2,817 research outputs found

    Irreducible compositions of degree two polynomials over finite fields have regular structure

    Full text link
    Let qq be an odd prime power and DD be the set of monic irreducible polynomials in Fq[x]\mathbb F_q[x] which can be written as a composition of monic degree two polynomials. In this paper we prove that DD has a natural regular structure by showing that there exists a finite automaton having DD as accepted language. Our method is constructive.Comment: To appear in The Quarterly Journal of Mathematic

    Survey on counting special types of polynomials

    Full text link
    Most integers are composite and most univariate polynomials over a finite field are reducible. The Prime Number Theorem and a classical result of Gau{\ss} count the remaining ones, approximately and exactly. For polynomials in two or more variables, the situation changes dramatically. Most multivariate polynomials are irreducible. This survey presents counting results for some special classes of multivariate polynomials over a finite field, namely the the reducible ones, the s-powerful ones (divisible by the s-th power of a nonconstant polynomial), the relatively irreducible ones (irreducible but reducible over an extension field), the decomposable ones, and also for reducible space curves. These come as exact formulas and as approximations with relative errors that essentially decrease exponentially in the input size. Furthermore, a univariate polynomial f is decomposable if f = g o h for some nonlinear polynomials g and h. It is intuitively clear that the decomposable polynomials form a small minority among all polynomials. The tame case, where the characteristic p of Fq does not divide n = deg f, is fairly well-understood, and we obtain closely matching upper and lower bounds on the number of decomposable polynomials. In the wild case, where p does divide n, the bounds are less satisfactory, in particular when p is the smallest prime divisor of n and divides n exactly twice. The crux of the matter is to count the number of collisions, where essentially different (g, h) yield the same f. We present a classification of all collisions at degree n = p^2 which yields an exact count of those decomposable polynomials.Comment: to appear in Jaime Gutierrez, Josef Schicho & Martin Weimann (editors), Computer Algebra and Polynomials, Lecture Notes in Computer Scienc

    Construction of irreducible polynomials through rational transformations

    Full text link
    Let Fq\mathbb F_q be the finite field with qq elements, where qq is a power of a prime. We discuss recursive methods for constructing irreducible polynomials over Fq\mathbb F_q of high degree using rational transformations. In particular, given a divisor D>2D>2 of q+1q+1 and an irreducible polynomial f∈Fq[x]f\in \mathbb F_{q}[x] of degree nn such that nn is even or D≢2(mod4)D\not \equiv 2\pmod 4, we show how to obtain from ff a sequence {fi}i≥0\{f_i\}_{i\ge 0} of irreducible polynomials over Fq\mathbb F_q with deg(fi)=n⋅Di\mathrm{deg}(f_i)=n\cdot D^{i}.Comment: 21 pages; comments are welcome

    On sets of irreducible polynomials closed by composition

    Full text link
    Let S\mathcal S be a set of monic degree 22 polynomials over a finite field and let CC be the compositional semigroup generated by S\mathcal S. In this paper we establish a necessary and sufficient condition for CC to be consisting entirely of irreducible polynomials. The condition we deduce depends on the finite data encoded in a certain graph uniquely determined by the generating set S\mathcal S. Using this machinery we are able both to show examples of semigroups of irreducible polynomials generated by two degree 22 polynomials and to give some non-existence results for some of these sets in infinitely many prime fields satisfying certain arithmetic conditions
    • …
    corecore