15,628 research outputs found

    Protocol for the Reconstructing Consciousness and Cognition (ReCCognition) Study

    Get PDF
    Important scientific and clinical questions persist about general anesthesia despite the ubiquitous clinical use of anesthetic drugs in humans since their discovery. For example, it is not known how the brain reconstitutes consciousness and cognition after the profound functional perturbation of the anesthetized state, nor has a specific pattern of functional recovery been characterized. To date, there has been a lack of detailed investigation into rates of recovery and the potential orderly return of attention, sensorimotor function, memory, reasoning and logic, abstract thinking, and processing speed. Moreover, whether such neurobehavioral functions display an invariant sequence of return across individuals is similarly unknown. To address these questions, we designed a study of healthy volunteers undergoing general anesthesia with electroencephalography and serial testing of cognitive functions (NCT01911195). The aims of this study are to characterize the temporal patterns of neurobehavioral recovery over the first several hours following termination of a deep inhaled isoflurane general anesthetic and to identify common patterns of cognitive function recovery. Additionally, we will conduct spectral analysis and reconstruct functional networks from electroencephalographic data to identify any neural correlates (e.g., connectivity patterns, graph-theoretical variables) of cognitive recovery after the perturbation of general anesthesia. To accomplish these objectives, we will enroll a total of 60 consenting adults aged 20–40 across the three participating sites. Half of the study subjects will receive general anesthesia slowly titrated to loss of consciousness (LOC) with an intravenous infusion of propofol and thereafter be maintained for 3 h with 1.3 age adjusted minimum alveolar concentration of isoflurane, while the other half of subjects serves as awake controls to gauge effects of repeated neurobehavioral testing, spontaneous fatigue and endogenous rest-activity patterns

    An Investigation of How Wavelet Transform can Affect the Correlation Performance of Biomedical Signals : The Correlation of EEG and HRV Frequency Bands in the frontal lobe of the brain

    Get PDF
    © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reservedRecently, the correlation between biomedical signals, such as electroencephalograms (EEG) and electrocardiograms (ECG) time series signals, has been analysed using the Pearson Correlation method. Although Wavelet Transformations (WT) have been performed on time series data including EEG and ECG signals, so far the correlation between WT signals has not been analysed. This research shows the correlation between the EEG and HRV, with and without WT signals. Our results suggest electrical activity in the frontal lobe of the brain is best correlated with the HRV.We assume this is because the frontal lobe is related to higher mental functions of the cerebral cortex and responsible for muscle movements of the body. Our results indicate a positive correlation between Delta, Alpha and Beta frequencies of EEG at both low frequency (LF) and high frequency (HF) of HRV. This finding is independent of both participants and brain hemisphere.Final Published versio

    Robust, automated sleep scoring by a compact neural network with distributional shift correction.

    Get PDF
    Studying the biology of sleep requires the accurate assessment of the state of experimental subjects, and manual analysis of relevant data is a major bottleneck. Recently, deep learning applied to electroencephalogram and electromyogram data has shown great promise as a sleep scoring method, approaching the limits of inter-rater reliability. As with any machine learning algorithm, the inputs to a sleep scoring classifier are typically standardized in order to remove distributional shift caused by variability in the signal collection process. However, in scientific data, experimental manipulations introduce variability that should not be removed. For example, in sleep scoring, the fraction of time spent in each arousal state can vary between control and experimental subjects. We introduce a standardization method, mixture z-scoring, that preserves this crucial form of distributional shift. Using both a simulated experiment and mouse in vivo data, we demonstrate that a common standardization method used by state-of-the-art sleep scoring algorithms introduces systematic bias, but that mixture z-scoring does not. We present a free, open-source user interface that uses a compact neural network and mixture z-scoring to allow for rapid sleep scoring with accuracy that compares well to contemporary methods. This work provides a set of computational tools for the robust automation of sleep scoring

    Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

    Get PDF
    Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measured with functional Magnetic Resonance Imaging (fMRI). We analyzed temporal fluctuations in BOLD connectivity and their electrophysiological correlates, by means of long (≈50 min) joint electroencephalographic (EEG) and fMRI recordings obtained from two populations: 15 awake subjects and 13 subjects undergoing vigilance transitions. We identified positive and negative correlations between EEG spectral power (extracted from electrodes covering different scalp regions) and fMRI BOLD connectivity in a network of 90 cortical and subcortical regions (with millimeter spatial resolution). In particular, increased alpha (8-12 Hz) and beta (15-30 Hz) power were related to decreased functional connectivity, whereas gamma (30-60 Hz) power correlated positively with BOLD connectivity between specific brain regions. These patterns were altered for subjects undergoing vigilance changes, with slower oscillations being correlated with functional connectivity increases. Dynamic BOLD functional connectivity was reflected in the fluctuations of graph theoretical indices of network structure, with changes in frontal and central alpha power correlating with average path length. Our results strongly suggest that fluctuations of BOLD functional connectivity have a neurophysiological origin. Positive correlations with gamma can be interpreted as facilitating increased BOLD connectivity needed to integrate brain regions for cognitive performance. Negative correlations with alpha suggest a temporary functional weakening of local and long-range connectivity, associated with an idling state
    corecore