172,578 research outputs found

    Enumeration of idempotents in planar diagram monoids

    Get PDF
    We classify and enumerate the idempotents in several planar diagram monoids: namely, the Motzkin, Jones (a.k.a. Temperley-Lieb) and Kauffman monoids. The classification is in terms of certain vertex- and edge-coloured graphs associated to Motzkin diagrams. The enumeration is necessarily algorithmic in nature, and is based on parameters associated to cycle components of these graphs. We compare our algorithms to existing algorithms for enumerating idempotents in arbitrary (regular *-) semigroups, and give several tables of calculated values.Comment: Majorly revised (new title, new abstract, one additional author), 24 pages, 6 figures, 8 tables, 5 algorithm

    Finite flavour groups of fermions

    Full text link
    We present an overview of the theory of finite groups, with regard to their application as flavour symmetries in particle physics. In a general part, we discuss useful theorems concerning group structure, conjugacy classes, representations and character tables. In a specialized part, we attempt to give a fairly comprehensive review of finite subgroups of SO(3) and SU(3), in which we apply and illustrate the general theory. Moreover, we also provide a concise description of the symmetric and alternating groups and comment on the relationship between finite subgroups of U(3) and finite subgroups of SU(3). Though in this review we give a detailed description of a wide range of finite groups, the main focus is on the methods which allow the exploration of their different aspects.Comment: 89 pages, 6 figures, some references added, rearrangement of part of the material, section on SU(3) subgroups substantially extended, some minor revisions. Version for publication in J. Phys. A. Table 12 corrected to match eq.(256), table 14 and eq.(314) corrected to match the 2-dimensional irreps defined on p.6

    Foundational Theory for Understanding Policy Routing Dynamics

    Full text link
    In this paper we introduce a theory of policy routing dynamics based on fundamental axioms of routing update mechanisms. We develop a dynamic policy routing model (DPR) that extends the static formalism of the stable paths problem (introduced by Griffin et al.) with discrete synchronous time. DPR captures the propagation of path changes in any dynamic network irrespective of its time-varying topology. We introduce several novel structures such as causation chains, dispute fences and policy digraphs that model different aspects of routing dynamics and provide insight into how these dynamics manifest in a network. We exercise the practicality of the theoretical foundation provided by DPR with two fundamental problems: routing dynamics minimization and policy conflict detection. The dynamics minimization problem utilizes policy digraphs, that capture the dependencies in routing policies irrespective of underlying topology dynamics, to solve a graph optimization problem. This optimization problem explicitly minimizes the number of routing update messages in a dynamic network by optimally changing the path preferences of a minimal subset of nodes. The conflict detection problem, on the other hand, utilizes a theoretical result of DPR where the root cause of a causation cycle (i.e., cycle of routing update messages) can be precisely inferred as either a transient route flap or a dispute wheel (i.e., policy conflict). Using this result we develop SafetyPulse, a token-based distributed algorithm to detect policy conflicts in a dynamic network. SafetyPulse is privacy preserving, computationally efficient, and provably correct.National Science Foundation (CISE/CCF 0820138, CISE/CSR 0720604, CISE/CNS 0524477, CNS/ITR 0205294, CISE/EIA RI #0202067

    Almost Settling the Hardness of Noncommutative Determinant

    Full text link
    In this paper, we study the complexity of computing the determinant of a matrix over a non-commutative algebra. In particular, we ask the question, "over which algebras, is the determinant easier to compute than the permanent?" Towards resolving this question, we show the following hardness and easiness of noncommutative determinant computation. * [Hardness] Computing the determinant of an n \times n matrix whose entries are themselves 2 \times 2 matrices over a field is as hard as computing the permanent over the field. This extends the recent result of Arvind and Srinivasan, who proved a similar result which however required the entries to be of linear dimension. * [Easiness] Determinant of an n \times n matrix whose entries are themselves d \times d upper triangular matrices can be computed in poly(n^d) time. Combining the above with the decomposition theorem of finite dimensional algebras (in particular exploiting the simple structure of 2 \times 2 matrix algebras), we can extend the above hardness and easiness statements to more general algebras as follows. Let A be a finite dimensional algebra over a finite field with radical R(A). * [Hardness] If the quotient A/R(A) is non-commutative, then computing the determinant over the algebra A is as hard as computing the permanent. * [Easiness] If the quotient A/R(A) is commutative and furthermore, R(A) has nilpotency index d (i.e., the smallest d such that R(A)d = 0), then there exists a poly(n^d)-time algorithm that computes determinants over the algebra A. In particular, for any constant dimensional algebra A over a finite field, since the nilpotency index of R(A) is at most a constant, we have the following dichotomy theorem: if A/R(A) is commutative, then efficient determinant computation is feasible and otherwise determinant is as hard as permanent.Comment: 20 pages, 3 figure
    • …
    corecore