1,933 research outputs found

    Quantum Modeling

    Full text link
    We present a modification of Simon's algorithm that in some cases is able to fit experimentally obtained data to appropriately chosen trial functions with high probability. Modulo constants pertaining to the reliability and probability of success of the algorithm, the algorithm runs using only O(polylog(|Y|)) queries to the quantum database and O(polylog(|X|,|Y|)) elementary quantum gates where |X| is the size of the experimental data set and |Y| is the size of the parameter space.We discuss heuristics for good performance, analyze the performance of the algorithm in the case of linear regression, both one-dimensional and multidimensional, and outline the algorithm's limitations.Comment: 16 pages, 5 figures, in Proceedings, SPIE Conference on Quantum Computation and Quantum Information, pp. 116-127, April 21-22, 200

    Online Row Sampling

    Get PDF
    Finding a small spectral approximation for a tall n×dn \times d matrix AA is a fundamental numerical primitive. For a number of reasons, one often seeks an approximation whose rows are sampled from those of AA. Row sampling improves interpretability, saves space when AA is sparse, and preserves row structure, which is especially important, for example, when AA represents a graph. However, correctly sampling rows from AA can be costly when the matrix is large and cannot be stored and processed in memory. Hence, a number of recent publications focus on row sampling in the streaming setting, using little more space than what is required to store the outputted approximation [KL13, KLM+14]. Inspired by a growing body of work on online algorithms for machine learning and data analysis, we extend this work to a more restrictive online setting: we read rows of AA one by one and immediately decide whether each row should be kept in the spectral approximation or discarded, without ever retracting these decisions. We present an extremely simple algorithm that approximates AA up to multiplicative error ϵ\epsilon and additive error δ\delta using O(dlogdlog(ϵA2/δ)/ϵ2)O(d \log d \log(\epsilon||A||_2/\delta)/\epsilon^2) online samples, with memory overhead proportional to the cost of storing the spectral approximation. We also present an algorithm that uses O(d2O(d^2) memory but only requires O(dlog(ϵA2/δ)/ϵ2)O(d\log(\epsilon||A||_2/\delta)/\epsilon^2) samples, which we show is optimal. Our methods are clean and intuitive, allow for lower memory usage than prior work, and expose new theoretical properties of leverage score based matrix approximation

    Eigenvector Synchronization, Graph Rigidity and the Molecule Problem

    Full text link
    The graph realization problem has received a great deal of attention in recent years, due to its importance in applications such as wireless sensor networks and structural biology. In this paper, we extend on previous work and propose the 3D-ASAP algorithm, for the graph realization problem in R3\mathbb{R}^3, given a sparse and noisy set of distance measurements. 3D-ASAP is a divide and conquer, non-incremental and non-iterative algorithm, which integrates local distance information into a global structure determination. Our approach starts with identifying, for every node, a subgraph of its 1-hop neighborhood graph, which can be accurately embedded in its own coordinate system. In the noise-free case, the computed coordinates of the sensors in each patch must agree with their global positioning up to some unknown rigid motion, that is, up to translation, rotation and possibly reflection. In other words, to every patch there corresponds an element of the Euclidean group Euc(3) of rigid transformations in R3\mathbb{R}^3, and the goal is to estimate the group elements that will properly align all the patches in a globally consistent way. Furthermore, 3D-ASAP successfully incorporates information specific to the molecule problem in structural biology, in particular information on known substructures and their orientation. In addition, we also propose 3D-SP-ASAP, a faster version of 3D-ASAP, which uses a spectral partitioning algorithm as a preprocessing step for dividing the initial graph into smaller subgraphs. Our extensive numerical simulations show that 3D-ASAP and 3D-SP-ASAP are very robust to high levels of noise in the measured distances and to sparse connectivity in the measurement graph, and compare favorably to similar state-of-the art localization algorithms.Comment: 49 pages, 8 figure

    Closing the Gap Between Short and Long XORs for Model Counting

    Full text link
    Many recent algorithms for approximate model counting are based on a reduction to combinatorial searches over random subsets of the space defined by parity or XOR constraints. Long parity constraints (involving many variables) provide strong theoretical guarantees but are computationally difficult. Short parity constraints are easier to solve but have weaker statistical properties. It is currently not known how long these parity constraints need to be. We close the gap by providing matching necessary and sufficient conditions on the required asymptotic length of the parity constraints. Further, we provide a new family of lower bounds and the first non-trivial upper bounds on the model count that are valid for arbitrarily short XORs. We empirically demonstrate the effectiveness of these bounds on model counting benchmarks and in a Satisfiability Modulo Theory (SMT) application motivated by the analysis of contingency tables in statistics.Comment: The 30th Association for the Advancement of Artificial Intelligence (AAAI-16) Conferenc

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF

    Weighted Birkhoff Averages and the Parameterization Method

    Full text link
    This work provides a systematic recipe for computing accurate high order Fourier expansions of quasiperiodic invariant circles in area preserving maps. The recipe requires only a finite data set sampled from the quasiperiodic circle. Our approach, being based on the parameterization method, uses a Newton scheme to iteratively solve a conjugacy equation describing the invariant circle. A critical step in properly formulating the conjugacy equation is to determine the rotation number of the quasiperiodic subsystem. For this we exploit a the weighted Birkhoff averaging method. This approach facilities accurate computation of the rotation number given nothing but the already mentioned orbit data. The weighted Birkhoff averages also facilitate the computation of other integral observables like Fourier coefficients of the parameterization of the invariant circle. Since the parameterization method is based on a Newton scheme, we only need to approximate a small number of Fourier coefficients with low accuracy to find a good enough initial approximation so that Newton converges. Moreover, the Fourier coefficients may be computed independently, so we can sample the higher modes to guess the decay rate of the Fourier coefficients. This allows us to choose, a-priori, an appropriate number of modes in the truncation. We illustrate the utility of the approach for explicit example systems including the area preserving Henon map and the standard map. We present example computations for invariant circles with period as low as 1 and up to more than 100. We also employ a numerical continuation scheme to compute large numbers of quasiperiodic circles in these systems. During the continuation we monitor the Sobolev norm of the Parameterization to automatically detect the breakdown of the family.Comment: 38 pages, 15 figure

    Node counting in wireless ad-hoc networks

    Get PDF
    We study wireless ad-hoc networks consisting of small microprocessors with limited memory, where the wireless communication between the processors can be highly unreliable. For this setting, we propose a number of algorithms to estimate the number of nodes in the network, and the number of direct neighbors of each node. The algorithms are simulated, allowing comparison of their performance
    corecore