91 research outputs found

    Learning gradients on manifolds

    Full text link
    A common belief in high-dimensional data analysis is that data are concentrated on a low-dimensional manifold. This motivates simultaneous dimension reduction and regression on manifolds. We provide an algorithm for learning gradients on manifolds for dimension reduction for high-dimensional data with few observations. We obtain generalization error bounds for the gradient estimates and show that the convergence rate depends on the intrinsic dimension of the manifold and not on the dimension of the ambient space. We illustrate the efficacy of this approach empirically on simulated and real data and compare the method to other dimension reduction procedures.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ206 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Conditional covariance estimation for dimension reduction and sensivity analysis

    Get PDF
    Cette thèse se concentre autour du problème de l'estimation de matrices de covariance conditionnelles et ses applications, en particulier sur la réduction de dimension et l'analyse de sensibilités. Dans le Chapitre 2 nous plaçons dans un modèle d'observation de type régression en grande dimension pour lequel nous souhaitons utiliser une méthodologie de type régression inverse par tranches. L'utilisation d'un opérateur fonctionnel, nous permettra d'appliquer une décomposition de Taylor autour d'un estimateur préliminaire de la densité jointe. Nous prouverons deux choses : notre estimateur est asymptoticalement normale avec une variance que dépend de la partie linéaire, et cette variance est efficace selon le point de vue de Cramér-Rao. Dans le Chapitre 3, nous étudions l'estimation de matrices de covariance conditionnelle dans un premier temps coordonnée par coordonnée, lesquelles dépendent de la densité jointe inconnue que nous remplacerons par un estimateur à noyaux. Nous trouverons que l'erreur quadratique moyenne de l'estimateur converge à une vitesse paramétrique si la distribution jointe appartient à une classe de fonctions lisses. Sinon, nous aurons une vitesse plus lent en fonction de la régularité de la densité de la densité jointe. Pour l'estimateur de la matrice complète, nous allons appliquer une transformation de régularisation de type "banding". Finalement, dans le Chapitre 4, nous allons utiliser nos résultats pour estimer des indices de Sobol utilisés en analyses de sensibilité. Ces indices mesurent l'influence des entrées par rapport a la sortie dans modèles complexes. L'avantage de notre implémentation est d'estimer les indices de Sobol sans l'utilisation de coûteuses méthodes de type Monte-Carlo. Certaines illustrations sont présentées dans le chapitre pour montrer les capacités de notre estimateur.This thesis will be focused in the estimation of conditional covariance matrices and their applications, in particular, in dimension reduction and sensitivity analyses. In Chapter 2, we are in a context of high-dimensional nonlinear regression. The main objective is to use the sliced inverse regression methodology. Using a functional operator depending on the joint density, we apply a Taylor decomposition around a preliminary estimator. We will prove two things: our estimator is asymptotical normal with variance depending only the linear part, and this variance is efficient from the Cramér-Rao point of view. In the Chapter 3, we study the estimation of conditional covariance matrices, first coordinate-wise where those parameters depend on the unknown joint density which we will replace it by a kernel estimator. We prove that the mean squared error of the nonparametric estimator has a parametric rate of convergence if the joint distribution belongs to some class of smooth functions. Otherwise, we get a slower rate depending on the regularity of the model. For the estimator of the whole matrix estimator, we will apply a regularization of type "banding". Finally, in Chapter 4, we apply our results to estimate the Sobol or sensitivity indices. These indices measure the influence of the inputs with respect to the output in complex models. The advantage of our implementation is that we can estimate the Sobol indices without use computing expensive Monte-Carlo methods. Some illustrations are presented in the chapter showing the capabilities of our estimator

    Characterization and Reduction of Noise in Manifold Representations of Hyperspectral Imagery

    Get PDF
    A new workflow to produce dimensionality reduced manifold coordinates based on the improvements of landmark Isometric Mapping (ISOMAP) algorithms using local spectral models is proposed. Manifold space from nonlinear dimensionality reduction better addresses the nonlinearity of the hyperspectral data and often has better per- formance comparing to the results of linear methods such as Minimum Noise Fraction (MNF). The dissertation mainly focuses on using adaptive local spectral models to fur- ther improve the performance of ISOMAP algorithms by addressing local noise issues and perform guided landmark selection and nearest neighborhood construction in local spectral subsets. This work could benefit the performance of common hyperspectral image analysis tasks, such as classification, target detection, etc., but also keep the computational burden low. This work is based on and improves the previous ENH- ISOMAP algorithm in various ways. The workflow is based on a unified local spectral subsetting framework. Embedding spaces in local spectral subsets as local noise models are first proposed and used to perform noise estimation, MNF regression and guided landmark selection in a local sense. Passive and active methods are proposed and ver- ified to select landmarks deliberately to ensure local geometric structure coverage and local noise avoidance. Then, a novel local spectral adaptive method is used to construct the k-nearest neighbor graph. Finally, a global MNF transformation in the manifold space is also introduced to further compress the signal dimensions. The workflow is implemented using C++ with multiple implementation optimizations, including using heterogeneous computing platforms that are available in personal computers. The re- sults are presented and evaluated by Jeffries-Matsushita separability metric, as well as the classification accuracy of supervised classifiers. The proposed workflow shows sig- nificant and stable improvements over the dimensionality reduction performance from traditional MNF and ENH-ISOMAP on various hyperspectral datasets. The computa- tional speed of the proposed implementation is also improved

    Dimension reduction for regression: Theoretical and methodological developments

    Get PDF
    This thesis has two themes: (1) the predictive potential of principal components in regression, and (2) methodological developments in sufficient dimension reduction. For the first theme, several research papers have established a number of results showing that, under some uniformity assumptions, higher-ranking principal components of a predictor vector tend, across a range of datasets, to have greater squared correlation with a response variable than lower-ranking ones. This is despite the procedure being unsupervised. This thesis reviews these results and greatly extends them by showing that analogues hold in the setting where nonlinear principal component analysis with general predictors is applied. For the second theme, research in the past 10 years has led to a measure-theoretic framework for sufficient dimension reduction, inspired by the measure-theoretic formulation of sufficient statistics, which permits nonlinear reductions. This thesis extends this framework to allow for some of the predictors to be categorical. A new estimator, partial generalised sliced inverse regression, is proposed and its properties and effectiveness are explored

    Approximating Continuous Functions on Persistence Diagrams Using Template Functions

    Full text link
    The persistence diagram is an increasingly useful tool from Topological Data Analysis, but its use alongside typical machine learning techniques requires mathematical finesse. The most success to date has come from methods that map persistence diagrams into Rn\mathbb{R}^n, in a way which maximizes the structure preserved. This process is commonly referred to as featurization. In this paper, we describe a mathematical framework for featurization using template functions. These functions are general as they are only required to be continuous and compactly supported. We discuss two realizations: tent functions, which emphasize the local contributions of points in a persistence diagram, and interpolating polynomials, which capture global pairwise interactions. We combine the resulting features with classification and regression algorithms on several examples including shape data and the Rossler system. Our results show that using template functions yields high accuracy rates that match and often exceed those of existing featurization methods. One counter-intuitive observation is that in most cases using interpolating polynomials, where each point contributes globally to the feature vector, yields significantly better results than using tent functions, where the contribution of each point is localized. Along the way, we provide a complete characterization of compactness in the space of persistence diagrams

    Statistical and Computational Aspects of Learning with Complex Structure

    Get PDF
    The recent explosion of data that is routinely collected has led scientists to contemplate more and more sophisticated structural assumptions. Understanding how to harness and exploit such structure is key to improving the prediction accuracy of various statistical procedures. The ultimate goal of this line of research is to develop a set of tools that leverage underlying complex structures to pool information across observations and ultimately improve statistical accuracy as well as computational efficiency of the deployed methods. The workshop focused on recent developments in regression and matrix estimation under various complex constraints such as physical, computational, privacy, sparsity or robustness. Optimal-transport based techniques for geometric data analysis were also a main topic of the workshop
    • …
    corecore