5,133 research outputs found

    A design technique for geometric optimisation of resonant coil sizes in low to mid frequency inductive power transmission systems.

    Get PDF
    Wireless power transfer (WPT) is a well-established method of energising electrically-powered devices. Among the different available WPT techniques, Resonant Inductive Power Transfer (RIPT) has been adapted for use in a wide range of applications. The primary reason is the relatively higher Power Transfer Efficiency (PTE) that RIPT can provide. RIPT systems operate on the principle of magnetic resonance coupling between a Transmitter (Tx) and a Receiver (Rx) coil. Maximising the PTE is a key driver for improving the performance of RIPT systems. In a RIPT link the PTE is influenced by three factors: (i) inductive linkage between the Tx and Rx, (ii) terminating circuitry of Tx and Rx sides and (iii) the Tx/Rx coil's geometrical size. In considering these impacting factors, different techniques to improve PTE have been extensively presented in the literature and are comprehensively reviewed in this thesis. The research work undertaken focuses on the geometrical optimisation of Tx/Rx coils to help maximise PTE in RIPT systems for operation over low- and mid-frequency bands (i.e. between few kHz to several MHz). Conventional methods for maximising PTE require defining various design parameters (i.e. figure-of-merits), which assist in finding the optimum Air-Cored Coil (ACC) geometry. However, traditional techniques for working with Figure-of-Merit (FoM) parameters are very time-consuming and process-demanding. In this thesis, the number of required FoMs have been reduced to one and incorporated into a process that will accelerate production of the optimum geometry design. A unique FoM parameter (i.e. Pscf) is developed by consolidating the PTE's impacting factors. Considering the RIPT application and its physical size constraints, a proper selection method for identifying the numerical value of Pscf is investigated. A novel iterative algorithm has been developed to assist in selection of the most favourable Pscf value, which provides the optimum ACC geometry. Theoretical design examples of two RIPT systems - operating at 10 kHz (low-frequency band) and 300 kHz (mid-frequency band) - are used to investigate the functionality of the ACC design approach, for which successful results are achieved. The novel iterative algorithm is also experimentally validated by developing four prototyped Tx/Rx ACC pairs, with real-world applications, which operate over low- and mid-frequency bands: 1:06 MHz, 100 kHz, 50 kHz, 15 kHz. For the designed ACC geometries, maximum PTEs of 85:63% at 1:06 MHz, 83:10% at 100 kHz, 72:85% at 50 kHz and 34:57% at 15 kHz are practically measured in bench top tests. The measured PTE values are in close correlation (within 14%) with the calculated PTEs at these frequency ranges, and thus validate the novel ACC design procedure. The RIPT system's maximum achievable PTE can be further increased by adding ferrite cores to the Tx/Rx ACC pair. In this thesis, an advanced iterative algorithm is also presented to support the design of geometrically optimised coil pairs employing ferrite cores. The advanced iterative algorithm is an extension of the initial work on optimising ACC geometries. Optimum Ferrite-Cored Coil (FCC) geometries, produced using the advanced iterative algorithm, for RIPT systems operating at 10 kHz and 300 kHz have been investigated. In comparing the FCC and ACC geometries designed for these frequencies, it is demonstrated that RIPT systems with ferrite cores reduce the ACC's geometrical size and additionally improve PTE. To validate the performance of the advanced FCC design algorithm over low- and mid-frequency bands, two RIPT systems are physically constructed for operation at 15 kHz (low-frequency) and 50 kHz (mid-frequency). For the prototyped RIPT systems, maximum PTEs of 45:16% at 50 kHz and 50:74% at 15 kHz are practically measured. The calculated and physically measured PTE values are within 2% difference; hence validating the advanced FCC design process

    Tracking and dynamic tuning of a wireless powered endoscopic capsule

    Get PDF
    This work presents an inductive wireless power transfer system for powering an endoscopy capsule supplying energy to power electronic devices allocated inside a capsule of ≈26.1 mm × 9 mm. A receiver with three coils in quadrature with dimensions of ≈9 mm × 9 mm × 10 mm is located inside the capsule, moving freely inside a transmitter coil with 380 mm diameter through translations and revolutions. The proposed system tracks the variations of the equivalent magnetic coupling coefficient compensating misalignments between the transmitter and receiver coils. The power on the load is estimated and optimized from the transmitter, and the tracking control is performed by actuating on a capacitance in the matching network and on the voltage source frequency. The proposed system can prevent load overheating by limiting the power via adjusting of the magnitude of voltage source VS. Experimental results with uncertainties analysis reveal that, even at low magnetic coupling coefficients k ranging from (1.7 × 10−3 , 3.5 × 10−3 ), the power on the load can be held within the range of 100–130 mW. These results are achieved with any position of the capsule in the space, limited by the diameter of the transmitter coil and height of 200 mm when adjusting the series capacitance of the transmitter in the range (17.4, 19.4) pF and the frequency of the power source in the range (802.1, 809.5) kHz

    On the Sizing of the DC-Link Capacitor to Increase the Power Transfer in a Series-Series Inductive Resonant Wireless Charging Station

    Get PDF
    Wireless inductive-coupled power transfer is a very appealing technique for the battery recharge of autonomous devices like surveillance drones. The charger design mainly focuses on lightness and fast-charging to improve the drone mission times and reduce the no-flight gaps. The charger secondary circuit mounted on the drone generally consists of a full-bridge rectifier and a second-order filter. The filter cut-off frequency is usually chosen to make the rectifier output voltage constant and so that the battery is charged with continuous quantities. Previous works showed that an increase in power transfer is achieved, if compared to the traditional case, when the second-order filter resonant frequency is close to the double of the wireless charger excitation and the filter works in resonance. This work demonstrates that the condition of resonance is necessary but not sufficient to achieve the power increment. The bridge rectifier diodes must work in discontinuous-mode to improve the power transfer. The paper also investigates the dependence of the power transfer increase on the wireless excitation frequency. It is found the minimum frequency value below which the power transfer gain is not possible. This frequency transition point is calculated, and it is shown that the gain in power transfer is obtained for any battery when its equivalent circuit parameters are known. LTSpice simulations demonstrate that the transferred power can be incremented of around 30%, if compared to the case in which the rectifier works in continuous mode. This achievement is obtained by following the design recommendations proposed at the end of the paper, which trade off the gain in power transfer and the amplitude of the oscillating components of the wireless charger output

    A design technique for optimizing resonant coils and the energy transfer of inductive links.

    Get PDF
    Power transfer efficiency (PTE) is a key performance parameter in development work on resonant inductive power transfer (IPT) systems. Geometrically optimizing the transmitter (Tx) and receiver (Rx) coil pair is a way of improving the IPT system's efficiency. In this article, a new figure-of-merit (FoM) is proposed to find an optimum coil geometry which maximizes the PTE. The employed FoM parameter, called the 'strong coupling factor' (Pscf), is defined such that its value indicates how strongly the Tx and Rx coils are linked together. Considering the IPT application and its physical size constraints, a proper selection method for identifying the numerical value of Pscf is essential for optimal coil geometry design. This article presents an iterative algorithm to assist in the selection of the most favorable Pscf value which provides maximized PTE for the designed optimum coil geometry. Design examples of two nominal IPT systems at frequencies of 415 and 0.1 MHz are used to investigate the design algorithm. Theoretical calculations show the optimum geometry designed for the IPT system operating at 415 MHz, with coupling coefficient (K) of 0.2, can achieve maximum PTE of 85.70%. Measurements presented from a practical Tx/Rx coil pair in the IPT link operating at 0.1 MHz, with K=0.05, show a PTE of 83.10% against a calculated PTE of 84.11% validating the design process.This article is an expanded version from the IEEE Wireless Power Week, London, U.K., June 17–20, 2019

    A Self-Oscillating Approach for Wireless Power Transfer

    Get PDF
    We introduce a robust wireless power transfer scheme that theoretically works for any load and receiver position. We show that capacitive wireless power transfer systems with these new properties can be implemented by modifying simple operational Amplifier oscillator circuits. The load and the wireless power link are incorporated into the feedback of the oscillator. The operating frequency adopts to the best possible working condition when the load or receiver position change. We prove the concept by deriving a theoretical model and implementing the same experimentally. The experimentally measured frequency of operation and transferred power agrees well with our analytical solutions

    A critical review of recent progress in mid-range wireless power transfer

    Get PDF
    Starting from Tesla’s principles of wireless power transfer a century ago, this critical review outlines recent magneto-inductive research activities on wireless power transfer with the transmission distance greater than the transmitter coil dimension. It summarizes the operating principles of a range of wireless power research into (i) the maximum power transfer and (ii) the maximum energy efficiency principles. The differences and the implications of these two approaches are explained in terms of their energy efficiency and transmission distance capabilities. The differences between the system energy efficiency and the transmission efficiency are also highlighted. The review covers the 2-coil systems, the 4-coil systems, the systems with relay resonators and the wireless domino-resonator systems. Related issues including human exposure issues and reduction of winding resistance are also addressed. The review suggests that the use of the maximum energy efficiency principle in the 2-coil systems is suitable for short-range rather than mid-range applications, the use of the maximum power transfer principle in the 4-coil systems is good for maximizing the transmission distance, but is under a restricted system energy efficiency (< 50%); the use of the maximum energy efficiency principle in relay or domino systems may offer a good compromise for good system energy efficiency and transmission distance on the condition that relay resonators can be placed between the power source and the load.published_or_final_versio

    A Novel Power-Efficient Wireless Multi-channel Recording System for the Telemonitoring of Electroencephalography (EEG)

    Get PDF
    This research introduces the development of a novel EEG recording system that is modular, batteryless, and wireless (untethered) with the supporting theoretical foundation in wireless communications and related design elements and circuitry. Its modular construct overcomes the EEG scaling problem and makes it easier for reconfiguring the hardware design in terms of the number and placement of electrodes and type of standard EEG system contemplated for use. In this development, portability, lightweight, and applicability to other clinical applications that rely on EEG data are sought. Due to printer tolerance, the 3D printed cap consists of 61 electrode placements. This recording capacity can however extend from 21 (as in the international 10-20 systems) up to 61 EEG channels at sample rates ranging from 250 to 1000 Hz and the transfer of the raw EEG signal using a standard allocated frequency as a data carrier. The main objectives of this dissertation are to (1) eliminate the need for heavy mounted batteries, (2) overcome the requirement for bulky power systems, and (3) avoid the use of data cables to untether the EEG system from the subject for a more practical and less restrictive setting. Unpredictability and temporal variations of the EEG input make developing a battery-free and cable-free EEG reading device challenging. Professional high-quality and high-resolution analog front ends are required to capture non-stationary EEG signals at microvolt levels. The primary components of the proposed setup are the wireless power transmission unit, which consists of a power amplifier, highly efficient resonant-inductive link, rectification, regulation, and power management units, as well as the analog front end, which consists of an analog to digital converter, pre-amplification unit, filtering unit, host microprocessor, and the wireless communication unit. These must all be compatible with the rest of the system and must use the least amount of power possible while minimizing the presence of noise and the attenuation of the recorded signal A highly efficient resonant-inductive coupling link is developed to decrease power transmission dissipation. Magnetized materials were utilized to steer electromagnetic flux and decrease route and medium loss while transmitting the required energy with low dissipation. Signal pre-amplification is handled by the front-end active electrodes. Standard bio-amplifier design approaches are combined to accomplish this purpose, and a thorough investigation of the optimum ADC, microcontroller, and transceiver units has been carried out. We can minimize overall system weight and power consumption by employing battery-less and cable-free EEG readout system designs, consequently giving patients more comfort and freedom of movement. Similarly, the solutions are designed to match the performance of medical-grade equipment. The captured electrical impulses using the proposed setup can be stored for various uses, including classification, prediction, 3D source localization, and for monitoring and diagnosing different brain disorders. All the proposed designs and supporting mathematical derivations were validated through empirical and software-simulated experiments. Many of the proposed designs, including the 3D head cap, the wireless power transmission unit, and the pre-amplification unit, are already fabricated, and the schematic circuits and simulation results were based on Spice, Altium, and high-frequency structure simulator (HFSS) software. The fully integrated head cap to be fabricated would require embedding the active electrodes into the 3D headset and applying current technological advances to miniaturize some of the design elements developed in this dissertation

    An Inductive Power Transfer through metal object

    Full text link
    The principle of Inductive Power Transfer (IPT)is very old but it is rarely used for transferring power from source to load via a conductive medium. This is because normally the medium restricts the power transfer due to losses or the shielding effects. However, for low energy applications, an acceptable amount of power could be transferred from the source to the load and it will be of great benefit to oil and gas as well as manufacturing industries to explore. This paper aims at finding the amount of power transferred, the losses and efficiency for a given configuration (metallic pipe) using an analytical model involving equations governing the mechanism of IPT and experimental validation of the derived analytical model. The maximum efficiency of the system for a stainless steel pipe at frequencies of 40Hz to 100Hz is obtained from experimental validation when the load at the output is about 5.55Ω. © 2013 IEEE

    Optimization of 8-Plate Multi-Resonant Coupling Structure Using Class-E\u3csup\u3e2\u3c/sup\u3e Based Capacitive-Wireless Power Transfer System

    Get PDF
    Capacitive-wireless power transfer (CPT) effectively charges battery-powered devices without a physical contact. It is an alternative to inductive-wireless power transfer (IPT) which is available in the present market. Compared with IPT, CPT offers flexibility in designing the coupling section. Because of its flexibility, CPT utilizes various coupling methods to enhance the coupling capacitance. Misalignment is a common issue in any WPT system. Among IPT and CPT, IPT has better performance for misalignments, but it requires bulk and expensive ferrite core to attain a high coupling coefficient. This work focuses on designing a CPT system to minimize the impact of misalignments. In this research, a novel 8-plate multi-resonant Class-E2 CPT system is developed to improve the performance of the CPT system for misalignments. The proposed CPT model expands the resonant frequency band, which results in better performance for misalignments compared with the regular 4-plate CPT system. The 8-plate coupling structure is designed to charge a 100 Ah drone battery. For this application, the coupling is formed when the drone lands on the capacitive- wireless charging pad. This work also presents the analysis of several dielectric materials with different dielectric constants. A well-designed capacitive coupler can effectively limit harmonics during the interaction between transmitter and receiver. Also, the effect of coupling plate shape is identified on the CPT system. The hardware tests indicate the round-shaped plates have better stability in coupling capacitance with the variation in frequency. The effect of misalignments is studied through the impedance tracking of the Class-E2 power converter. Impedance plots for 50 μH, and 100 μH resonant inductors are used to determine input current peak for each case. Additionally, hardware tests are performed to study the variation of input current and output voltage for a range of frequencies. The test results indicate the efficiency at optimal impedance point for a resonant inductor with 50 μH is 8% higher compared to the CPT with a 100 μH resonant inductor which highlights the effects of the resonant inductor on efficiency. The zero-voltage-switching (ZVS) limits are also identified for varying frequencies and duty cycles. Later in this research, the optimal design of the Class-E rectifier is identified to enhance the power transfer. Several cases were considered to investigate the impact of the secondary inductor on the output voltage and the ZVS property. Hardware tests validate that under optimal conditions the efficiency of the Class-E2 based CPT system improves by 18% compared with Ar \u3e\u3c 1. Further work presents the advantages of 8-plate multi-resonant coupling for misalignments. The proposed model has a simple design procedure which enhances the power flow from the inverter to the rectifier section. The hardware results of the proposed 8-plate multi-resonant coupling show an increase in efficiency to 88.5% for the 20.8 W test, which is 18% higher than regular 4-plate coupling. Because of the wider resonant frequency band [455- 485 kHz], compared with regular 4-plate coupling, the proposed design minimized the output voltage drop by 15% for 10% misalignment. Even for large misalignments, 8-plate improves the CPT performance by 40% compared with 4-plate coupling
    • …
    corecore