9 research outputs found

    Design and implementation of approximate computing systems

    Get PDF
    Este trabajo se centra en el diseño y creación de sistemas computacionales aproximados, los cuales aceptan una determinada tasa de error para mejorar otras características, como la velocidad, o reducir costes. Para este proceso se utilizará la herramienta UPPAAL SMC.This thesis is focused on the design and implementation ofapproximate computing systems. This kind of systems allows some errors but improving other aspect, such as speed, or reducing resources. For this proccess, UPPAAL SMC will be used.Grado en Ingeniería Informátic

    Editorial (Português): Uma breve história do hardware, seus desafios, e impacto sobre o consumo de energia

    Get PDF
    Este artigo representa a opinião do autor sobre o campo da arquitetura de computadores e os desafios futuros. Este trabalho tenta estabelecer como a computação se tornou tão importante como é hoje. Além disso, procura elencar alguns dos principais desafios da área de projetos de computadores. Assim, este artigo foi escrito para estudantes e pesquisadores que desejam ver o panorama geral do assunto, e nenhum destes é amplamente discutido, depois, essa tarefa é quase impossível e não é a intenção. No entanto, alguns grandes insights podem surgir deste artigo, uma vez que o futuro parece ser co-design e aproximado

    Uma ferramenta para modelagem e simulação de computação aproximada em hardware

    Get PDF
    Orientador: Lucas Francisco WannerDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Pesquisas recentes têm introduzido unidades de hardware que produzem resultados incorretos de maneira determinística ou probabilística para um pequeno conjunto de entradas. Por outro lado, permitem um maior desempenho ou um consumo de energia significativamente menor em comparação com versões precisas das mesmas unidades. Como integrar, validar e avaliar essas alternativas em uma arquitetura ou processador, porém, permanece um desafio. A falta de ferramentas para representar e avaliar hardware aproximado leva desenvolvedores a verificar suas soluções de maneira independente, sem considerar interações com outros componentes, exigindo um grande esforço em modelagem e simulação. Neste trabalho, introduzimos ADeLe, uma linguagem de alto nível para descrever, configurar e integrar unidades de hardware aproximado em um processador. ADeLe reduz o esforço de desenvolvimento de hardware aproximado por modelar aproximações em um alto nível de abstração e injetá-las automaticamente em um modelo de processador para simulação arquitetural. Na ferramenta relacionada a ADeLe, aproximações podem modificar ou substituir completamente o comportamento de instruções de hardware através de políticas definidas pelo usuário. As instruções podem ser modificadas deterministicamente ou probabilisticamente (por exemplo, baseado em tensão de operação e frequência). Para proporcionar um ambiente de teste controlado, as aproximações podem ser ligadas e desligadas a partir do software em execução. O consumo de energia é automaticamente computado com base em modelos customizáveis no sistema. Assim, a ferramenta proporciona um método de verificação genérico e flexível, permitindo uma fácil avaliação da troca entre energia e qualidade de aplicações sujeitadas a hardware aproximado. Demonstramos a ferramenta pela introdução de variadas técnicas de aproximação em um modelo de processador, com o qual aplicações selecionadas foram executadas. Ao modelar módulos de hardware aproximado dedicados, mostramos como ADeLe representa unidades aritméticas aproximadas e unidades funcionais de precisão reduzida executando 4 aplicações de processamento de imagens e 2 de computação de ponto flutuante. Com outro método de aproximação, também mostramos como a ferramenta é utilizada para estudar o impacto de memórias alimentadas por tensão ajustável sobre 9 aplicações. Nossos experimentos demonstram as capacidades da ferramenta e como ela pode ser utilizada para gerar processadores virtuais aproximados e avaliar o equilíbrio entre energia e qualidade para diferentes aplicações com esforço reduzidoAbstract: Recent research has introduced approximate hardware units that produce incorrect outputs deterministically or probabilistically for some small subset of inputs. On the other hand, they allow significantly higher throughput or lower power than their error-free counterparts. The integration, validation, and evaluation of these approximate units in architectures and processors, however, remains challenging. The lack of tools to represent and evaluate approximate hardware leads designers to verify their solutions independently, not considering interactions with other components, demanding high-effort modeling and simulation. In this work, we introduce ADeLe, a high-level language for the description, configuration, and integration of approximate hardware units into processors. ADeLe reduces the design effort for approximate hardware by modeling approximations at a high level of abstraction and automatically injecting them into a processor model for architectural simulation. In the ADeLe framework, approximations may modify or completely replace the functional behavior of instructions according to user-defined policies. Instructions may be approximated deterministically or probabilistically (e.g., based on operating voltage and frequency). To allow for controlled testing, approximations may be enabled and disabled from software. Energy is automatically accounted for based on customizable models that consider the potential power savings of the approximations that are enabled in the system. Thus, the framework provides a generic and flexible verification method, allowing for easy evaluation of the energy-quality trade-off of applications subjected to approximate hardware. We demonstrate the framework by introducing different approximation techniques into a processor model, on top of which we run selected applications. Modeling dedicated hardware modules, we show how ADeLe can represent approximate arithmetic and reduced precision computation units executing 4 image processing and 2 floating point applications. Using a different method of approximation, we also show how the framework is used to study the impact of voltage-overscaled memories over 9 applications. Our experiments show the framework capabilities and how it may be used to generate approximate virtual CPUs and to evaluate energy-quality trade-offs for different applications with reduced effortMestradoCiência da ComputaçãoMestre em Ciência da Computação2017/08015-8  FAPES

    Is "good enough" computing good enough?

    No full text

    Efficient implementation of resource-constrained cyber-physical systems using multi-core parallelism

    Get PDF
    The quest for more performance of applications and systems became more challenging in the recent years. Especially in the cyber-physical and mobile domain, the performance requirements increased significantly. Applications, previously found in the high-performance domain, emerge in the area of resource-constrained domain. Modern heterogeneous high-performance MPSoCs provide a solid foundation to satisfy the high demand. Such systems combine general processors with specialized accelerators ranging from GPUs to machine learning chips. On the other side of the performance spectrum, the demand for small energy efficient systems exposed by modern IoT applications increased vastly. Developing efficient software for such resource-constrained multi-core systems is an error-prone, time-consuming and challenging task. This thesis provides with PA4RES a holistic semiautomatic approach to parallelize and implement applications for such platforms efficiently. Our solution supports the developer to find good trade-offs to tackle the requirements exposed by modern applications and systems. With PICO, we propose a comprehensive approach to express parallelism in sequential applications. PICO detects data dependencies and implements required synchronization automatically. Using a genetic algorithm, PICO optimizes the data synchronization. The evolutionary algorithm considers channel capacity, memory mapping, channel merging and flexibility offered by the channel implementation with respect to execution time, energy consumption and memory footprint. PICO's communication optimization phase was able to generate a speedup almost 2 or an energy improvement of 30% for certain benchmarks. The PAMONO sensor approach enables a fast detection of biological viruses using optical methods. With a sophisticated virus detection software, a real-time virus detection running on stationary computers was achieved. Within this thesis, we were able to derive a soft real-time capable virus detection running on a high-performance embedded system, commonly found in today's smart phones. This was accomplished with smart DSE algorithm which optimizes for execution time, energy consumption and detection quality. Compared to a baseline implementation, our solution achieved a speedup of 4.1 and 87\% energy savings and satisfied the soft real-time requirements. Accepting a degradation of the detection quality, which still is usable in medical context, led to a speedup of 11.1. This work provides the fundamentals for a truly mobile real-time virus detection solution. The growing demand for processing power can no longer satisfied following well-known approaches like higher frequencies. These so-called performance walls expose a serious challenge for the growing performance demand. Approximate computing is a promising approach to overcome or at least shift the performance walls by accepting a degradation in the output quality to gain improvements in other objectives. Especially for a safe integration of approximation into existing application or during the development of new approximation techniques, a method to assess the impact on the output quality is essential. With QCAPES, we provide a multi-metric assessment framework to analyze the impact of approximation. Furthermore, QCAPES provides useful insights on the impact of approximation on execution time and energy consumption. With ApproxPICO we propose an extension to PICO to consider approximate computing during the parallelization of sequential applications
    corecore