97 research outputs found

    High-rate UWB and 60 GHz communications

    Get PDF
    In this chapter, two technologies for high data-rate communications systems for wireless personal area networks (WPANs) are discussed. Namely, the ultrawideband (UWB) technology that operates in the 3.1-10.6 GHz band and the millimeter wave (MMW) technology (also called 60 GHz radio) that can use the 57-64 GHz band in most parts of the world are considered. First, a generic overview is given and various application scenarios are discussed. Then, the ECMA standard for high-rate UWB systems is studied. Finally, two standards for the 60 GHz MMW radio are investigated.Overview and application scenarios In order to realize high-speed communications systems with low power consumption, signals with very large bandwidths need to be employed. One way of designing such communications systems is to use UWB signals as an underlay technology by utilizing all or part of the frequency spectrum between 3.1 and 10.6 GHz [1-3]. According to the US Federal Communications Commission (FCC), a UWB signal is defined as having an absolute bandwidth of at least 500 MHz or a relative (fractional) bandwidth of larger than 20% [3-4].In order not to cause any adverse effects on other wireless systems in the same frequency band, such as IEEE 802.11a wireless local area networks (WLANs), certain power emission limits are imposed on UWB devices by regulatory authorities, such as the FCC in the USA [3] and the Electronic Communications Committee (ECC) in Europe [5]. © Cambridge University Press 2011

    Real-time wireless networks for industrial control systems

    Get PDF
    The next generation of industrial systems (Industry 4.0) will dramatically transform manyproductive sectors, integrating emerging concepts such as Internet of Things, artificialintelligence, big data, cloud robotics and virtual reality, to name a few. Most of thesetechnologies heavily rely on the availability of communication networks able to offernearly–istantaneous, secure and reliable data transfer. In the industrial sector, these tasks are nowadays mainly accomplished by wired networks, that combine the speed ofoptical fiber media with collision–free switching technology. However, driven by the pervasive deployment of mobile devices for personal com-munications in the last years, more and more industrial applications require wireless connectivity, which can bring enormous advantages in terms of cost reduction and flex-ibility. Designing timely, reliable and deterministic industrial wireless networks is a complicated task, due to the nature of the wireless channel, intrinsically error–prone andshared among all the devices transmitting on the same frequency band. In this thesis, several solutions to enhance the performance of wireless networks employed in industrial control applications are proposed. The presented approaches differ in terms of achieved performance and target applications, but they are all characterized by an improvement over existing industrial wireless solutions in terms of timeliness, reliability and determinism. When possible, an experimental validation of the designed solutions is provided. The obtained results prove that significant performance improvements are already possible, often using commercially available devices and preserving compliance to existing standards. Future research efforts, combined with the availability of new chipsets and standards, could lead to a world where wireless links effectively replace most of the existing cables in industrial environments, as it is already the case in the consumer market

    Design and Analysis of Medium Access Control Protocols for Broadband Wireless Networks

    Get PDF
    The next-generation wireless networks are expected to integrate diverse network architectures and various wireless access technologies to provide a robust solution for ubiquitous broadband wireless access, such as wireless local area networks (WLANs), Ultra-Wideband (UWB), and millimeter-wave (mmWave) based wireless personal area networks (WPANs), etc. To enhance the spectral efficiency and link reliability, smart antenna systems have been proposed as a promising candidate for future broadband access networks. To effectively exploit the increased capabilities of the emerging wireless networks, the different network characteristics and the underlying physical layer features need to be considered in the medium access control (MAC) design, which plays a critical role in providing efficient and fair resource sharing among multiple users. In this thesis, we comprehensively investigate the MAC design in both single- and multi-hop broadband wireless networks, with and without infrastructure support. We first develop mathematical models to identify the performance bottlenecks and constraints in the design and operation of existing MAC. We then use a cross-layer approach to mitigate the identified bottleneck problems. Finally, by evaluating the performance of the proposed protocols with analytical models and extensive simulations, we determine the optimal protocol parameters to maximize the network performance. In specific, a generic analytical framework is developed for capacity study of an IEEE 802.11 WLAN in support of non-persistent asymmetric traffic flows. The analysis can be applied for effective admission control to guarantee the quality of service (QoS) performance of multimedia applications. As the access point (AP) becomes the bottleneck in an infrastructure based WLAN, we explore the multiple-input multiple-output (MIMO) capability in the future IEEE 802.11n WLANs and propose a MIMO-aware multi-user (MU) MAC. By exploiting the multi-user degree of freedom in a MIMO system to allow the AP to communicate with multiple users in the downlink simultaneously, the proposed MU MAC can minimize the AP-bottleneck effect and significantly improve the network capacity. Other enhanced MAC mechanisms, e.g., frame aggregation and bidirectional transmissions, are also studied. Furthermore, different from a narrowband system where simultaneous transmissions by nearby neighbors collide with each other, wideband system can support multiple concurrent transmissions if the multi-user interference can be properly managed. Taking advantage of the salient features of UWB and mmWave communications, we propose an exclusive region (ER) based MAC protocol to exploit the spatial multiplexing gain of centralized UWB and mmWave based wireless networks. Moreover, instead of studying the asymptotic capacity bounds of arbitrary networks which may be too loose to be useful in realistic networks, we derive the expected capacity or transport capacity of UWB and mmWave based networks with random topology. The analysis reveals the main factors affecting the network (transport) capacity, and how to determine the best protocol parameters to maximize the network capacity. In addition, due to limited transmission range, multi-hop relay is necessary to extend the communication coverage of UWB networks. A simple, scalable, and distributed UWB MAC protocol is crucial for efficiently utilizing the large bandwidth of UWB channels and enabling numerous new applications cost-effectively. To address this issue, we further design a distributed asynchronous ER based MAC for multi-hop UWB networks and derive the optimal ER size towards the maximum network throughput. The proposed MAC can significantly improve both network throughput and fairness performance, while the throughput and fairness are usually treated as a tradeoff in other MAC protocols

    A Comprehensive Analysis of Literature Reported Mac and Phy Enhancements of Zigbee and its Alliances

    Get PDF
    Wireless communication is one of the most required technologies by the common man. The strength of this technology is rigorously progressing towards several novel directions in establishing personal wireless networks mounted over on low power consuming systems. The cutting-edge communication technologies like bluetooth, WIFI and ZigBee significantly play a prime role to cater the basic needs of any individual. ZigBee is one such evolutionary technology steadily getting its popularity in establishing personal wireless networks which is built on small and low-power digital radios. Zigbee defines the physical and MAC layers built on IEEE standard. This paper presents a comprehensive survey of literature reported MAC and PHY enhancements of ZigBee and its contemporary technologies with respect to performance, power consumption, scheduling, resource management and timing and address binding. The work also discusses on the areas of ZigBee MAC and PHY towards their design for specific applications

    Impulse radio ultra wideband over fiber techniques for broadband in-building network applications

    Get PDF
    In recent years, the demand for high bandwidth and mobility from the end users has been continuously growing. To satisfy this demand, broadband communication technologies that combined the benefit of both wired and wireless are considered as vital solutions. These hybrid optical wireless solutions enable multi-Gbit/s transmission as well as adequate flexibility in terms of mobility. Optical fiber is the ideal medium for such hybrid solution due its signal transparency and wide bandwidth. On the other hand, ultra wideband(UWB) radio over optical fiber technology is considered to be one of the key promising technologies for broadband communication and sensor network applications. The growing interest for UWB is mainly due to its numerous attractive features, such as low power spectral density, tolerance to multipath fading, low probability of interception, coexistence with other wireless services and capability of providing cost-effective > 1 Gb/s transmission. The main idea of UWB over fiber is to deliver UWB radio signals over optical channels, where the optical part serves as a backbone communication infrastructure to carry the UWB signal with a bandwidth of several GHz. This enables multiple novel applications such as: range extension of high speed wireless personal area networks (WPANs), low cost distributed antenna systems, secure and intelligent networks, or delivering broadband services to remote areas. In particular, this thesis deals with novel concepts on shaping and generation of IR-UWB pulses, theoretical and experimental demonstrations over different fiber types, routing of integrated wired/wireless IR-UWB services and effect of fiber types on ranging/localization of IR-UWB-over-fiber systems. Accordingly, this thesis investigates techniques for delivery of high data rate wireless services using impulse radio ultra wideband (IR-UWB) over fiber technology for both access and in-building network applications. To effectively utilize the emission mask imposed for UWB technologies by the Federal Communications Commission(FCC), novel pulse shaping techniques have been investigated and experimentally demonstrated. Comparison of the proposed pulses with conventional ones in terms of the compliance to the FCC-mask requirements, spectral power efficiencies and wireless coverage has been theoretically studied. Simple and efficient optical generation of the new pulse has been experimentally demonstrated. Furthermore, performance evaluation of 2 Gb/s transmission of IR-UWB over different types of fiber such as 25 km silica single-mode, 4.4 km silica multi-mode and 100 m plastic heavily-multi-mode fiber have been performed. To improve the functionalities of in-building networks for the delivery of wireless services; techniques that provide flexibility in terms of dynamic capacity allocation have been investigated. By employing wavelength conversion based on cross-gain modulation in optical semiconductor amplifiers(SOA), routing of three optical channels of IR-UWB over fiber system has been experimentally realized. To reduce the cost of the overall system and share the optical infrastructure, an integrated testbed for wired baseband data and wireless IR-UWB over 1 km SMF-28 fiber has been developed. Accordingly, 1.25 Gb/s wired baseband and 2 Gb/s wireless IR-UWB data have been successfully transmitted over the testbed. Furthermore, to improve the network flexibility, routing of both wired baseband and wireless signals has been demonstrated. Additionally, the ranging and localization capability of IR-UWB over fiber for in-door wireless picocells have been investigated. The effect of different fiber types (4 km SMF, 4.4 km GI-MMF and 100 m PF GI-POF) on the accuracy of the range estimation using time-of-arrival (ToA) ranging technique has been studied. A high accuracy in terms of cm level was achieved due to the combined effect of high bandwidth IR-UWB pulses, short reach fiber and low chromatic dispersion at 1300nm wavelength. Furthermore, ranging/ localization using IR-UWB over fiber system provides additional benefit of centralizing complex processing algorithms, simplifying radio access points, relaxing synchronization requirement, enabling energy-efficient and efficient traffic management networks. All the concepts, design and system experiments presented in this thesis underline the strong potential of IR-UWB for over optical fiber(silica and plastic) techniques for future smart, capacity and energy-efficient broadband in-building network applications

    6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities

    Full text link
    Mobile communications have been undergoing a generational change every ten years or so. However, the time difference between the so-called "G's" is also decreasing. While fifth-generation (5G) systems are becoming a commercial reality, there is already significant interest in systems beyond 5G, which we refer to as the sixth-generation (6G) of wireless systems. In contrast to the already published papers on the topic, we take a top-down approach to 6G. We present a holistic discussion of 6G systems beginning with lifestyle and societal changes driving the need for next generation networks. This is followed by a discussion into the technical requirements needed to enable 6G applications, based on which we dissect key challenges, as well as possibilities for practically realizable system solutions across all layers of the Open Systems Interconnection stack. Since many of the 6G applications will need access to an order-of-magnitude more spectrum, utilization of frequencies between 100 GHz and 1 THz becomes of paramount importance. As such, the 6G eco-system will feature a diverse range of frequency bands, ranging from below 6 GHz up to 1 THz. We comprehensively characterize the limitations that must be overcome to realize working systems in these bands; and provide a unique perspective on the physical, as well as higher layer challenges relating to the design of next generation core networks, new modulation and coding methods, novel multiple access techniques, antenna arrays, wave propagation, radio-frequency transceiver design, as well as real-time signal processing. We rigorously discuss the fundamental changes required in the core networks of the future that serves as a major source of latency for time-sensitive applications. While evaluating the strengths and weaknesses of key 6G technologies, we differentiate what may be achievable over the next decade, relative to what is possible.Comment: Accepted for Publication into the Proceedings of the IEEE; 32 pages, 10 figures, 5 table
    corecore