318 research outputs found

    Gotham Testbed: a Reproducible IoT Testbed for Security Experiments and Dataset Generation

    Full text link
    The scarcity of available Internet of Things (IoT) datasets remains a limiting factor in developing machine learning based security systems. Static datasets get outdated due to evolving IoT threat landscape. Meanwhile, the testbeds used to generate them are rarely published. This paper presents the Gotham testbed, a reproducible and flexible network security testbed, implemented as a middleware over the GNS3 emulator, that is extendable to accommodate new emulated devices, services or attackers. The testbed is used to build an IoT scenario composed of 100 emulated devices communicating via MQTT, CoAP and RTSP protocols in a topology composed of 30 switches and 10 routers. The scenario presents three threat actors, including the entire Mirai botnet lifecycle and additional red-teaming tools performing DoS, scanning and various attacks targeting the MQTT and CoAP protocols. The generated network traffic and application logs can be used to capture datasets containing legitimate and attacking traces. We hope that researchers can leverage the testbed and adapt it to include other types of devices and state-of-the-art attacks to generate new datasets that reflect the current threat landscape and IoT protocols. The source code to reproduce the scenario is publicly accessible

    DMEF:Dynamic Malware Evaluation Framework

    Get PDF
    Botnets are the top concern responsible for SPAM, Cryptomining, DDoS attacks and offer a variety of attacks-as-a-service to disrupt IT infrastructure and services. Current approaches to detect and analyze Botnet characteristics rely on disassembly and reverse engineering, and single instance deployments in an isolated environment. However, Botnets consist of distributed and interconnected instances and thus current approaches only observe a fraction of a Botnet and its characteristics. In this paper, we introduce the framework DMEF to deploy and analyze malware in a scalable, distributed and secure environment. DMEF provides a training environment for network administrators and researchers in the fight against malware and contributes to optimize intrusion response.</p

    A principled approach to measuring the IoT ecosystem

    Get PDF
    Internet of Things (IoT) devices combine network connectivity, cheap hardware, and actuation to provide new ways to interface with the world. In spite of this growth, little work has been done to measure the network properties of IoT devices. Such measurements can help to inform systems designers and security researchers of IoT networking behavior in practice to guide future research. Unfortunately, properly measuring the IoT ecosystem is not trivial. Devices may have different capabilities and behaviors, which require both active measurements and passive observation to quantify. Furthermore, the IoT devices that are connected to the public Internet may vary from those connected inside home networks, requiring both an external and internal vantage point to draw measurements from. In this thesis, we demonstrate how IoT measurements drawn from a single vantage point or mesaurement technique lead to a biased view of the network services in the IoT ecosystem. To do this, we conduct several real-world IoT measurements, drawn from both inside and outside home networks using active and passive monitoring. First, we leverage active scanning and passive observation in understanding the Mirai botnet---chiefly, we report on the devices it infected, the command and control infrastructure behind the botnet, and how the malware evolved over time. We then conduct active measurements from inside 16M home networks spanning 83M devices from 11~geographic regions to survey the IoT devices installed around the world. We demonstrate how these measurements can uncover the device types that are most at risk and the vendors who manufacture the weakest devices. We compare our measurements with passive external observation by detecting compromised scanning behavior from smart homes. We find that while passive external observation can drive insight about compromised networks, it offers little by way of concrete device attribution. We next compare our results from active external scanning with active internal scanning and show how relying solely on external scanning for IoT measurements under-reports security important IoT protocols, potentially skewing the services investigated by the security community. Finally, we conduct passive measurements of 275~smart home networks to investigate IoT behavior. We find that IoT device behavior varies by type and devices regularly communicate over a myriad of bespoke ports, in many cases to speak standard protocols (e.g., HTTP). Finally, we observe that devices regularly offer active services (e.g., Telnet, rpcbind) that are rarely, if ever, used in actual communication, demonstrating the need for both active and passive measurements to properly compare device capabilities and behaviors. Our results highlight the need for a confluence of measurement perspectives to comprehensively understand IoT ecosystem. We conclude with recommendations for future measurements of IoT devices as well as directions for the systems and security community informed by our work

    IoT Network Attack Detection using Supervised Machine Learning

    Get PDF
    Article originally published in International Journal of Artificial Intelligence and Expert SystemsThe use of supervised learning algorithms to detect malicious traffic can be valuable in designing intrusion detection systems and ascertaining security risks. The Internet of things (IoT) refers to the billions of physical, electronic devices around the world that are often connected over the Internet. The growth of IoT systems comes at the risk of network attacks such as denial of service (DoS) and spoofing. In this research, we perform various supervised feature selection methods and employ three classifiers on IoT network data. The classifiers predict with high accuracy if the network traffic against the IoT device was malicious or benign. We compare the feature selection methods to arrive at the best that can be used for network intrusion predictio

    IoT Botnet Malware Classification Using Weka Tool and Scikit-learn Machine Learning

    Get PDF
    Botnet is one of the threats to internet network security-Botmaster in carrying out attacks on the network by relying on communication on network traffic. Internet of Things (IoT) network infrastructure consists of devices that are inexpensive, low-power, always-on, always connected to the network, and are inconspicuous and have ubiquity and inconspicuousness characteristics so that these characteristics make IoT devices an attractive target for botnet malware attacks. In identifying whether packet traffic is a malware attack or not, one can use machine learning classification methods. By using Weka and Scikit-learn analysis tools machine learning, this paper implements four machine learning algorithms, i.e.: AdaBoost, Decision Tree, Random Forest, and Naïve Bayes. Then experiments are conducted to measure the performance of the four algorithms in terms of accuracy, execution time, and false positive rate (FPR). Experiment results show that the Weka tool provides more accurate and efficient classification methods. However, in false positive rate, the use of Scikit-learn provides better results
    • …
    corecore