230 research outputs found

    Towards the noise reduction of piezoelectrical-driven synthetic jet actuators

    Get PDF
    This paper details an experimental investigation aimed at reducing the noise output of piezoelectrical-driven synthetic jet actuators without compromising peak jet velocity. Specifically, the study considers double-chamber ('back-to-back') actuators for anti-phase noise suppression and corrugated-lobed orifices as a method to enhance turbulent mixing of the jets to suppress jet noise. The study involved the design, manufacture and bench test of interchangeable actuator hardware. Hot-wire anemometry and microphone recordings were employed to acquire velocity and noise measurements respectively for each chamber configuration and orifice plate across a range of excitation frequencies and for a fixed input voltage. The data analysis indicated a 32% noise reduction (20 dBA) from operating a singlechamber, circular orifice SJA to a double-chamber, corrugated-lobed orifice SJA at the Helmholtz resonant frequency. Results also showed there was a small reduction in peak jet velocity of 7% (~3 m/s) between these two cases based on orifices of the same discharge area. Finally, the electrical-to-fluidic power conversion efficiency of the double-chamber actuator was found to be 15% across all orifice designs at the resonant frequency; approximately double the efficiency of a single-chamber actuator. This work has thus demonstrated feasible gains in noise reduction and power efficiency through synthetic jet actuator design

    Smart actuation for helicopter rotorblades

    Get PDF
    Successful rotorcrafts were only achieved when the differences between hovering flight conditions and a stable forward flight were understood. During hovering, the air speed on all helicopter blades is linearly distributed along each blade and is the same for each. However, during forward flight, the forward motion of the helicopter in the air creates an unbalance. The airspeed is increased for the blade passing in the advancing side of the helicopter, while it is reduced in the retreating side. Moreover, when each blade enters the retreating side of the helicopter, a reverse flow occurs around the profile where the blade speed is lower than the forward speed of the helicopter. The balance of a rotorcraft is solved by a cyclic pitch control, but trade-offs are made on the blade design to cope with the great variety of aerodynamic conditions. A smart blade that would adapt its characteristics to this large set of conditions would improve rotorcrafts energy efficiency while providing vibration and noise control.\ud Smart rotor blades systems are studied to adapt the aerodynamic characteristics of the blade during its revolution and to improve the overall performances. An increase in the lift over drag ratio on the retreating side has been studied to design a blade with better aerodynamic efficiency and better stall performances in the low-speed region. The maximum speed of a rotorcraft is limited by the angle of attack that the profile can sustain on the retreating side before stall. Therefore, increasing the maximum angle of attack that a profile geometry can sustain increases the rotorcraft flight envelope. Flow asymmetry and aerodynamic interaction between successive blades are also investigated to actively reduce vibrations and limit noise.\ud These improvements can be achieved by deploying flaps, by using flow control devices or by morphing the full shape of the profile at a specific places during the blade revolution. Each of the listed methods has advantages and disadvantages as well as various degrees of feasibility and integrability inside helicopter blades. They all modify the aerodynamic characteristics of the profile. Their leverage on the various aerodynamic effects depends on the control strategy chosen for actuation. Harmonic actuation is therefore studied for active noise and vibration control whereas stepped deployment is foreseen to modify the stall behaviour of the retreating side of the helicopter.\ud Helicopter blades are subjected to various force constraints such as the loads from the complex airflow and the centrifugal forces. Furthermore, any active system embedded inside a rotor blade needs to comply with the environmental constraints to which a helicopter will be subjected  during its life-span. Other concerns, like the power consumption and the data transfer for blade control, play an important role as well. Finally, such a system must have a life-time exceeding the life-time of a rotor blade and meet the same criteria in toughness, reliability and ease of maintenance.\ud Smart system is an interplay of aerodynamics, rotor-mechanics, material science and control, thus a multidisciplinary approach is essential. A large part of the work consists in building processes to integrate these domains for investigating, designing and testing smart components.\ud Piezoelectric actuators are a promising technology to bring adaptability to rotor blades. They can be used directly on the structure to actively modify its geometry, stiffness and aerodynamic behaviour or be integrated to mechanisms for the deployment of flaps. Their large specific work, toughness, reliability and small form factor make them suitable components for integration within a rotor blade. The main disadvantage of piezoelectric actuators is the small displacement and strain available. Amplification mechanisms must be optimised to produce sufficient displacement in morphing applications.\ud Smart actuation systems placed inside rotor blades have the potential to improve the efficiency and the performances of tomorrow's helicopters. Piezoelectric materials can address many of the challenges of integrating smart components inside helicopter blades. The key aspect remains the collaboration between various domains, skills and expertise to successfully implement these new technologies

    Optimization of multiple piezoelectric magnetic fans for electronic cooling system

    Get PDF
    Air cooling system for electronics is still preferable due to its simplicity and reliability. To date, some researches on air cooling showed that a piezoelectric fan is more efficient than natural convection with minimum power consumption. However, a single piezoelectric fan can only cover a small cooling area and more power might be consumed if multiple piezoelectric fans are applied. A multiple piezoelectric magnetic fan (MPMF) has proven to have a high potential to replace the existing rotary fan. Initially, the MPMF was designed in line/array (APMF). However, the deflection of the MPMF needs to be improved in fundamental analysis and validated by the experimental data from previous studies. Hence, the first objective of the study is to propose a new mathematical model for MPMF to include the location of magnet and distance between magnets to length ratio. A centripetal force is introduced as the contributing parameter to the equation of deflection of a radial piezoelectric magnetic fan (RPMF). The second objective is to optimize the multiple piezoelectric magnetic fan parameters using Response Surface Method (RSM). The experimental setup consisted of two divisions; parameters optimization and thermal analysis. The theoretical results of the fan deflection were compared with experimental data and the thermal performance of the proposed RPMF was compared with the benchmarked paper. The results showed that an optimal magnet location was on the Mylar blade, 44mm from the origin (63.8% of original length). The new location of magnet has led to increment of Reynolds Number to 924. The distance between magnets to length ratio is in the range of 14.5mm to 15.6mm (21%-22.6% of the fan length). By fixing the distance between magnets at 14.5mm, the resonant frequency and deflection of RPMF and APMF were 42.66Hz, 11.6mm and 40.68Hz, 9.4mm respectively. By varying the orientation of MPMF, the Reynolds number of RPMF was improved 32% compared to APMF. The heat convection coefficient increased by 8.07% to enhance the heat transfer performance by 8.06%. The thermal resistance reduced by 7.6% which led to 5% increment of overall thermal efficiency. In conclusion, the relocation of magnet has improved the overall performance of MPMF. The RPMF has been found to have a better cooling performance compared to APMF. Thus, RPMF has a high potential to be applied in electronics cooling system

    Three dimensional numerical simulations of synthetic jet actuator flows in a microchannel

    Full text link
    The flow produced by a synthetic jet actuator located in one wall of a microchannel is investigated using computational fluid dynamics (CFD) simulations. In the case of no cross-flow, the ejected vortices travel to the opposite wall and replenish the remains of the vortex left behind from the previous cycle. When cross-flow is added, the vortex penetration increases with both stroke length and frequency. The flow in the cavity appears to be nearly symmetrical, with the greatest effect seen near the orifice. In the orifice itself, three-dimensional effects are more noticeable with decreasing jet-to-cross-flow momentum ratio. The microchannel cross-flow causes the vortices to tumble about their transverse axis, the effect of which also increases with decreasing jet-to-cross-flow momentum ratio

    An experimental investigation of microresistor laser printing with gold nanoparticle-laden inks

    Get PDF
    This paper presents an experimental investigation of the novel thermal manufacturing process of printing and laser curing of nanoparticle-laden inks that can produce functional microstructures such as electronic microresistors and interconnections for semiconductors and other devices. Of specific interest are the complex and interweaved transport phenomena involved, focusing on the absorption and diffusion processes of irradiated laser energy influencing solvent vaporization, the nanoparticle curing process, the substrate, and the final quality of the produced resistor. Parametric studies of the thermal process together with extensive microscopy analysis of the topography and resistivity measurements piece together a better understanding of the underlying physics and aid the development of the technolog

    A Sliding Mode LCO Regulation Strategy for Dual-Parallel Underactuated UAV Systems Using Synthetic Jet Actuators

    Get PDF
    A sliding mode control- (SMC-) based limit cycle oscillation (LCO) regulation method is presented, which achieves asymptotic LCO suppression for UAVs using synthetic jet actuators (SJAs). With a focus on applications involving small UAVs with limited onboard computational resources, the controller is designed with a simplistic structure, requiring no adaptive laws, function approximators, or complex calculations in the control loop. The control law is rigorously proven to achieve asymptotic regulation of both pitching and plunging displacements for a class of systems in a dual-parallel underactuated form, where a single scalar control signal simultaneously affects two states. Since dual-parallel underactuated systems cannot be expressed in a strict feedback or cascade form, standard backstepping-based control techniques cannot be applied. This difficulty is mitigated through careful algebraic manipulation in the regulation error system development, along with innovative design of the sliding surface. A detailed model of the UAV LCO dynamics is utilized, and a rigorous analysis is provided to prove asymptotic regulation of the pitching and plunging displacements. Numerical simulation results are provided to demonstrate the performance of the control law

    A Sliding Mode LCO Regulation Strategy for Dual-Parallel Underactuated UAV Systems Using Synthetic Jet Actuators

    Get PDF
    A sliding mode control- (SMC-) based limit cycle oscillation (LCO) regulation method is presented, which achieves asymptotic LCO suppression for UAVs using synthetic jet actuators (SJAs). With a focus on applications involving small UAVs with limited onboard computational resources, the controller is designed with a simplistic structure, requiring no adaptive laws, function approximators, or complex calculations in the control loop. The control law is rigorously proven to achieve asymptotic regulation of both pitching and plunging displacements for a class of systems in a dual-parallel underactuated form, where a single scalar control signal simultaneously affects two states. Since dual-parallel underactuated systems cannot be expressed in a strict feedback or cascade form, standard backstepping-based control techniques cannot be applied. This difficulty is mitigated through careful algebraic manipulation in the regulation error system development, along with innovative design of the sliding surface. A detailed model of the UAV LCO dynamics is utilized, and a rigorous analysis is provided to prove asymptotic regulation of the pitching and plunging displacements. Numerical simulation results are provided to demonstrate the performance of the control law
    corecore