332 research outputs found

    Design and development of dual-Polarised photovoltaic solar antennae for Ku-band SatComsp.

    Get PDF
    The aim of this thesis is to review the state-of-the-art of transparent patch antennae and to develop design techniques for the experimental development of dual-band, dual-polarised compact transparent patch antennae integrated with solar cells for Ku-band satellite applications. It can be specifically used for Fixed-Satellite-Services (FSS) operating over the frequency range from 11.7 GHz to 12.22 GHz (downlink) and 14.0 GHz to 14.5 GHz (uplink) bands. The research reported in this thesis demonstrated a suspended meshed patch antennae serves as a basic building-block element for a Ku-band dual-polarised transparent array antennae for long distance communications. The results are shown that the use of a suspended patch above a printed radiating patch and ground plane (all transparent) provides dual-band operation for the uplink and downlink. In this work, firstly, a compact low-profile linearly polarised meshed element has been designed, and simulated in CST Microwave Studio electromagnetic simulation software. The photovoltaic antennae element was then fabricated and measured. The comparison between the experimental results and simulation by CST demonstrates good agreement between predicted and practical measurements. The developed antennae element achieved the overall broad bandwidth of more than 1GHz (500 MHz in each of the uplink and downlink bands), and the nominal element gain is 6.055 dBi (downlink) and 7.61 dBi (uplink). A good compromise between the RF performance and the transparency is also obtained with optical transparency of 84% and negligible degradation of the RF performance. The design is then extended to develop a Ku-band photovoltaic antennae element for dualpolarised operation This element could be used for frequency re-use in Ku-band satellite downlink and uplink communicationsin order to double capacity. In addition, the simulation of a 2 x2 sub-array of dual polarised transparent antennae elements (using the experimentally measured performance of the single dual-polarised element) is presented. It has yielded a narrow beam with increased gain of 13 dBi and a cross-polar discrimination of greater than 30 dB is demonstrated, which is a requirement for frequency re-use operation. Hence, the dual-polarised 4-element sub-array described herein could be utilised as the primary building block for a 2D SatCom phased array antennae. In order to meet the full requirements of Kuband SatCom communications employing frequency re-use which essentially doubles the achievable capacity, i.e. two data channels can use the same frequency bands simultaneously using the two orthogonal polarisations with high cross-polar isolation. Using these new designs providing new knowledge in the field of photovoltaic communication antennae at high frequencies, and bridge the associated drawbacks with the current PV antennae

    Recent Trends in Printed Ultra-Wideband (UWB) Antennas

    Get PDF

    Design and Analysis of Substrate-Integrated Cavity-Backed Antenna Arrays for Ku-Band Applications

    Get PDF
    Mobile communication has become an essential part of our daily life. We love the flexibility of wireless cell phones and even accept their lower quality of service when compared to wired links. Similarly, we are looking forward to the day that we can continue watching our favorite TV programs while travelling anywhere and everywhere. Mobility, flexibility, and portability are the themes of the next generation communication. Motivated and fascinated by such technology breakthroughs, this effort is geared towards enhancing the quality of wireless services and bringing mobile satellite reception one step closer to the market. Meanwhile, phased array antennas are vital components for RADAR applications where the antenna is required to have certain scan capabilities. One of the main concerns in that perspective is how to avoid the potential of scan blindness in the required scan range. Targeting to achieve wide-band wide-scan angle phased arrays free from any scan blindness our efforts is also geared. Conventionally, the key to lower the profile of the antenna is to use planar structures. In that perspective microstrip patch antennas have drawn the attention of antenna engineers since the 1970s due to their attractive features of being low profile, compact size, light weight, and amenable to low-cost PCB fabrication processes. However, patch elements are basically resonating at a single frequency, typically have \u3c2% bandwidth, which is a major deficit that impedes their usage in relatively wide-band applications. There are various approaches to enhance the patch antennas bandwidth including suspended substrates, multi-stack patches, and metalized cavities backing these patches. Metalized cavity-backed patch structures have been demonstrated to give the best performance, however, they are very expensive to manufacture. In this dissertation, we develop an alternative low-cost bandwidth enhancement topology. The proposed topology is based on substrate-integrated waveguides. The great potential of the proposed structure lies in being amenable to the conventional PCB fabrication. Moreover, substrate-integrated cavity-backed structures facilitate the design of sophisticated arrays that are very expensive to develop using the conventional metalized cavity-backed topology, which includes the common broadside arrays used in fixed-beam applications and the scanned phased arrays used in RADAR applications

    Millimeter-Wave Components and Antennas for Spatial and Polarization Diversity using PRGW Technology

    Get PDF
    The evolution of the wireless communication systems to the future generation is accompanied by a huge improvement in the system performance through providing a high data rate with low latency. These systems require access to millimeter wave (mmWave) bands, which offer several advantages such as physically smaller components and much wider bandwidthcomparedtomicrowavefrequencies. However, mmWavecomponentsstillneed a significant improvement to follow the rapid variations in future technologies. Although mmWave frequencies can carry more data, they are limited in terms of their penetration capabilities and their coverage range. Moreover, these frequencies avoid deploying traditional guiding technologies such as microstrip lines due to high radiation and material losses. Hence, utilizing new guiding structure techniques such as Printed Ridge Gap Waveguide (PRGW) is essential in future mmWave systems implementation. ThemainpurposeofthisthesisistodesignmmWavecomponents,antennasubsystems and utilize both in beam switching systems. The major mmWave components addressed in this thesis are hybrid coupler, crossover, and differential power divider where the host guidingstructureisthePRGW.Inaddition,variousdesignsfordifferentialfeedingPRGW antennas and antenna arrays are presented featuring wide bandwidth and high gain in mmWave band. Moreover, the integration of both the proposed components and the featured antennas is introduced. This can be considered as a significant step toward the requirements fulfillment of today's advanced communication systems enabling both space and polarization diversity. The proposed components are designed to meet the future ever-increasing consumer experience and technical requirements such as low loss, compact size, and low-cost fabrication. This directed the presented research to have a contribution into three major parts. The first part highlights the feeding structures, where mmWave PRGW directional couplers and differential feeding power divider are designed and validated. These components are among the most important passive elements of microwave circuits used in antennabeam-switchingnetworks. Different3-dBquadraturehybridcouplersandcrossover prototypes are proposed, featured with a compact size and a wide bandwidth beyond 10 % at 30 GHz. In the second part, a beam switching network implemented using hybrid couplers is presented. The proposed beam switching network is a 4 × 4 PRGW Butler matrix that used to feed a Magneto-electric (ME) dipole antenna array. As a result, a 2-D scanning antenna array with a compact size, wide bandwidth, and high radiation efficiency larger than84%isachieved. Furthergainenhancementof5dBiisachievedthroughdeployinga hybridgainenhancementtechniqueincludingAMCmushroomshapesaroundtheantenna array with a dielectric superstrate located in the broadside direction. The proposed scanning antenna array can be considered as a step toward the desired improvement in the data rate and coverage through enabling the space diversity for the communication link. The final activity is related to the development of high-gain wide-band mmWave antenna arrays for potential use in future mmWave applications. The first proposed configuration is a differential feeding circular polarized aperture antenna array implemented with PRGW technology. Differential feeding antenna designs offer more advantages than single- ended antennas for mmWave communications as they are easy to be integrated with differential mmWave monolithic ICs that have high common-mode rejection ratio providing an immunity of the environmental noise. The proposed differential feeding antenna array is designed and fabricated, which featured with a stable high gain and a high radiation efficiency over a wide bandwidth. Another proposed configuration is a dualpolarized ME-dipole PRGW antenna array for mmWave wireless communication. Dual polarizationisconsideredoneofthemostimportantantennasolutionsthatcansavecosts and space for modern communication systems. In addition, it is an effective strategy for multiple-input and multiple-output systems that can reduce the size of multiple antennas systems by utilizing extra orthogonal polarization. The proposed dual- polarized antenna array is designed to achieve a stable gain of 15 ± 1 dBi with low cross- polarization less than -30 dB over a wide frequency range of 20 % at 30 GHz

    Polarization reconfigurable antennas for space limited multiple input multiple output system

    Get PDF
    Wireless communication undergoes rapid changes in recent years. More and more people are using modern communication services, thus increasing the need for higher capacity in transmission. One of the methods that is able to meet the demands is the use of multiple antennas at both link ends known as Multiple Input Multiple Output (MIMO) system. However, for the space limited MIMO system, it is relatively difficult to accomplish good performance by using conventional antennas. Therefore, to further improve the performance offered by MIMO, Polarization Reconfigurable Antennas (PRAs) can be adopted. The diversity in polarization can be exploited to increase channel capacity. Moreover, the use of PRAs can also provide savings in terms of space and cost by arranging orthogonal polarized together instead of two physically space separation antennas. Here, single and dual port PRAs are proposed. Two techniques are deployed to achieve the PRAs are slits perturbation (switches on the radiating patch) and alteration of the feeding network (switches on the ground plane). Switching mechanism (ideal and PIN diode) is introduced to reconfigure the polarization between left-hand circular polarizations, right-hand circular polarizations, or linear polarization, operating at wireless local area network frequency band (2.4 – 2.5 GHz). Furthermore, by exploiting the odd and even mode of the coplanar waveguide structure, dual ports PRAs are realized with the ability to produce orthogonal linear polarization (LP) and circular polarization (CP) modes simultaneously. Good measured port polarization isolations (S21) of -16.3 dB and -19 dB are obtained at the frequency of 2.45 GHz for configuration A1 (orthogonal LP) and A2 (orthogonal CP), respectively. The proposed PRAs are tested in 2 x 2 MIMO indoor environments to validate their performances by using scalar power correlation method when applied as receiver in both line-of-sight (LOS) and non-line-of-sight (NLOS) scenarios. Channel capacity improvement has been achieved for spatial diversity (92.9% for LOS and 185.9% for NLOS) and polarization diversity (40.7% for LOS and 57.9% for NLOS). The proposed antenna is highly potential to be adopted to enhance the performance of the MIMO system, especially in dealing with multipath environment and space limited applications

    Antenna Designs for 5G/IoT and Space Applications

    Get PDF
    This book is intended to shed some light on recent advances in antenna design for these new emerging applications and identify further research areas in this exciting field of communications technologies. Considering the specificity of the operational environment, e.g., huge distance, moving support (satellite), huge temperature drift, small dimension with respect to the distance, etc, antennas, are the fundamental device allowing to maintain a constant interoperability between ground station and satellite, or different satellites. High gain, stable (in temperature, and time) performances, long lifecycle are some of the requirements that necessitates special attention with respect to standard designs. The chapters of this book discuss various aspects of the above-mentioned list presenting the view of the authors. Some of the contributors are working strictly in the field (space), so they have a very targeted view on the subjects, while others with a more academic background, proposes futuristic solutions. We hope that interested reader, will find a fertile source of information, that combined with their interest/background will allow efficiently exploiting the combination of these two perspectives

    Study of broadband planar dual-polarization antennas for wireless communications

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Geometry Modification Assessment and Design Optimization of Miniaturized Wideband Antennas

    Get PDF
    Maintaining small physical dimensions of antenna structures is an important consideration for contemporary wireless communication systems. Typically, antenna miniaturization is achieved through various topological modifications of the basic antenna geometries. The modifications can be applied to the ground plane, the feed line, and/or antenna radiator. Unfortunately, various topology alteration options are normally reported on a case-to-case basis. The literature is lacking systematic investigations or comparisons of different modification methods and their effects on antenna miniaturization rate as well as electrical performance. Another critical issue—apart from setting up the antenna topology—is a proper adjustment of geometry parameters of the structure so that the optimum design can be identified. Majority of researchers utilize experience-driven parameter sweeping which typically yields designs that are acceptable, but definitely not optimal. Furthermore, in many of the cases, the authors provide a cooperative progression before and after topological modifications that generally lead to a certain reduction of the antenna size, however, with appropriate parameter adjustment missing. Consequently, suitability of particular modifications in the miniaturization context is not conclusively assessed. In order to carry out such an assessment in a reliable manner, identification of the truly optimum design is necessary. This requires rigorous numerical optimization of all antenna parameters (especially in the case of complex antenna topologies) with the primary objective being size reduction, and supplementary constraints imposed on selected electrical or field characteristics. This thesis is an attempt to carry out systematic investigations concerning the relevance of geometry modifications in the context of wideband antenna miniaturization. The studies are carried out based on selected benchmark sets of wideband antennas. In order to ensure a fair comparison, all geometry parameters are rigorously tuned through EM-driven optimization to obtain the minimum footprint while maintaining acceptable electrical performance. The results demonstrate that it is possible to conclusively distinguish certain classes of topology alterations that are generally advantageous in the context of size reduction, as well as quantify the benefits of modifications applied to various parts of the antenna structure, e.g., with feed line modifications being more efficient than the ground plane and radiator ones. Several counterexamples have been discussed as well, indicating that certain modifications can be counterproductive when introduced ad hoc and without proper parameter tuning. The results of these investigations have been utilized to design several instances of novel compact wideband antennas with the focus on isolation improvement and overall antenna size reduction in multi-input-multi-output (MIMO) systems. Experimental validations confirming the numerical findings are also provided. To the best of the author’s knowledge, the presented study is the first systematic investigation of this kind in the literature and can be considered a step towards the development of better, low-cost, and more compact antennas for wireless communication systems.Fyrir þráðlaus fjarskiptakerfi er mikilvægt að tryggja að loftnet séu lítil að umfangi. Yfirleitt er smækkun loftneta náð með ýmis konar formbreytingum á grunngerðum þeirra. Formbreytingarnar geta verið á jarðtengingu, fæðilínu og / eða geislagjafa. Því miður er venjulega einungis sagt frá slíkum formbreytingum fyrir einstaka tilvik. Skortur er á kerfisbundnu mati og samanburði á mismunandi formbreytingum og hvaða áhrif þær hafa á smækkun og raffræðilega eiginleika loftneta. Annað mikilvægt atriði, fyrir utan að ákveða gerð formbreytingarinnar, er að velja stika sem lýsa nákvæmri lögun svo að bestuð hönnun geti átt sér stað. Flestir hönnuðir notast við þá aðferð að notast við stikaskimun sem byggir á reynslugögnum, en sú aðferð skilar almennt ásættanlegri hönnun, þó ekki bestaðri. Einnig er í mörgum tilvikum sagt frá samhliða þróun fyrir og eftir formbreytingu sem leiðir til smækkunar án þess að tilgreina breytingar á stikum. Fyrir vikið er erfitt að meta til hlítar ávinning af mismunandi formbreytingum. Til þess að framkvæma slíkt mat með áreiðanlegum hætti er nauðsynlegt að geta metið bestu hönnunarútfærslu nákvæmlega. Þetta kallar á ítarlega tölulega bestun allra stika sem lýsa loftnetinu (einkum fyrir loftnet flókinnar lögunnar) þar sem aðalmarkmkið bestunar er smækkun en skorður eru settar af raffræðilegum eiginleikum. Í þessari ritgerð er leitast við að kerfisbundna rannsókn á mikilvægi formbreytingna í tengslum við smækkun bandbreiðra loftneta. Rannsóknin byggir á völdum söfnum viðmiðunarloftneta. Til að tryggja rétt mat eru allir stikar er varða lögun stilltir með rafsegulfræðilegri hermun til að tryggja minnst rúmtak með ásættanlegum raffræðilegum eiginleikum. Niðurstöðurnar sýna að unnt er að greina, án vafa, ákveðna flokka formbreytinga sem eru að jafnaði til þess fallnir að smækka loftnet. Auk þessa er hægt að reikna ávinning af formbreytingum mismunandi hluta loftnetsins, t.d. að breytingar á fæðilínu eru almennt hagkvæmari en breytingar á geislagjafa eða jarðtengingu. Þá er greint frá nokkrum tilvikum þar sem tilfallandi formbreytingar geta verið til tjóns ef ekki stikaval er ekki gert með réttum hætti. Niðurstöður þessara rannsóknar hafa verið notaðar til að hanna nokkur nýstárleg breiðbandsloftnet með áherslu á smækkun og bættan aðskilnað fjölgátta (MIMO) loftneta. Töluleg hermun er sannreynd með tilraunum. Að bestu vitund höfundar er hér um fyrstu kerfisbundnu rannsókn þessarar gerðar að ræða og má reikna með að hún leiði til þróunar betri, ódýrari og smærri loftneta fyrir þráðlaus fjarskiptakerfi.The Ph.D. project was supported by the Icelandic Research Center (RANNIS) Grant 16329905

    Highly efficient wearable CPW antenna enabled by EBG-FSS structure for medical body area network applications

    Get PDF
    A wearable fabric CPW antenna is presented for medical body area network (MBAN) applications at 2.4 GHz based on an electromagnetic bandgap design and frequency selective surface (EBG-FSS). Without EBG-FSS, the basic antenna has an omnidirectional radiation pattern, and when operated close to human tissue, the performance and efficiency degrade, and there is a high specific absorption rate. To overcome this problem, the antenna incorporates EBG-FSS, which reduces the backward radiation, with SAR reduced by 95%. The gain is improved to 6.55 dBi and the front-to-back ratio is enhanced by 13 dB compared to the basic antenna. The overall dimensions of the integrated design are 60×60×2.4 mm 3 . Simulation and experimental studies reveal that the antenna integrated with EBG-FSS can tolerate loading by human tissue as well as bending. Thus, the design is a good candidate for MBAN applications
    corecore