4,730 research outputs found

    Fireground location understanding by semantic linking of visual objects and building information models

    Get PDF
    This paper presents an outline for improved localization and situational awareness in fire emergency situations based on semantic technology and computer vision techniques. The novelty of our methodology lies in the semantic linking of video object recognition results from visual and thermal cameras with Building Information Models (BIM). The current limitations and possibilities of certain building information streams in the context of fire safety or fire incident management are addressed in this paper. Furthermore, our data management tools match higher-level semantic metadata descriptors of BIM and deep-learning based visual object recognition and classification networks. Based on these matches, estimations can be generated of camera, objects and event positions in the BIM model, transforming it from a static source of information into a rich, dynamic data provider. Previous work has already investigated the possibilities to link BIM and low-cost point sensors for fireground understanding, but these approaches did not take into account the benefits of video analysis and recent developments in semantics and feature learning research. Finally, the strengths of the proposed approach compared to the state-of-the-art is its (semi -)automatic workflow, generic and modular setup and multi-modal strategy, which allows to automatically create situational awareness, to improve localization and to facilitate the overall fire understanding

    Software Platforms for Smart Cities: Concepts, Requirements, Challenges, and a Unified Reference Architecture

    Full text link
    Making cities smarter help improve city services and increase citizens' quality of life. Information and communication technologies (ICT) are fundamental for progressing towards smarter city environments. Smart City software platforms potentially support the development and integration of Smart City applications. However, the ICT community must overcome current significant technological and scientific challenges before these platforms can be widely used. This paper surveys the state-of-the-art in software platforms for Smart Cities. We analyzed 23 projects with respect to the most used enabling technologies, as well as functional and non-functional requirements, classifying them into four categories: Cyber-Physical Systems, Internet of Things, Big Data, and Cloud Computing. Based on these results, we derived a reference architecture to guide the development of next-generation software platforms for Smart Cities. Finally, we enumerated the most frequently cited open research challenges, and discussed future opportunities. This survey gives important references for helping application developers, city managers, system operators, end-users, and Smart City researchers to make project, investment, and research decisions.Comment: Accepted for publication in ACM Computing Survey

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201

    Towards context classification and reasoning in IoT

    Get PDF
    Internet of Things (IoT) is the future of ubiquitous and personalized intelligent service delivery. It consists of interconnected, addressable and communicating everyday objects. To realize the full potentials of this new generation of ubiquitous systems, IoT's 'smart' objects should be supported with intelligent platforms for data acquisition, pre-processing, classification, modeling, reasoning and inference including distribution. However, some current IoT systems lack these capabilities: they provide mainly the functionality for raw sensor data acquisition. In this paper, we propose a framework towards deriving high-level context information from streams of raw IoT sensor data, using artificial neural network (ANN) as context recognition model. Before building the model, raw sensor data were pre-processed using weighted average low-pass filtering and a sliding window algorithm. From the resulting windows, statistical features were extracted to train ANN models. Analysis and evaluation of the proposed system show that it achieved between 87.3% and 98.1% accuracies

    How the internet of things technology enhances emergency response operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigm that connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources. © 2012 Elsevier Inc

    How the Internet of Things Technology Enhances Emergency Response Operations

    Get PDF
    The Internet of Things (IoT) is a novel paradigmthat connects the pervasive presence around us of a variety of things or objects to the Internet by using wireless/wired technologies to reach desired goals. Since the concept of the IoT was introduced in 2005, we see the deployment of a new generation of networked smart objects with communication, sensory and action capabilities for numerous applications, mainly in global supply chain management, environment monitoring and other non-stress environments. This paper introduces the IoT technology for use in the emergency management community. Considering the information required for supporting three sequential and distinct rhythms in emergency response operations: mobilization rhythm, preliminary situation assessment rhythm, and intervention rhythm, the paper proposes a modified task-technology fit approach that is used to investigate how the IoT technology can be incorporated into the three rhythms and enhance emergency response operations. The findings from our research support our two hypotheses: H1: IoT technology fits the identified information requirements; and H2: IoT technology provides added value to emergency response operations in terms of obtaining efficient cooperation, accurate situational awareness, and complete visibility of resources
    corecore