527 research outputs found

    Digital mammography, cancer screening: Factors important for image compression

    Get PDF
    The use of digital mammography for breast cancer screening poses several novel problems such as development of digital sensors, computer assisted diagnosis (CAD) methods for image noise suppression, enhancement, and pattern recognition, compression algorithms for image storage, transmission, and remote diagnosis. X-ray digital mammography using novel direct digital detection schemes or film digitizers results in large data sets and, therefore, image compression methods will play a significant role in the image processing and analysis by CAD techniques. In view of the extensive compression required, the relative merit of 'virtually lossless' versus lossy methods should be determined. A brief overview is presented here of the developments of digital sensors, CAD, and compression methods currently proposed and tested for mammography. The objective of the NCI/NASA Working Group on Digital Mammography is to stimulate the interest of the image processing and compression scientific community for this medical application and identify possible dual use technologies within the NASA centers

    Analysis of Mammographic Images for Early Detection of Breast Cancer Using Machine Learning Techniques

    Get PDF
    Breast cancer is the main reason for death among women. Radiographic images obtained from mammography equipment are one of the most frequently used techniques for helping in early detection of breast cancer. The motivation behind this study is to focus the tumour types of breast cancer images .It is methodology to anticipated a sickness in view of the visual conclusion of breast disease tumour types with precision, particularly when numerous feature are related. Breast Cancer (BC) is one such sample where the phenomenon is very complex furthermore numerous feature of tumour types are included. In the present investigation, various pattern recognition techniques were used for the classification of breast cancer using mammograms image processing techniques .The pattern recognition techniques for tumour image enhancements, segmentation, texture based image feature extraction and subsequent classification of breast cancer mammogram image was successfully performed. When two machine learning techniques such as Artificial Neural Network (ANN), Support Vector Machine (SVM) were used to classify 120 images, it was observed from the results that Artificial Neural Network classifiers demonstrated the h classification rate 91.31% and the SVM with both Radial Basis Function (RBF) and linear kernel classifiers demonstrated the highest classification rate of 92.11% and RBF classification rate is 92.85%

    Segmentation and Feature Extraction of Tumors from Digital Mammograms

    Get PDF
    Mammography is one of the available techniques for the early detection of masses or abnormalities which is related to breast cancer. Breast Cancer is the uncontrolled of cells in the breast region, which may affect the other parts of the body. The most common abnormalities that might indicate breast cancer are masses and calcifications. Masses appear in a mammogram as fine, granular clusters and also masses will not have sharp boundaries, so often difficult to identify in a raw mammogram. Digital Mammography is one of the best available technologies currently being used for the early detection of breast cancer. Computer Aided Detection System has to be developed for the detection of masses and calcifications in Digital Mammogram, which acts as a secondary tool for the radiologists for diagnosing the breast cancer. In this paper, we have proposed a secondary tool for the radiologists that help them in the segmentation and feature extraction process. Keywords: Mammography, Breast Cancer, Masses, Calcification, Digital Mammography, Computer Aided Detection System, Segmentation, Feature Extractio
    corecore