely related

Markov logic networks (MLNs) (Richardson and Domingos, 2006),

decompose the joint distribution P(Rout) into factors that are

defined by features F(i) of node tuples i. Examples of such features

are the degree of a node F(i) = |{j|edge(i, j)}|, or, in MLNs, 0,1-

valued featured expressed by Boolean formulas over ground atoms,

e.g., F(i, j) = edge(i, j)∧ r(i)∧¬r(j). Every such feature has an arity,

and the distribution defined by features F1, . . . , FK then is

P(Rout) =
1

Z
exp





K
∑

k=1

∑

i∈Varity(F)

Fk(i)(Rout,Rin)



 , (8)

where Z is a normalizing constant, and on the right-hand side we

make explicit that the feature is a function of the interpretations

Rout and Rin.

4.2. Feature construction

Both the basic factors P(Rk(i)|R1, . . . ,Rk−1,Rin) in (7) and

F(i)(Rout,Rin) in (8) are functions that take as input a graph (V ,R′)

containing interpretations R′ for some subset R′ ⊆ R = Rin ∪

Rout, and return a mapping of entity tuples i into R. Such entity

feature functions also lie at the core of many other modeling

frameworks than those that use these features inside a probabilistic

factorization approach: graph neural networks define a sequence of

node feature vectors (a.k.a. embedding or representation vectors).

Each component in such a vector is a feature function in our sense.

A FOL formula with k free variables defines a 0,1-valued feature of

arity k.

Graph kernels, by definition, are based on feature functions

defined on whole graphs, i.e., features of arity zero in our sense.

These features, however, often are aggregates of features defined at

the single node level (e.g., in the Weisfeiler-Lehman kernel), or k-

tuple level (e.g., in the graphlet kernel, whose features are closely

related to the MLN features).

In many cases, feature functions are nested constructs where

complex features are built from simpler ones. An important

consideration for feature construction is whether they are used

in models for transductive or inductive reasoning tasks. In the

latter case the required generalization capabilities of the model

imply that all features should be invariant under isomorphisms, i.e.,

F(ĩ)(Ṽ , R̃
′
) = F(i)(V ,R′) whenever there is a graph isomorphism

from (V ,R′) to (Ṽ , R̃
′
) that maps i to ĩ.

Table 2 summarizes some characteristics of the feature

functions used in different frameworks. The column “Arity”

indicates whether the framework uses features of graphs (0), nodes

(1), or tuples of any arities ≥ 0. The remaining columns are

addressed in the following sub-sections.

4.2.1. Initial features
All feature constructions start with some initial base features

(we note that when here and in the following we talk

about “construction,” then this is not meant to imply manual

construction; it may very well be automated construction by a

learner). Initial features often are node features. Here already

important distinctions arise that essentially determine whether the

model will have a transductive or inductive use. If one uses unique

node identifiers as initial features (denoted “id” in the “Initial”

column of Table 2), then models constructed from these features

are not invariant under isomorphisms, and will be limited to

transductive reasoning. As an example consider the feature F(i):

“i is at most three edges away from node ‘26’.” This feature is

illustrated by the red coloring of nodes in Figure 3A. While this

feature can be useful for one specific graph (e.g., for predicting a

node label), it does not generalize in a meaningful way to other

graphs, even if they also contain a node with identifier “26.” Node

identifiers are mostly used for transductive reasoning with GNNs.

They are usually not used in SRL or kernel frameworks.

The most commonly used initial features are node attributes

(“at” in Table 2). For example, if nodes have a color attribute with

values “blue” and “yellow,” then with this initial features one can

define a feature F(i): “i is at most two edges away from a blue

node.” This feature, illustrated by a red coloring in Figure 3B, also

applies to other graphs sharing the same signatureR containing the

blue/yellow attribute (we note that the regular grid structures of the

graphs (a) and (b) are for illustrative clarity only; these features are

in no way linked to such regular structures).

In some cases, there are no informative initial features used, or

available. Formally, this can be expressed by a single vacuous node

attribute that has a constant value for all nodes. Such a vacuous

initial feature can still be the basis for the construction of useful

complex features using the construction methods described below.

Figure 3C illustrates this for a constructed feature F(i): “i is at most

two edges away from a node with degree ≥ 5.”

Similar to node attributes, also non unary relations of R′ can

serve as initial features (“rel” in Table 2). Most logic-based or SRL

frameworks will allow binary initial features, enabling, e.g., the

construction of features like F(i, j, k) = edge(i, j) ∧ edge(i, k) ∧

edge(j, k) expressing that i, j, k form a triangle. Such features are

outside the reach of most GNN frameworks, though higher-order

GNNs (Morris et al., 2019) overcome this limitation.

A special approach that has been proposed in connection with

GNNs is the use of random node attributes (Abboud et al., 2021;

Sato et al., 2021) as initial features. Such random attributes can

serve as a substitute for unique node identifiers. Due to their

random nature, however, it does not make sense to construct

features based on their absolute value, like the one illustrated in

Figure 3A. However, they enable the construction of features based

on equalities rid(i) = rid(j) (rid being the random attribute), which

with high probability just encodes identity i = j, and which is

robust with regard to the random actual values. One can then

construct features like F(i): “i lies on a cycle of length 5” as “j is
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TABLE 2 Properties of feature functions underlying di�erent frameworks.

Framework Arity Initial Aggregation Final

Shallow embedding 0,1 n/a n/a Shallow

Kernel ≥ 0 at div Deep, shallow

MP-GNN 0,1 id,at Sum, mean, max,. . . Deep

R-GNN 0,1 id,at Sum, mean, max,. . . Sat

D-SRL ≥ 0 at,rel Noisy-or, mean,. . . Deep

U-SRL ≥ 0 at,rel n/a Shallow

I-SRL ≥ 0 at,rel ∃ Sat

ILP ≥ 0 at,rel ∃ Sat

FOL ≥ 0 at,rel ∃, ∀ Deep

Random graph models div div div div

div: the framework class is too loosely defined to allow a meaningful entry.

FIGURE 3

Initial node features and their use: (A) node identifiers; (B) node attributes; (C) vacuous.

reachable from i in 5 steps, and rid(i) = rid(j).” A similar capability

for constructing equality-based features is presented by Vignac

et al. (2020). Here the initial features are in fact unique identifiers,

but the subsequent constructions are limited in such a way that

again absolute values are not used in an informative manner, and

invariance under isomorphisms is ensured.

4.2.2. Construction by aggregation
Complex features are constructed out of simpler ones using

simple operations such as Boolean or arithmetic operators, and

linear or non-linear transformations. The essential tool for feature

construction in graphs, however, is the aggregation of feature values

from related entities. The general structure of such a construction

can be described as

Fnew(i) : = agg{|Fold(i, j)|j :φ(i, j)|}, (9)

where Fold(i, j) is an already constructed feature, the delimiters

|}, {| are used to denote a multiset, φ(i, j) expresses a relationship

between i and j, and agg is an aggregation function that maps the

multiset of values Fold(i, j) to a single number. For better readability

we here omit the common dependence of Fold and Fnew on the input

graph (V ,R′). As usual, vector-valued features are also covered

by considering each vector component as a scalar feature. In the

case of GNNs, Equation (9) takes the special form Fnew(i) : =

agg{|Fold(j)|j : edge(i, j)|}, and is often referred to as amessage passing

operation. Another special form of aggregation used in GNNs is

the readout operation that aggregates node features into a single

graph level feature: Freadout() : = agg{|Fnode(j)|j : true(j)|}, where

true(j) stands for a tautological condition that holds for all nodes j.

D-SRL and I-SRL frameworks are particularly flexible with regard

to aggregate feature construction by supporting rich classes of

relationships φ. U-SRL frameworks, on the other hand, do not

support the nested construction of features by (9) in general, and

are limited to a single sum-aggregation of basic features Fk via (8).

Applicable aggregation functions agg depend on the type

of the feature values. When in a logic-based framework all

features are Boolean, then agg usually is existential or universal

quantification.When in a probabilistic framework all feature values

are (conditional) probabilities, then noisy-or as the probabilistic

counterpart of existential quantification is a common aggregator.

When features have unconstrained numeric values, then standard

aggregators are sum, mean, min, or max. Table 2 lists under

“Aggregation” characteristic forms of aggregation functions in

different frameworks (n/a for frameworks that do not support

nested aggregations).
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In (9), we have written the aggregation function as operating

on a multiset. In this form one immediately obtains that if Fold is

invariant under isomorphisms, then so is Fnew. However, in practice

the multiset {|Fold(i, j)| . . .)|} will be stored as a vector. When agg

then is defined for vector inputs, one has to require that agg is

permutation invariant (which just means that only the multiset

content of the vector affects the computed value) in order to ensure

invariance under isomorphisms.

4.2.3. Final features
The inductive feature construction described in the preceding

subsections leads to features that have a certain depth of nestings of

aggregation functions. Often this depth corresponds to a maximal

radius of the graph neighborhood of i that can affect the value

F(i). This example is the case for features constructed by message

passing aggregation in GNNs (but not for readout features), and

the features of the WLK. Many modeling frameworks only are

based on features of a limited depth that are obtained by a fixed

sequence of feature constructions. This case is denoted by “deep” in

the “Final” column of Table 2, whereas “shallow” stands for feature

constructions that do not support nested aggregation.

In contrast, I-SRL and R-GNN models are based on an a-priori

unbounded sequence of feature constructions that for each input

graph (V ,R′) proceeds until a saturation point is reached (“sat” in

Table 2). This enables models which are based on final features that

are outside the reach of any fixed depth construction. An example

is the “contains cycle” graph feature of Example 1.3.

4.2.4. Numeric and symbolic representations
In the previous sections we have considered features mostly at

an abstract semantic level. For any given semantic feature there can

be very different forms of formal representation. We here illustrate

different paradigms on a concrete example. Assume that we have

a signature containing a single binary edge relation, l different

Boolean node attributes a1, . . . , al, and a node class attribute class.

A node classification model may depend on the node feature F(i)

defined as the number of distinct paths of length 2 that lead from i

to a node j for which a1(j) is true. The concrete classification model

then can be defined as a logistic regression model based on F:

P(V ,R)(class(i) = 1) = σ (aF(i)+ b), (10)

where a, b ∈ R, and σ denotes the sigmoid function.

In a MP-GNN framework, the construction of F and the

classification model can be implemented in a two layer network

with a generic structure such as

h(1)(i) = relu(sum{|U(1)a(h)|h : edge(i, h)|} ⊕ V(1)a(i))

h(2)(i) = relu(sum{|U(2)h(1)(h)|h : edge(i, h)|} ⊕ V(2)h(1)(i))

out(i) = softmax(Wh(2)(i)+ b)

(11)

where h(k) are the embedding vectors computed at hidden layer

k, a(i) is the attribute vector of i, the U(k),V(k) and W are weight

matrices, b is a bias vector, ⊕ denotes vector concatenation, and

relu is component-wise application of the relu activation function.

Finally, out is a two-dimensional output vector whose

components represent the probabilities for class(i) = 1 and

class(i) = 0. The embedding vector h(2)(i) defines a whole set

of (scalar) features. The feature F(i) can be obtained as the first

component of h(2)(i) when in both matrices U(1) and U(2) the first

row is set to (1, 0, . . . , 0). With a suitable setting ofW and b, out(i)

can then represent the model (10). Clearly, the representational

capacity of (11) is not nearly exhausted when used in this manner

to implement (10). The architecture (11) would usually encode a

model where the output probabilities are a complex function of a

multitude of different features encoded in the hidden embedding

vectors.

A symbolic representation in a D-SRL framework would take a

form like

#a1_neighbors(i) ← sum{|a1(h)|h : edge(i, h)|}

F(i) ← sum{|#a1_neighbors(h)|h : edge(i, h)|}

class(i) ← σ (aF(i)+ b)

(12)

The first two lines define the feature F, while the last

implements the classification rule. In contrast to (11), where F is

defined numerically through the entries in the parameter matrices,

it is here defined symbolically in a formal language that combines

elements of logic and functional programming languages. The

only numeric parameters in the specification are the coefficients

a, b of the logistic regression model. The representation (12) is

more interpretable than (11). However, a new classification model

depending on other features than F would here require a whole

new specification, whereas in (11) this is accomplished simply by a

different parameter setting. Also, the symbolic representation will

grow in size (and loose in interpretability), when more complex

models depending on a large number of features are needed.

Though on different sides of the symbolic/numeric divide,

model specifications (11) and (12) are very similar in nature in that

they use the same three-step strategy to first define the number

of direct a1-neighbors as an auxiliary node feature, then define F,

and finally the logistic regression model based on F. This iterative

construction is not supported in U-SRL frameworks. However,

Equation (10) can still be implemented in an U-SRL framework

using a specification of the form

class(i) ∧ edge(i, j) ∧ edge(j, h) ∧ a1(h) w1

¬class(i) ∧ edge(i, j) ∧ edge(j, h) ∧ a1(h) w2

class(i) w3

(13)

This is an MLN type specification that defines a model of

the form (8) with K = 3 features defined by Boolean properties

and associated weights. The feature Fk(i) evaluates to wk if the

Boolean property is satisfied by i, and otherwise evaluates to zero

[i = (i, j, h) for the first two features, and i = (i) for the

third]. This defines a fully generative model without a separation

into feature construction and classification model. However, with

suitable setting of the weights wk, the conditional distributions of

the class(i) atoms given full instantiations of the edge relation and

the node attributes, the model (10) can be obtained.

4.2.5. Expressivity
The general question of expressivity of feature construction

frameworks can be viewed from an absolute or comparative
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FIGURE 4

Indistinguishable nodes.

perspective. From the absolute point of view, one asks whether

a feature construction framework is generally able to distinguish

different entities, i.e., whether for i ∈ (V ,R′) and ĩ ∈ (Ṽ , R̃
′
) a

feature F can be constructed with F(ĩ)(Ṽ , R̃
′
) 6= F(i)(V ,R′) (usually

only required or desired when i and ĩ are not isomorphic). In

the context of graph kernels this question was first investigated

by Gärtner et al. (2003), who showed that graph kernels that

are maximally expressive in this sense will be computationally

intractable due to their implicit ability to solve the subgraph

isomorphism problem.

Figure 4 (adapted from Abboud et al., 2021) gives an example

of a graph whose nodes do not have any attributes. The nodes on

the three-node cycle are not isomorphic to the nodes on the 4-

node cycle. However, features that are constructed starting with the

vacuous initial feature using the aggregation mechanisms of WLK

or GNNs will not be able to distinguish these nodes. As already

mentioned in Section 4.2.1, GNNs with random node attributes

as initial features, on the other hand, will be able to distinguish

the nodes on the three-cycle from the nodes on the four-cycle.

Without the need for random node attributes this distinction also

is enabled by most SRL frameworks due to their support for binary

feature constructions, which here can be used to first construct

Boolean features k-path(i, j) representing whether there exists a

path of length k from i to j, and then distinguish the nodes on the

three-cycle by the feature 3-cycle(i) : = 3-path(i, i).

The discriminative capabilities of feature functions largely

depend on the discriminative capabilities of the aggregators (9).

It has been suggested that in combination with suitable feature

transformation functions applied to Fold before aggregation, and

Fnew after aggregation, sum is a universally expressive aggregation

function (Zaheer et al., 2017). As pointed out by Wagstaff et al.

(2019), however, the requirements on the transformation functions

are not realistic for actual implementations. See also Jaeger (2022)

for a detailed discussion.

In the comparative view, one asks whether all features that

can be constructed in a framework ABC can also be constructed

in a framework XYZ. If that is the case, we write ABC�F XYZ.

We use the subscript F here in order to emphasize that this is an

expressivity relationship about the feature construction capabilities

of the frameworks. Different frameworks use features in a different

ways, and therefore ABC�FXYZ does not directly imply that

FIGURE 5

Some expressivity relations.

every model of ABC also can be represented as a model in XYZ.

However, feature expressivity is the most fundamental ingredient

for modeling capacity.

Figure 5 gives a small and simplistic overview of some

expressivity relationships between different frameworks. In this

overview we gloss over many technical details regarding the

exact representatives of larger classes such as MP-GNN for

which the relations have been proven, and the fact that in

some cases the comparison so far only has been conducted

for graphs with a single edge relation (though generalizations

to multi-relational graphs seem mostly straightforward). The

relationship FOL�FD-SRL has been shown in Jaeger (1997).

That MP-GNNs are at least as expressive as the 2-variable

fragment of first-order logic with counting quantifiers (2FOLC)

is shown by Barceló et al. (2020) on the basis of MP-GNNs

that allow feature constructions using both message-passing and

readout aggregations. The relationship between MP-GNNs and the

Weisfeiler-Lehman graph-isomorphism test was demonstrated by

Morris et al. (2019) and Xu et al. (2019). A detailed account of

expressivity of different GNN frameworks and their relationship

to Weisfeiler-Lehman tests is given by Sato (2020). The MP-

GNN�FD-SRL relation is demonstrated in Jaeger (2022), and

FOL�FU-SRL is shown by Richardson and Domingos (2006).

It must be emphasized, however, that these results only pertain

to the feature expressivity of the frameworks. The reasoning

capabilities of logical deduction in FOL are not provided by the SRL

frameworks.

The figure also shows that R-GNN and I-SRL are (presumably)

incomparable to the other frameworks here shown: their saturation

based feature construction, on the one hand, provides expressivity

not available to the fixed depth features of the other frameworks.

On the other hand, I-SRL has limitations regarding expressing

logical features involving negation or universal quantification, and

R-GNN cannot aggregate features over a fixed number of steps

using different aggregators at each step.

5. Reasoning: tasks and techniques

Given amodel in the sense of Definition 3.1, we consider several

classes of reasoning tasks. Narrowing down the range of possible

reasoning tasks considered in Section 1, we are now only concerned

with algorithmic reasoning.
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5.1. Sampling

The sampling task consists of generating a random graph

(V ,R) ∈ G(V ,R) according to the distribution P(V ,R̃). Here we

consider this sampling problem as a task in itself, which is to

be distinguished from sampling as a method for approximately

solving other tasks (see below). Sampling as a main reasoning task

is mostly considered in the context of graph evolution models,

where the comparison of observed statistics in the random sample

with real-world graphs is used to validate the evolution model

(e.g., Leskovec et al., 2007). A concrete application of sampling

from generative models is to create realistic benchmark datasets

for other computational tasks on graphs. Bonifati et al. (2020)

give a comprehensive overview of graph generator models in this

application context.

Sampling is typically a task for fully generative models.

However, not all models that are fully generative in the

semantic sense of Section 3 necessarily support efficient sampling

procedures. This is the case, in particular, for U-SRL models whose

specification (8) does not translate into an operational sampling

procedure. D-SRL models following the factorization strategy of

(6) and (7), on the other hand, allow for an efficient sampling

procedure by successively sampling truth values for ground atoms

Rk(i). The same is true for dedicated graph evolution models, and,

with slight modifications, for I-SRL models.

While mostly designed for prediction tasks, MP-GNNs have

also been adapted as models for random graph generation (e.g., Li

et al., 2018; Simonovsky and Komodakis, 2018; You et al., 2018;

Dai et al., 2020). Differently from more traditional graph evolution

models, which typically only have a small number of calibration

parameters, generative GNNs are highly parameterized and can

be fitted to training data sets of graphs with different structural

properties.

5.2. Domain-specific queries

A large class of reasoning tasks falls into the following category

of performing inference based on a given model for a single

graph under consideration. This covers what in the introduction

informally was referred to as reasoning about a single graph, and

reasoning about one graph at a time.

Definition 5.1. Let M = (I ,µ) be a model. A domain specific

query is given by

(a.) an input graph (V , R̃) ∈ I ,

(b.) a query set ρ ⊆ Int(V ,R̃)(R),

(c.) a query objective that consists of calculating a property of the

set {P(V ,R̃)(R)|R ∈ ρ}.

Query sets are typically specified by one or several query atoms

rk1 (i1), . . . , rkq (iq), where ρ then consists of all interpretations R

in which the query atoms are true. A slightly more general class

of queries is obtained when the query atoms can also be negated,

with the corresponding condition that the negated atoms are false

inR. Part (c.) of Definition 5.1 is formulated quite loosely. Themost

common query objective is to calculate the probability of ρ:

P(V ,R̃)(ρ) =
∑

R∈ρ

P(V ,R̃)(R). (14)

When ρ is defined by a list of query atoms we can write for

P(V ,R̃)(ρ) also more intuitively

P(V ,R̃)(rk1 (i1), . . . , rkq (iq)). (15)

The prediction tasks of Examples 1.1–1.4 all fall into the

category of computing (15) for a single query atom. More general

probabilistic inference is concerned with computing (15) for general

lists of (possibly negated) query atoms. Furthermore, we often are

interested in conditional queries of the form

P(V ,R̃)(rk1 (i1), . . . , rkq (iq)|rkq+1 (iq+1), . . . , rkp (ip)) (16)

where rkq+1 (iq+1), . . . , rkp (ip) represents observed evidence, and

rk1 (i1), . . . , rkq (iq) represents the uncertain target of our inference.

If the inference framework permits arbitrary unconditional queries

(15), then (16) can be computed from the definition of conditional

probabilities as the ratio of two unconditional queries. Thus,

Equation (15) already covers most cases of probabilistic inference.

In the most probable genotype problem of Example 3.6 the

query set is given by a list of atoms (possibly negated) representing

observed genotype data, and the query objective is to compute

argmax
R∈ρ

P(V ,R̃)(R). (17)

The computational tools and computational complexity for

computing a query differ widely according to the underlying

modeling framework, and the class of queries it supports. The

simplest case is given by specialized prediction models that

only support single (class label) atoms class(i) as queries. When,

moreover, the model (as in GNNs) is directly defined by functional

expressions for the conditional probabilities P(class(i)|Rin), then

the computation consists of a single forward computation that is

typically linear in the size of the input graph (V , R̃) = (V ,Rin)

and the model specification. Similarly, performing prediction by

a kernel-SVM is usually computationally tractable, though the

necessary evaluations of the kernel function here add another

source of complexity.

Dedicated classification models provide for efficient predictive

inference, because for their limited class of supported queries (14)

can be evaluated without explicitly performing the summation

over R ∈ ρ. The situation is very different for SRL models that

are designed to support a much richer class of queries defined

by arbitrary lists of atoms in the Rout relations, and where the

summation in (14) cannot be bypassed. A naive execution of the

summation over all R is usually infeasible, since the number of R

one needs to sum over is exponential in the number of unobserved

atoms, i.e., atoms that are not instantiated in the input R̃, or

included among the query atoms. The number of such unobserved

atoms, in turn, is typically polynomial in |V|. For SRL models,

the basic strategy to evaluate (14) is to compile the distribution

P(V ,R̃) and the query ρ into a standard inference problem in a

probabilistic graphical model (e.g., Ngo andHaddawy, 1995; Jaeger,
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1997; Richardson and Domingos, 2006), or into a weighted model

counting problem (e.g., Fierens et al., 2011). These compilation

targets are ground models in the sense that they are expressed

in terms of ground atoms r(i) as basic random variables. While

often effective, they still may exhibit a computational complexity

that is exponential in |V|. The idea of lifted inference is to exploit

uniformities and symmetries in the model P(V ,R̃), which may

allow us to sum over whole classes of essentially indistinguishable

interpretations R at once (Poole, 2003; Van den Broeck, 2011).

While more scalable than ground inference in some cases, the

potential of such lifted techniques is still limited by general

intractability results: Jaeger (2000) shows that inference for single

atom queries is exponential in |V| in the worst case,2 if themodeling

framework is expressive enough to support FOL features. Van den

Broeck and Davis (2012) obtain a related result under weaker

assumptions on the expressiveness of the modeling framework, but

for more complex queries.

When exact computation of (14) becomes infeasible, one

typically resorts to approximate inference via sampling random R

according to P(V ,R̃), and taking the empirical frequency of samples

that belong to ρ as an estimate of P(V ,R̃)(ρ).When directly sampling

from P(V ,R̃) is not supported (cf. Section 5.1), then this is performed

by aMarkov ChainMonte Carlo approach where samples follow the

distribution P(V ,R̃) only in the limit of the sampling process.

5.3. Cross-domain queries

The reasoning tasks considered in the previous section arise

when a single known domain of entities is the subject of inference.

Cross-domain queries in the sense of the following definition

capture reasoning tasks that arise when the exact domain is

unknown, or one wants to reason about a range of possible domains

at once.

Definition 5.2. Let M = (I ,µ) be a model. A cross-domain query

is given by

• a set J ⊆ I of input graphs

• a query set ρ = {ρ(V ,R̃)|(V , R̃) ∈ J }, where each ρ(V ,R̃) ⊆

Int(V ,R̃)
• a query objective that consists of calculating a property of the

set of sets

{{P(V ,R̃)(R)|R ∈ ρ}|(V , R̃) ∈ J }. (18)

Definition 5.1 now is just the special case |J | = 1 of

Definition 5.2.

Example 5.3. (Deduction, cont.) Consider a logic knowledge base

KB as a discriminative model as described in Example 3.7. The

question whether KB implies a statement φ then is a cross-domain

query whereJ contains the set of graphs G ∈ G(<∞,R) in which

φ does not hold, ρG is the extension of G in which lKB = 1, and the

query objective is to decide whether PG(ρG) = 0 for all G ∈ J .

2 Subject to the complexity-theoretic assumption that NETIME6=ETIME.

Example 5.4. (Model explanation) Consider a GNN model for the

graph classification task described in Example 1.3. This will be a

discriminative model that takes fully specified graphs representing

molecules as input, and returns a probability distribution over the

mutagenic graph label as output. An approach to explain such a

model is to identify for a given target value of the graph label, e.g.,

mutagenic = true, the input molecule that leads to the highest

probability for that label (which can be interpreted as an ideal

prototype for the label—according to the model we are trying to

explain; Yuan et al., 2020). Finding such an explanation is a cross-

domain query in our sense: the set J is the set of all possible input

molecules (or the set of all molecules with a given size). For all

(V ,R) ∈ J the query set is the single labeled molecule ρ(V ,R) =

{(V ,R,mutagenic = true)}, and the objective is to find the argmax

of (18). This is very similar to the most probable genotype queries

considered above, but subtly different: since the underlying model

here only is discriminative for the class label, the maximization of

(18) does not depend on any prior probabilities for the input graphs

(V ,R). Also, what is a cross-domain query for a discriminative

model can just be a single domain query for a fully generative

model: if here we are looking for an explanation of a fixed size n,

then we only need to consider the single input domainV = [n], the

query set ρ(V) = {([n],R,mutagenic = true)|R ∈ Int([n])(R)}, and

the query objective (17). While on the one hand merely a technical

semantic distinction, this can make a significant difference when

in the first case the existing framework does not directly support

the argmax computation for (18), whereas in the second case the

computation of (17) may be supported by native algorithmic tools

in the framework.

Example 5.5. (Limit behavior, cont.) For a fully generative model

consider J = I = G(< ∞, ∅). For each input graph Gn : =

([n], ∅) let ρn : = ρGn contain the set of graphs with some

property of interest, such as being connected, or satisfying a given

logic formula. An important cross-domain reasoning task then is

characterized by the query objective to determine the existence and

value of the limit limn→∞[Pn(ρn)].

Automated theorem provers provide algorithmic solutions for

the reasoning tasks described in Example 5.3. For the analysis of

limit probabilities as in Example 5.5 there exist a few theoretical

results that puts them into the reach of general automated inference

methods (Grandjean, 1983; Jaeger, 1998; Cozman and Mauá, 2019;

Koponen and Weitkämper, 2023). However, these results have not

yet been carried over to operational implementations.

6. Learning: settings and techniques

So far our discussion has largely focused on modeling and

reasoning. Our formal definitions in Sections 3 and 5 draw a close

link between types of models and the reasoning tasks they support

(discriminative, generative, transductive, inductive, . . . ). Turning

now to the question of how a model is learned from data, a similar

close linkage arises between model types and learning scenarios.

Based on the unifying probabilistic view of models according

to Definition 3.1, different learning scenarios are essentially just

distinguished by the structure of the training data, but unified by

a common maximum likelihood learning principle.
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The class of input structures I of a model M = (I ,µ)

characterizes its basic functionality and will be assumed to be fixed

a-priori by the learning/reasoning task at hand. What is to be

learned is the mapping µ. For this one needs training data of the

following form.

Definition 6.1. Let I ⊆ G̃(< ∞,R) be given. A dataset for

learning the mapping µ consists of a set of examples

(Vn, R̃n), R̃
+

n (n = 1, . . . ,N), (19)

where (Vn, R̃n) ∈ I , and R̃
+

n ∈ G̃(Vn,R) complements R̃n in the

sense that R̃+n,i(i) 6=?⇒ R̃n,i(i) =? (i = 1, . . . ,m).

The unifying learning principle is to find the mapping µ that

maximizes the log-likelihood

N
∑

n=1

logµ(Vn, R̃n)(R̃
+

n ). (20)

In practice, the pure likelihood (20) will often be modified

by regularization terms or prior probabilities, which, to simplify

matters, we do not consider here. Furthermore, some learning

objectives, such as the max-margin objective in learning a kernel-

SVM, are not based on the log-likelihood as the central element at

all. However, as the following examples show, Equation (20) still

covers a fairly wide range of learning approaches.

Example 6.2. (Node classification with GNN) Consider R

consisting of a single binary edge relation, node attributes

a1, . . . , ak, and a node label l. For training a discriminative

model with Rin = {edge, a1, . . . , ak}, and Rout = {l},

the training examples consist of complete input graphs

(Vn,Rn) ∈ G(< ∞,Rin), and R̃
+

n is a partial interpretation

L̃n of l. In the transductive setting, N = 1, and (V1,R1) is equal to

the single input graph for which the model is defined. Under the

factorization (7) the log likelihood (20) then becomes

N
∑

n=1

∑

i : L̃n(i) 6=?

logµ(Vn,Rn)(L̃n(i)).

The usual training objective for GNNs of minimizing the log-

loss is equivalent to maximizing this log-likelihood.

Example 6.3. (Generative models from incomplete data) The

discriminative learning scenario of Example 6.2 requires training

data in which input relations Rin are completely observed. When

also some of the attributes ai, and maybe the edge relation are

only incompletely observed in the training data, then no valid

input structure for a discriminative model is given. However, no

matter which relations are fully or partially observed, a partial

interpretation R̃n can always be written as a valid training example

(Vn, ∅), R̃n (21)

for a fully generative model. Without any assumptions on the

factorization of the distributions Pn, the log-likelihood now takes

the general form

N
∑

n=1

logµ(Vn, ∅)(R̃n) =

N
∑

n=1

∑

R∈Int(Vn ,R̃n)(R)

logµ(Vn, ∅)(R).

While always well-defined, this likelihood may be intractable for

optimization. An explicit summation over all R ∈ Int(Vn ,Rn)(R)

is almost always infeasible. When optimization of the complete

data likelihood µ(Vn, ∅)(R) for R ∈ IntV (R) is tractable, then

the expectation-maximization strategy can be applied, where one

iteratively imputes expected completions Rn for the incomplete

observations Rn under a current model µ, and then optimizes µ

under the likelihood induced by this complete data. For U-SRL

models, even the complete data likelihood usually is intractable

due to its dependence on the partition function Z = Z(µ) in

(8). In this case the true likelihood may be approximated by a

pseudo-likelihood (Besag, 1975; Richardson and Domingos, 2006).

Example 6.4. (Learning logic theories) Consider now the case of

a logical framework where a model is a knowledge base KB that

we consider as a discriminative model in the sense of Example 3.7.

Learning logical theories or concepts is usually framed in terms of

learning from positive and negative examples, where the example

data can consist of full interpretations, logical statements, or even

proofs (De Raedt, 1997). The learning from interpretations setting

fits most closely our general data and learning setup: examples then

are fully observed graphs Gn = (Vn,Rn) together with a label

R̃
+

n = Ln ∈ {0, 1}, and optimizing (20) amounts to finding a

knowledge base KB such that KB is true in all Gn with Ln = 1,

and false for Gn with Ln = 0, i.e., the standard objective in logic

concept learning.

6.1. Numeric and symbolic optimization

Examples 6.2–6.4 present a uniform perspective on learning

in very different frameworks. However, the required techniques

for solving the likelihood optimization problem are quite diverse.

Corresponding to the combination of symbolic and numeric

representation elements of a modeling framework, the learning

problem decomposes into a structure learning part for the symbolic

representation, and a parameter learning part for the numeric

elements. Since the numeric parameterization usually depends on

the chosen structure, this can lead to a nested optimization in

which structure learning is performed in an outer loop that contains

parameter learning as an inner loop. Structure learning amounts

to search in a potentially infinite combinatorial space. Parameter

learning, on the other hand, typically is reduced to the optimization

of a differentiable objective function, for which powerful gradient-

based methods are available.

The (empirical) fact that numeric optimization of parameters

is somewhat easier than combinatorial optimization of symbolic

structure favors frameworks that are primarily numeric, notably

GNNs. As illustrated in Section 4.2.4, feature constructions that in

other frameworks require symbolic specifications (12), (13) here are

encoded in numeric parameter matrices (11). As a result, learning

that in symbolic representations requires a search over symbolic

representations, here is accomplished by numeric optimization.

However, even GNNs are not completely devoid of “symbolic”

representation elements: the neural network architecture is a

component of the model specification in a discrete design space,

and finding the best architecture via neural architecture search

(Elsken et al., 2019) leads to optimization problems in discrete,
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combinatorial search spaces that have much in common with

structure learning in more manifestly symbolic frameworks.

While presenting a harder optimization task for machine

learning, symbolic, structural parts of a model may also be supplied

manually by domain experts, thus reducing the machine learning

task to the optimization of the numeric parameters. Many SRL

frameworks, so far, rely to a greater or lesser extent on such a

humans-in-the-loop scenario.

7. Integration

In view of the complementary benefits of symbolic and numeric

models, it is natural to aim for combinations of both elements

that optimally exploit the strengths of each. Emphasizing neural

network frameworks as the prime representatives for numeric

approaches, these efforts are currently mostly pursued under

the name of neuro-symbolic integration (Sarker et al., 2021). An

important example in the context of this review is the integration

of the I-SRL ProbLog framework with deep neural networks (not

specifically GNNs). The underlying philosophy for the proposed

DeepProbLog framework (Manhaeve et al., 2018) is that neural

frameworks excel at solving low-level “perceptual” reasoning tasks,

whereas symbolic frameworks support higher-level reasoning. The

integration therefore consists of two layers, where the lower

(neural) layer provides inputs to the higher (symbolic) layer.

The unifying perspective on model semantics and model

structure we have developed in Sections 3 and 4 gives rise to more

homogeneous integration perspectives: a conditionally generative

model that is constructed via the factorization (6), (7) consists

of individual discriminative models (7) for each relation Rk as

building blocks. In principle, different such building blocks can be

constructed in different frameworks, and combined into a single

model via (6). Moreover, this approach will be consistent in the

sense that if all constructions of the component discriminative

models use (20) as the objective, then the combination of these

objectives is equivalent to the maximizing the overall log-likelihood

µ(Vn,Rin)(Rout) directly for the resulting conditional generative

model. Here we deliberately speak of “constructing” rather than

“learning” component models in order to emphasize the possibility

that some model components may be built by manual design,

whereas others can be learned from data.

Piecing together a combined model from heterogeneous model

components only is useful when the resulting model then can

be used to perform inference tasks. This will limit the reasoning

capabilities to tasks that can be broken down into a combination of

tasks supported by the component models. A possible alternative

is to compile all individual components into a representation

in a common framework with high expressivity and flexible

reasoning capabilities. As shown in Jaeger (2022), quite general

GNN architectures for representing discriminative models can

be compiled into an RBN representation, and integrated as

components into a bigger generative model. While theoretically

sound, it is still an open question whether this approach is

practically feasible for GNN models of the size needed to obtain

high accuracy on their specialized discriminative tasks.

8. Conclusion

We have given a broad overview over modeling, reasoning,

and learning with graphs. The main objective of this review was

to view the area from a broader perspective than more specialized

existing surveys, while at the same time developing a coherent

conceptual framework that emphasizes the commonalities between

very diverse approaches to dealing with graph data. Our central

definitions of models, reasoning types and learning tasks cover

a wide range of different frameworks and approaches. While the

uniformity we thereby obtain sometimes is a bit contrived (notably

by casting logical concepts in probabilistic terms), it still may be

useful to elucidate the common ground among quite disparate

traditions and approaches, to provide a basis for further theoretical

(comparative) analyses, and to facilitate the combination and

integration of different frameworks.
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