146 research outputs found

    On polynomial digraphs

    Get PDF
    Let Φ(x,y)\Phi(x,y) be a bivariate polynomial with complex coefficients. The zeroes of Φ(x,y)\Phi(x,y) are given a combinatorial structure by considering them as arcs of a directed graph G(Φ)G(\Phi). This paper studies some relationship between the polynomial Φ(x,y)\Phi(x,y) and the structure of G(Φ)G(\Phi).Comment: 13 pages, 6 figures, See also http://www-ma2.upc.edu/~montes

    Magic graphs and the faces of the Birkhoff polytope

    Full text link
    Magic labelings of graphs are studied in great detail by Stanley and Stewart. In this article, we construct and enumerate magic labelings of graphs using Hilbert bases of polyhedral cones and Ehrhart quasi-polynomials of polytopes. We define polytopes of magic labelings of graphs and digraphs. We give a description of the faces of the Birkhoff polytope as polytopes of magic labelings of digraphs.Comment: 9 page

    Representation of Cyclotomic Fields and Their Subfields

    Full text link
    Let \K be a finite extension of a characteristic zero field \F. We say that the pair of n×nn\times n matrices (A,B)(A,B) over \F represents \K if \K \cong \F[A]/ where \F[A] denotes the smallest subalgebra of M_n(\F) containing AA and is an ideal in \F[A] generated by BB. In particular, AA is said to represent the field \K if there exists an irreducible polynomial q(x)\in \F[x] which divides the minimal polynomial of AA and \K \cong \F[A]/. In this paper, we identify the smallest circulant-matrix representation for any subfield of a cyclotomic field. Furthermore, if pp is any prime and \K is a subfield of the pp-th cyclotomic field, then we obtain a zero-one circulant matrix AA of size p×pp\times p such that (A,\J) represents \K, where \J is the matrix with all entries 1. In case, the integer nn has at most two distinct prime factors, we find the smallest 0-1 companion-matrix that represents the nn-th cyclotomic field. We also find bounds on the size of such companion matrices when nn has more than two prime factors.Comment: 17 page

    On the structure of the adjacency matrix of the line digraph of a regular digraph

    Get PDF
    We show that the adjacency matrix M of the line digraph of a d-regular digraph D on n vertices can be written as M=AB, where the matrix A is the Kronecker product of the all-ones matrix of dimension d with the identity matrix of dimension n and the matrix B is the direct sum of the adjacency matrices of the factors in a dicycle factorization of D.Comment: 5 page

    Hamiltonian cycles in Cayley graphs of imprimitive complex reflection groups

    Full text link
    Generalizing a result of Conway, Sloane, and Wilkes for real reflection groups, we show the Cayley graph of an imprimitive complex reflection group with respect to standard generating reflections has a Hamiltonian cycle. This is consistent with the long-standing conjecture that for every finite group, G, and every set of generators, S, of G the undirected Cayley graph of G with respect to S has a Hamiltonian cycle.Comment: 15 pages, 4 figures; minor revisions according to referee comments, to appear in Discrete Mathematic

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}
    • …
    corecore