Note
 On the structure of the adjacency matrix of the line digraph of a regular digraph

Simone Severini
Department of Computer Science, University of Bristol, Merchant Venturers' Building, Woodland Road, Bristol BS8 1UB, UK

Received 4 September 2003; received in revised form 11 September 2005; accepted 14 March 2006
Available online 9 May 2006

Abstract

We show that the adjacency matrix M of the line digraph of a d-regular digraph D on n vertices can be written as $M=A B$, where the matrix A is the Kronecker product of the all-ones matrix of dimension d with the identity matrix of dimension n and the matrix B is the direct sum of the adjacency matrices of the factors in a dicycle factorization of D.

© 2006 Elsevier B.V. All rights reserved.
Keywords: Line digraph; Adjacency matrix; de Bruijn digraph

0. Introduction

Line digraphs of regular digraphs and their generalizations are important in the design of point-to-point interconnection networks for parallel computers and distributed systems. For instance, de Bruijn digraphs and Reddy-Pradhan-Kuhl digraphs, which are important topologies for interconnection networks, are all examples of line digraphs of regular digraphs (see, e.g., $[1,2,5]$). In this note, we describe a special regularity property of the adjacency matrix of the line digraph of a regular digraph. Before stating formally our main result, we recall the necessary graph-theoretic terminology.

A (finite) directed graph, for short digraph, consists of a non-empty finite set of elements called vertices and a (possibly empty) finite set of ordered pairs of vertices called arcs. The digraphs considered here are without multiple arcs. We denote by $D=(V, A)$ a digraph with vertex-set $V(D)$ and arc-set $A(D)$. A labeling of the vertices of a digraph D is a function $l: V(D) \longrightarrow L$, where L is a set of labels. Chosen a bijective labeling, the adjacency matrix of a digraph D with n vertices, denoted by $M(D)$, is the $n \times n(0,1)$-matrix with $i j$ th element defined by $M_{i, j}(D)=1$ if $\left(v_{i}, v_{j}\right) \in A(D)$ and $M_{i, j}(D)=0$, otherwise. For any vertex $v_{i} \in V(D)$ of a digraph D, let $d_{D}^{-}\left(v_{i}\right):=\mid\left\{v_{j}\right.$: $\left.\left(v_{j}, v_{i}\right) \in A(D)\right\} \mid$ and $d_{D}^{+}\left(v_{i}\right):=\left|\left\{v_{j}:\left(v_{i}, v_{j}\right) \in A(D)\right\}\right|$. A digraph D is said to be d-regular if, for every vertex $v_{i} \in V(D), d_{D}^{-}\left(v_{i}\right)=d_{D}^{+}\left(v_{i}\right)=d$. A digraph H is a subdigraph of a digraph D if $V(H) \subseteq V(D)$ and $A(H) \subseteq A(D)$. A subdigraph H of a digraph D is said to be a spanning subdigraph of D, or equivalently, a factor of D, if $V(H)=V(D)$. A decomposition of a digraph D is a set $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ of subdigraphs of D whose arc-sets are exactly the classes of a partition of $A(D)$. A factorization of a digraph D, if there exists one, is a decomposition of D into factors. A dicycle factor H of a digraph D is a spanning subdigraph of D such that $M(H)$ is a permutation matrix. The disjoint union of

[^0]digraphs $D_{1}, D_{2}, \ldots, D_{k}$, is the digraph with vertex-set $\biguplus_{i=1}^{k} V\left(D_{i}\right)$, and arc-set $\biguplus_{i=1}^{k} A\left(D_{i}\right)$. Then a dicycle factor H of a digraph D is a spanning subdigraph of D and it is the disjoint union of dicycles. A dicycle factorization is a factorization into dicycle factors. The line digraph of a digraph D, denoted by $\vec{L} D$, is defined as follows: the vertex-set of $\vec{L} D$ is $A(D)$; for $v_{h}, v_{i}, v_{j}, v_{k} \in V(D),\left(\left(v_{h}, v_{i}\right),\left(v_{j}, v_{k}\right)\right) \in A(\vec{L} D)$ if and only if $v_{i}=v_{j}$. Kronecker product and direct sum of matrices M and N are, respectively, denoted by $M \otimes N$ and $M \oplus N$. The identity matrix and the all-ones matrix of size n are, respectively, denoted by I_{n} and J_{n}. In the next section, we prove the following theorem:

Theorem. Let D be a d-regular digraph on n vertices and let $\left\{H_{1}, H_{2}, \ldots, H_{d}\right\}$ be a dicycle factorization of D. Then there is a labeling of $V(\vec{L} D)$ such that

$$
M(\vec{L} D)=\left(J_{d} \otimes I_{n}\right) \bigoplus_{i=1}^{d} M\left(H_{i}\right)
$$

1. Proof of the Theorem

The proof of the theorem is based on two simple observations and a result proved by Hasunuma and Shibata [4] (see also Kawai et al. [6]).

Lemma 1. Let D be a d-regular digraph. Then D has a dicycle factorization. In particular, if $\left\{H_{1}, H_{2}, \ldots, H_{d}\right\}$ is a dicycle factorization of D then $M\left(H_{1}\right), M\left(H_{2}\right), \ldots, M\left(H_{d}\right)$ are permutation matrices such that

$$
M(D)=\sum_{i=1}^{d} M\left(H_{i}\right)
$$

Two digraphs D and D^{\prime} are said to be isomorphic if there is a permutation matrix P such that $P \cdot M(D) \cdot P^{-1}=$ $M\left(D^{\prime}\right)$. If D and D^{\prime} are isomorphic we then write $D \cong D^{\prime}$. An n-dicycle, denoted by \vec{C}_{n}, is a digraph with vertex-set $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and arc-set $\left\{\left(v_{1}, v_{2}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}$. A d-spiked n-dicycle is the digraph obtained from \vec{C}_{n} as follows: for every vertex $v_{i} \in V\left(\vec{C}_{n}\right)$, we add d new vertices $w_{1}, w_{2}, \ldots, w_{d}$; we connect $v_{i} \in\left(\vec{C}_{n}\right)$ to the vertices $w_{1}, w_{2}, \ldots, w_{d}$, obtaining the arcs $\left(v_{i}, w_{1}\right),\left(v_{i}, w_{2}\right), \ldots,\left(v_{i}, w_{d}\right)$.

Lemma 2. Let D be a d-spiked n-dicycle. Then $D \cong \vec{L} D$.
Let D be a digraph and let H be a spanning subdigraph of D. The growth of D derived by H is the digraph denoted by $\Upsilon_{D}(H)$ and defined as follows: for every pair of vertices $v_{i}, v_{j} \in V(D)$, if $\left(v_{i}, v_{j}\right) \in A(H)$ then $\left(v_{i}, v_{j}\right) \in A\left(\Upsilon_{D}(H)\right)$; for every vertex $v_{i} \in V(D)$, we add new vertices $w_{1}, w_{2}, \ldots, w_{l}$, where $l=d_{D}^{+}\left(v_{i}\right)-d_{H}^{+}\left(v_{i}\right)$; we connect $v_{i} \in V(D)$ to the vertices $w_{1}, w_{2}, \ldots, w_{l}$, obtaining the arcs $\left(v_{i}, w_{1}\right),\left(v_{i}, w_{2}\right), \ldots,\left(v_{i}, w_{l}\right)$.

Lemma 3 (Hasunuma and Shibata [4]). If $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ is a decomposition of a digraph D then

$$
\left\{\vec{L} \Upsilon_{D}\left(H_{1}\right), \vec{L} \Upsilon_{D}\left(H_{2}\right), \ldots, \vec{L} \Upsilon_{D}\left(H_{k}\right)\right\}
$$

is a decomposition of a digraph $D^{\prime} \cong \vec{L} D$.
Proof of the Theorem. Let D be a d-regular digraph on n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Let $\left\{H_{1}, H_{2}, \ldots, H_{d}\right\}$ be a dicycle factorization of D. The vertices of $H_{j} \in\left\{H_{1}, H_{2}, \ldots, H_{d}\right\}$ are denoted as $\left(H_{j}, v_{1}\right),\left(H_{j}, v_{2}\right), \ldots,\left(H_{j}, v_{n}\right)$. Let us construct $\Upsilon_{D}\left(H_{j}\right)$. For every vertex $\left(H_{j}, v_{i}\right) \in V\left(H_{j}\right)$, we add $d-1$ new vertices to H_{j}. We label these new vertices by pairs of the form $\left(H_{l}, v_{m}\right)$, for all $l \neq j$ and v_{m} such that $\left(v_{i}, v_{m}\right) \in A\left(H_{l}\right)$. In addition, $\left(\left(H_{j}, v_{i}\right),\left(H_{l}, v_{m}\right)\right) \in$ $A\left(\Upsilon_{D}\left(H_{j}\right)\right)$. The digraph $\Upsilon_{D}\left(H_{j}\right)$ has $n \cdot d$ vertices. If we label the row number $(j-1) n+i$ of $M\left(\Upsilon_{D}\left(H_{j}\right)\right)$ by the vertex $\left(H_{j}, v_{i}\right)$, the adjacency matrix of $\Upsilon_{D}\left(H_{j}\right)$ is the $(d \cdot n) \times(d \cdot n)$ block-matrix

$$
M\left(\Upsilon_{D}\left(H_{j}\right)\right)=\left(\begin{array}{c}
\mathbf{0} \\
X_{j} \\
\mathbf{0}
\end{array}\right)
$$

where

$$
X_{j}=\left(\begin{array}{lllll}
M\left(H_{1}\right) & M\left(H_{2}\right) & \cdots & M\left(H_{j}\right) & \cdots
\end{array} M\left(H_{d-1}\right) M\left(H_{d}\right)\right) .
$$

Notice that $M\left(H_{j}\right)$ is the $j j$ th block of $M\left(\Upsilon_{D}\left(H_{j}\right)\right)$. Thus, we have

$$
\begin{aligned}
N & =\sum_{i=j}^{d} M\left(\Upsilon_{D}\left(H_{i}\right)\right)=\left(\begin{array}{cccc}
M\left(H_{1}\right) & M\left(H_{2}\right) & \cdots & M\left(H_{d}\right) \\
M\left(H_{1}\right) & M\left(H_{2}\right) & \cdots & M\left(H_{d}\right) \\
\vdots & \vdots & \ddots & \vdots \\
M\left(H_{1}\right) & M\left(H_{2}\right) & \cdots & M\left(H_{d}\right)
\end{array}\right) \\
& =\left(J_{d} \otimes I_{n}\right) \bigoplus_{i=j}^{d} M\left(H_{j}\right) .
\end{aligned}
$$

Observe that, for every $1 \leqslant j \leqslant d, \Upsilon_{D}\left(H_{j}\right)$ is the disjoint union of the d-spiked cycles corresponding to the orbits of the permutation associated to H_{j}. It follows from Lemma 2 that, for every $1 \leqslant j \leqslant d$,

$$
\Upsilon_{D}\left(H_{j}\right) \cong \vec{L} \Upsilon_{D}\left(H_{j}\right)
$$

Then, for the chosen labeling,

$$
M\left(\Upsilon_{D}\left(H_{j}\right)\right)=M\left(\vec{L} \Upsilon_{D}\left(H_{j}\right)\right)
$$

and

$$
N=\sum_{j=1}^{d} M\left(\Upsilon_{D}\left(H_{j}\right)\right)=\sum_{j=1}^{d} M\left(\vec{L} \Upsilon_{D}\left(H_{j}\right)\right)
$$

Now, by Lemma 3, $N=M(\vec{L} D)$.
Remark. The graph operation transforming a digraph D in its line digraph can be naturally iterated: $\vec{L}^{k} D:=$ $\vec{L} \vec{L}^{k-1} D$. Let Σ be an alphabet of cardinality d and let Σ^{k} be the set of all the words of length k over Σ. The d-ary k dimensional de Bruijn digraph, denoted by $B(d, k)$, is defined as follows: the vertex-set of $B(d, k)$ is $V(B(d, k))=\Sigma^{k}$; for every pair of vertices v_{i}, v_{j}, we have $\left(v_{i}, v_{j}\right) \in A(B(d, k))$ if and only if the last $k-1$ letters of v_{i} are the same as the first $k-1$ letters of v_{j}. Let K_{d}^{+}be the complete digraph on d vertices with a loop at each vertex. Fiol et al. [3] proved that $B(d, k) \cong \vec{L}^{k-1} K_{d}^{+}$. This result, together with the theorem, gives

$$
M(B(d, 2)) \cong\left(J_{d} \otimes I_{d}\right) \bigoplus_{i=1}^{d} M\left(H_{i}\right),
$$

where $\left\{H_{1}, H_{2}, \ldots, H_{d}\right\}$ is any dicycle factorization of K_{d}^{+}.

Acknowledgments

The author would like to thank the anonymous referees for helpful comments that improved this paper.

References

[1] J. Bang-Jensen, G. Gutin, Digraphs. Theory, Algorithms and Applications, Springer Monographs in Mathematics, Springer-Verlag, London, 2001.
[2] D. Ferrero, Introduction to interconnection network models, Publ. Math. Urug. 99/25 (1999).
[3] M.A. Fiol, J.L.A. Yebra, I. Alegre, Line digraph iterations and the (d,k) digraph problem, IEEE Trans. Comput. 33 (1984) $400-403$.
[4] T. Hasunuma, Y. Shibata, Isomorphic decomposition and arc-disjoint spanning trees of Kautz digraphs, IPSJ SIG Notes 96-AL-51 (1996) 63-70.
[5] M.-C. Heydemann, Cayley graphs and interconnection networks, Graph symmetry, Montreal, PQ, 1996, pp. 167-224, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci. 497 (1997).
[6] H. Kawai, N. Fujikake, Y. Shibata, Factorization of de Bruijn digraphs by cycle-rooted trees, Inform. Process. Lett. 77 (5-6) (2001) $269-275$.

[^0]: E-mail address: ss54@york.ac.uk.

