17 research outputs found

    Effects of GNSS receiver tuning on the PLL tracking jitter estimation in the presence of ionospheric scintillation

    Get PDF
    Ionospheric scintillation is an interference characterized by rapid and random fluctuations inradio frequency signals when passing through irregularities in the ionosphere. It can severely degrade theperformance of Global Navigation Satellite System (GNSS) receivers, thus increasing positioning errors.Receivers with different tracking loop bandwidths and coherent integration times perform differently underscintillation. This study investigates the effects of GNSS receiver tracking loop tuning on scintillationmonitoring and Phase Locked Loop (PLL) tracking jitter estimation using simulated GNSS data. Thevariation of carrier to noise density ratio (C/N0) under scintillation with different tracking loop settings isalso studied. The results show that receiver tuning has a minor effect on scintillation indices calculation.The levels of C/N0 are also similar for different PLL bandwidths and integration times. Additionally, thetracking jitter is estimated by theoretical equations and verified using the relationship with the PLLdiscriminator output noise, which is calculated using the post‐correlation measurements. Novel approachesare further proposed to calculate 1‐s scintillation index, which enables to compute the tracking jitter ata rate of 1 s. It is found that 1‐s tracking jitter can successfully represent the signal fluctuations levels causedby scintillation. This work is valuable for developing scintillation sensitive tracking error models and is alsoof great significance for GNSS receiver design to mitigate scintillation effects

    Global ionospheric maps : estimation and assessment in post-processing and real-time

    Get PDF
    The research of this paper-based dissertation is focused on Global Ionospheric Maps (GIM) generation and assessment. In summary, the novelty and thematic unity in this works relies on four different but complementary topics: 1. Defining a systematic procedure to validate and quantify the quality of GIMs based on independent data sources or techniques. 2. Applying this methodology to not only the GIMs computed at UPC, but also to most of the currently open accessible GIMs inside the scientific community. 3.Including newly available Global Navigation Satellite Systems (GNSS) data to the processing of UPC's GIMs. 4. Assessment and distribution also of real-time GIMs. More in detail, my first contribution has been to the definition of a complete GIM validation procedure. This procedure is based on two methods: direct VTEC (Vertical Total Electron Content) altimeter and GNSS difference of slant TEC (Total Electron Content), both of them giving complementary information of the GIM performance. The main advantage of using satellite altimeter data is the fact that we are using a truly independent information source with regard to the input data used for GIM generation. This allows assessing the TEC from a entirely different point-of-view, fully different and independent to any error that may affect GNSS systems and its processing. The second technique, relies on using the same type of input data but in this case from permanent GNSS stations not participating in the GIM generation. The main advantages of this second technique is twofold: first, it allows to asses the GIMs on land; and second its a low latency direct assessment of the GIM, given a more direct information about the processing and interpolation done with the GNSS input data. Afterwards, a second contribution has been to use the previously defined methodology to validate all the GIMs generated by the International GNSS Service (IGS) Associated Analysis Centers (IAAC), and some other candidates to join them, for a more than a full solar cycle (starting from end of 2001 to beginning of 2017). As a side result, it is also demonstrated that while the time interval of the GIM has little influence on its overall quality, the interpolation technique used by the IAACs has an important role. Finally, this work also lead to the acceptance of the previously mentioned IAAC candidates since it demonstrated the good quality of their GIMs. Another contribution has been, as part of the European GRC project, improving the currently in production UPC's TOMION (TOMographic IONospheric) software used to generate the UQRG (UPC's rapid GIM) map. The software input source data was restricted to GPS L1 and L2. Now it allows processing all current frequencies available for GPS, Galileo and Beidou. This software has been internally tested for some specific days with the previously explained altimeter method giving results with improved quality for specific combinations of GNSS systems and frequencies. Using this work flow but focused on single frequency processing, a last article was published analysing the ionospheric footprint of the solar eclipse over North America during 2017. Finally, another contribution has been to improve the data acquisition and distribution system for the real-time GIM generation processing chain. Furthermore, as part of UPC contribution to the Real Time Ionospheric Monitoring Working Group (RTIM-WG) of the International Association of Geodesy (IAG) and following the previously explained methodology, an assessment of the GIMs generated by the members of this sub-commission have been performed. As a result of all these efforts, UPC has been leading inside the IGS frame, and made a first implementation, of a new real-time combined map.La recerca realitzada en aquesta tesis en format compendi d’articles esta enfocada en la generació i validació de mapes ionosfèrics globals (GIM, del angles Global Ionospheric Maps). En resum, la novetat i unitat temàtica d’aquesta tesis esta basada en quatre temes diferents però complementaris: • Definició d’un procediment sistemàtic per validar i quantificar la qualitat dels GIMs basada en fonts de dades o tècniques independents. • Aplicar aquesta metodologia no nomes als GIMs generats a UPC, sinó també a la resta de GIMs d’accés obert actualment existent dintre la comunitat científica internacional. • Incloure en el processat per generar els GIMs de UPC dades de les noves constel·lacions GNSS (del angles Global Navigation Satellite Systems) disponibles. • Validació i distribució també dels GIMs en temps real. Com a conseqüència, també s’ha aconseguit generar un primer GIM combinat en temps real. Mes en detall, la meva primera contribució va ser definir un procediment complet de validació de GIM. Aquest procediment esta basat en dos mètodes: obtenció directa del contingut vertical total d’electrons (VTEC, del angles, Vertical Total Electron Content) a partir de dades d’altimetria i per diferencies del contingut total d’electrons (TEC, del angles Total Electron Content) inclinat de dades GNSS. Els dos donen informació complementaria de la qualitat dels GIM. L’avantatge principal d’utilitzar dades de satèl·lits altimètrics es que es una font de dades completament diferent de les que s’utilitzen per la generació dels GIMs. Aquest fet ens permet verificar el TEC des d’una perspectiva diferent, plenament independent de qualsevol font d’error que pugui afectar al propi sistema GNSS o el seu processat. El segon mètode, es basa en la mateix tipus de dades que s’utilitzen pel càlcul dels GIM però en aquest cas amb dades d’estacions permanent GNSS no involucrades en la generació dels GIMs a avaluar. L’avantatge principal d’aquest segon mètodes es doble: primer, permet avaluar el GIM sobre els continents; i segon, permet fer la anàlisis directa de baixa latència del GIM, a mes a mes donant informació directa sobre el processat i la interpolació aplicada sobre les dades GNSS. Seguidament, la meva segona contribució va ser utilitzar la metodologia prèviament definida per validar tots els GIM generats per part dels centres d’anàlisis associats al Servei Internacional de GNSS (IGS, del angles International GNSS Service) i altres centres candidats a unir-se a IGS, per mes d’un cicle solar (des de finals del 2001 fins al inici del 2017). Com a resultat secundari, també va permetre demostrar que per una banda l’interval temporal dels GIM te poca influencia sobre la seva qualitat global, però per altra banda la tècnica d’interpolació emprada per part dels centres te un impacte molt important. Finalment, aquest article va portar a l’admissió d’aquests candidats prèviament mencionats a centres d’anàlisis associats a IGS donat que es va demostrar la bona qualitat dels seus GIMs. Una altra contribució important va ser, com a part del projecte europeu GRC, millorar el software TOMION (TOMographic IONospheric) de UPC, actualment en producció generant el GIM UQRG (GIM ràpid de UPC). Aquest software nomes permetia utilitzar dades de GPS L1 i L2. Les millores realitzades durant aquesta tesis permeten processar totes les freqüències actualment existent de GPS, Galileo i Beidou. El software ha estat internament validat per certs dies específics amb el mètode explicat prèviament d’altimetria millorant els resultats en comparació a la versió anterior per certes combinacions de constel·lacions GNSS i freqüències. Utilitzant aquesta nova metodologia de processat aplicada a una sola freqüència, un últim article va ser publicat analitzant l’empremta ionosfèrica de l’eclipsi solar sobre Amèrica del nord durant el 2017. Finalment, una altre contribució va ser millorar el mètode d’adquisició i distribució del sistema de processat del GIM en temps real. Es mes, com a part de la contribució de la UPC, es va realitzar una validació dels GIMs generats pels participants del grup de treball de monitorització en temps real de la ionosfera (RTIM-WG, del angles Real Time Ionospheric Monitoring Working Group) de l’Associació Internacional de Geodèsia (IAG, del angles International Association of Geodesy) seguint la metodologia anteriorment citada. Com a resultat d’aquestes tasques la UPC ha liderat i mplementat un nou mapa combinat en temps real, en el marc de IGS.Postprint (published version

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Analysis of the PLL phase error in presence of simulated ionospheric scintillation events

    Get PDF

    Plate Boundary Observatory and related networks: GPS data analysis methods and geodetic products

    Get PDF
    The Geodesy Advancing Geosciences and EarthScope (GAGE) Facility Global Positioning System (GPS) Data Analysis Centers produce position time series, velocities, and other parameters for approximately 2000 continuously operating GPS receivers spanning a quadrant of Earth’s surface encompassing the high Arctic, North America, and Caribbean. The purpose of this review is to document the methodology for generating station positions and their evolution over time and to describe the requisite trade-offs involved with combination of results. GAGE GPS analysis involves formal merging within a Kalman filter of two independent, loosely constrained solutions: one is based on precise point positioning produced with the GIPSY/OASIS software at Central Washington University and the other is a network solution based on phase and range double-differencing produced with the GAMIT software at New Mexico Institute of Mining and Technology. The primary products generated are the position time series that show motions relative to a North America reference frame and secular motions of the stations represented in the velocity field. The position time series themselves contain a multitude of signals in addition to the secular motions. Coseismic and postseismic signals, seasonal signals from hydrology, and transient events, some understood and others not yet fully explained, are all evident in the time series and ready for further analysis and interpretation. We explore the impact of analysis assumptions on the reference frame realization and on the final solutions, and we compare within the GAGE solutions and with others

    A Model-based Tightly Coupled Architecture for Low-Cost Unmanned Aerial Vehicles for Real-Time Applications

    Get PDF
    This paper investigates the navigation performance of a vehicle dynamic model-based (VDM-based) tightly coupled architecture for a fixed-wing Unmanned Aerial Vehicle (UAV) during a global navigation satellite system (GNSS) outage for real-time applications. Unlike an Inertial Navigation System (INS) which uses inertial sensor measurements to propagate the navigation solution, the VDM uses control inputs from either the autopilot system or direct pilot commands to propagate the navigation states. The proposed architecture is tested using both raw GNSS observables (Pseudorange and Doppler frequency) and Micro-Electro-Mechanical Systems-grade (MEMS) Inertial Measurement Unit (IMU) measurements fused using an extended Kalman filter (EKF) to aid the navigation solution. Other than the navigation states, the state vector also includes IMU errors, wind velocity, VDM parameters, and receiver clock bias and drift. Simulation results revealed significant performance improvements with a decreasing number of satellites in view during 140 seconds of a GNSS outage. With two satellites visible during the GNSS outage, the position error improved by one order of magnitude as opposed to a tightly coupled INS/GNSS scheme. Real flight tests on a small fixed-wing UAV show the benefits of the approach with position error being an order of magnitude better as opposed to a tightly coupled INS/GNSS scheme with two satellites in view during 100 seconds of a GNSS outage

    BDS GNSS for Earth Observation

    Get PDF
    For millennia, human communities have wondered about the possibility of observing phenomena in their surroundings, and in particular those affecting the Earth on which they live. More generally, it can be conceptually defined as Earth observation (EO) and is the collection of information about the biological, chemical and physical systems of planet Earth. It can be undertaken through sensors in direct contact with the ground or airborne platforms (such as weather balloons and stations) or remote-sensing technologies. However, the definition of EO has only become significant in the last 50 years, since it has been possible to send artificial satellites out of Earth’s orbit. Referring strictly to civil applications, satellites of this type were initially designed to provide satellite images; later, their purpose expanded to include the study of information on land characteristics, growing vegetation, crops, and environmental pollution. The data collected are used for several purposes, including the identification of natural resources and the production of accurate cartography. Satellite observations can cover the land, the atmosphere, and the oceans. Remote-sensing satellites may be equipped with passive instrumentation such as infrared or cameras for imaging the visible or active instrumentation such as radar. Generally, such satellites are non-geostationary satellites, i.e., they move at a certain speed along orbits inclined with respect to the Earth’s equatorial plane, often in polar orbit, at low or medium altitude, Low Earth Orbit (LEO) and Medium Earth Orbit (MEO), thus covering the entire Earth’s surface in a certain scan time (properly called ’temporal resolution’), i.e., in a certain number of orbits around the Earth. The first remote-sensing satellites were the American NASA/USGS Landsat Program; subsequently, the European: ENVISAT (ENVironmental SATellite), ERS (European Remote-Sensing satellite), RapidEye, the French SPOT (Satellite Pour l’Observation de laTerre), and the Canadian RADARSAT satellites were launched. The IKONOS, QuickBird, and GeoEye-1 satellites were dedicated to cartography. The WorldView-1 and WorldView-2 satellites and the COSMO-SkyMed system are more recent. The latest generation are the low payloads called Small Satellites, e.g., the Chinese BuFeng-1 and Fengyun-3 series. Also, Global Navigation Satellite Systems (GNSSs) have captured the attention of researchers worldwide for a multitude of Earth monitoring and exploration applications. On the other hand, over the past 40 years, GNSSs have become an essential part of many human activities. As is widely noted, there are currently four fully operational GNSSs; two of these were developed for military purposes (American NAVstar GPS and Russian GLONASS), whilst two others were developed for civil purposes such as the Chinese BeiDou satellite navigation system (BDS) and the European Galileo. In addition, many other regional GNSSs, such as the South Korean Regional Positioning System (KPS), the Japanese quasi-zenital satellite system (QZSS), and the Indian Regional Navigation Satellite System (IRNSS/NavIC), will become available in the next few years, which will have enormous potential for scientific applications and geomatics professionals. In addition to their traditional role of providing global positioning, navigation, and timing (PNT) information, GNSS navigation signals are now being used in new and innovative ways. Across the globe, new fields of scientific study are opening up to examine how signals can provide information about the characteristics of the atmosphere and even the surfaces from which they are reflected before being collected by a receiver. EO researchers monitor global environmental systems using in situ and remote monitoring tools. Their findings provide tools to support decision makers in various areas of interest, from security to the natural environment. GNSS signals are considered an important new source of information because they are a free, real-time, and globally available resource for the EO community

    Interpretation of the Tropospheric Gradients Estimated With GPS During Hurricane Harvey

    Get PDF
    During the last decade Global Positioning System (GPS) Continuous Operating Reference Stations networks have become a new important data source for meteorology. This has dramatically improved the ability to remotely sense the atmosphere under the influence of severe mesoscale and synoptic systems. The zenith tropospheric delay (ZTD) is one of the atmospheric variables continuously observed, and its horizontal variations, the horizontal tropospheric gradients, are routinely computed nowadays within the dual-frequency GPS processing, but their interpretation and relationship with the weather is still an open question. The purpose of this paper is to contribute in this direction by studying the effect that Hurricane Harvey had on the spatial and temporal behavior of the ZTDs and gradients, when it reached Texas coast, during 18–31 August 2017. The results show that ZTD time series present a clear and rapid increase larger than 10 cm in a few hours when the hurricane reached the area. Gradients behaviors show that the hurricane also produced significant changes on them, since the magnitude and predominant directions before and after the hurricane arrived are completely different. Noticeably, the gradient vectors before the landing are consistently related to the horizontal winds and pressure fields. In this manuscript we demonstrate that the ZTD gradients can show a consistent signature under severe weather events, strongly suggesting their potential application for short-term weather forecasting.Facultad de Ciencias Astronómicas y Geofísica
    corecore