153 research outputs found

    Network Layer Benchmarking: Investigation of AODV Dependability

    Get PDF

    A simulation based performance comparison of routing protocol on Mobile Ad-hoc Network (proactive, reactive and hybrid)

    Get PDF
    Mobile Ad-hoc Network (MANET) is a collection of wireless mobile nodes which dynamically forms a temporary network without the use of any existing network infrastructure or centralized administration. Recently, there has been a tremendous growth in the sales of laptops, handheld computers, PDA and portable computers. These smaller computers nevertheless can be equipped with megabytes/gigabytes of disk storage, high-resolution color displays, pointing devices and wireless communications adapters. Moreover, since many of these small computers operate for hours with battery power, users are free to move without being constrained by wires. To support such type of scenario MANET has been designed. MANET has several characteristics such as, dynamic topologies, bandwidth-constrained, variable capacity links, energyconstrained operation and limited physical security. There are three types of routing protocols in MANET such as Proactive, Reactive, and Hybrid. In this paper, a detailed simulation based performance study and analysis is performed on these types of routing protocols over MANET. Ad Hoc On-Demand Distance Vector (AODV), and Dynamic MANET On-demand (DYMO) routing protocol (reactive), Optimized Link State Routing protocol (OLSR) (proactive) and Zone Routing Protocol (ZRP) is (hybrid) have been considered in this paper for the investigation and their relative performance is reported

    Utilizing the protected learning calculation method to forestall the Black Hole Attacks in Mobile ad-hoc networks

    Get PDF
    Mobile Ad-hoc Networks (MANETs) are a gathering of portable hosts which speak with each other with no focal system power or altered foundation. Because of its attributes like portability furthermore, heterogeneity ad-hoc networks are more defenseless to assaults. Black hole is an assault where every one of the bundles sent to assailant hub, by neighboring hubs, are dropped purposefully. In this thesis, we propose a secure learning calculation method which intends to identify and securing the black hole by considering the bundle drop reasons in needless mode. Presented AODV direction convention is adjusted to distinguish and securing the black hole assault. The investigation results demonstrate that our proposed calculation secure the AODV against black hole assault in MANETs

    Analysis of interworking functions in heterogeneous networks

    Get PDF
    Future cellular radio networks will enable mobile terminals to communicate in environments populated by a multitude of devices, technologies and business actors using several radio interfaces. In this environment, one important task is to develop common control functions for elements in such networks. One of today's challenges is to provide service continuity in those highly heterogeneous networks. The service continuity can be measured in terms of a satisfied user criteria, which consists e.g. of the perceived end to end data packet delay, i.e. transport layer packet delay. The IEEE 802.21 standard focuses on the support of media independent handover for a broad range of technologies, but with strong emphasis on 802 technologies. The Framework Programme (FP)7 European Project OMEGA investigates the performance of home networks, which consist of technologies like Wireless Local Area Networks (WLAN), Hybrid Wireless Optics (HWO) or Power Line Communications (PLC). The aim of this work is to investigate in the context of the OMEGA project, which functions of the IEEE 802.21 standard are needed in order to co-operate in heterogeneous home networks. Subsequently, their performance in terms of QoS evaluation are developed. One of the most important functions is the path selection since it establishes the flow between source and destination and simultaneously, deals with the reservation of resources. In this work an approach for the identification and selection of possible paths using signal flow graphs analytically has been evaluated. The scheme is based on ad hoc networks and the proposed algorithm is Bandwidth Guaranteed Source Routing (BGSR). The analysis provides information about the required delay in the selection and helps to evaluate the influence of the route selection in the uninterrupted provision of service. Another concept to be considered is the path re-selection mechanism. A comparative analysis of centralized and decentralized solutions is developed using SFGs as well and basing the evaluation on the latency of both mechanisms

    ESAR: Energy Saving Ad Hoc Routing Protocol for Mobile Ad Hoc Networks

    Get PDF
    Mobile ad hoc networks support multi hop routing where the deployment of central base station is neither economic nor easy. Efficient routing of the packets is a major challenge in the ad hoc networks. There exist several proactive (like DSDV etc.) and reactive (Like AODV etc.) routing algorithms for the dynamic networks.The ESAR algorithm selects the path with minimum cost value indicating that the path has the shortest distance to the destination and has the maximum of the minimum available battery power of the node among the different paths. This selected path is chosen as the best path for packet transmission till any node in the path exhausts battery power beyond a threshold value. At this point of time, a backup path having the next lower cost is selected as an alternate path for packet transmission. The process is repeated till all the paths from the same source to destination are exhausted with their battery power. When this situation occurs, the cost of the paths is re-calculated and the process continues. The simulation result of the proposed algorithm ESAR enhances the network life time over the AODV and EEAODR algorithm

    Collaboration Enforcement In Mobile Ad Hoc Networks

    Get PDF
    Mobile Ad hoc NETworks (MANETs) have attracted great research interest in recent years. Among many issues, lack of motivation for participating nodes to collaborate forms a major obstacle to the adoption of MANETs. Many contemporary collaboration enforcement techniques employ reputation mechanisms for nodes to avoid and penalize malicious participants. Reputation information is propagated among participants and updated based on complicated trust relationships to thwart false accusation of benign nodes. The aforementioned strategy suffers from low scalability and is likely to be exploited by adversaries. To address these problems, we first propose a finite state model. With this technique, no reputation information is propagated in the network and malicious nodes cannot cause false penalty to benign hosts. Misbehaving node detection is performed on-demand; and malicious node punishment and avoidance are accomplished by only maintaining reputation information within neighboring nodes. This scheme, however, requires that each node equip with a tamper-proof hardware. In the second technique, no such restriction applies. Participating nodes classify their one-hop neighbors through direct observation and misbehaving nodes are penalized within their localities. Data packets are dynamically rerouted to circumvent selfish nodes. In both schemes, overall network performance is greatly enhanced. Our approach significantly simplifies the collaboration enforcement process, incurs low overhead, and is robust against various malicious behaviors. Simulation results based on different system configurations indicate that the proposed technique can significantly improve network performance with very low communication cost

    A robust routing protocol for wireless mobile ad hoc networks

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Routing protocols for ultra-wideband mobile ad hoc networks

    Get PDF
    [no abstract

    Internet Access and QoS in Ad Hoc Networks

    Get PDF
    It is likely that the increased popularity of wireless local area networks (WLANs) together with the continuous technological advances in wireless communication, also increase the interest for ad hoc networks. An ad hoc network is a wireless, autonomous, infrastructure-less network composed of stations that communicate with each other directly in a peer-to-peer fashion. When discussing mobile ad hoc networks (MANETs), we often refer to an ad hoc network where the stations cooperate in forwarding packets on behalf of each other to allow communication beyond their transmission range over multi-hop paths. In order to realize the practical benefits of ad hoc networks, two challenges (among others) need to be considered: distributed quality of service (QoS) guarantees and multi-hop Internet access. This thesis presents conceivable solutions to both of these problems. The first two papers focus on the network layer and consider the provisioning of Internet access to ad hoc networks whereas the last two papers focus on the data link layer and investigate the provisioning of QoS to ad hoc networks. The first paper studies the interconnection between a MANET and the Internet. In addition, it evaluates three approaches for gateway discovery, which can be initiated by the gateway (proactive method), by the mobile station (reactive method) or by mixing these two approaches (hybrid method). The second paper also studies Internet access for MANETs, but with focus on micro mobility, i.e. mobile stations moving from one gateway to another. In particular, it evaluates a solution that allows mobile stations to access the Internet and roam from gateway to gateway. The third paper, gives an overview of the medium access mechanisms in IEEE 802.11 and their QoS limitations. Moreover, it proposes an enhancement to the contention-free medium access mechanism of IEEE 802.11e to provide QoS guarantees in WLANs operating in ad hoc network configuration. The fourth paper continues the work from the third paper by enhancing the scheme and dealing with the problems that occur due to hidden stations. Furthermore, it discusses how to deal with the problems that occur when moving from single-hop ad hoc networks (i.e. WLANs in ad hoc network configuration) to multi-hop ad hoc networks

    Evaluation of Feature Reduction using Principal Component Analysis and Sequential Pattern Matching for Manet

    Get PDF
    In Mobile Ad hoc Networks (MANETs) there are some security problems because of portability, element topology changes, and absence of any framework. In MANETs, it is of extraordinary significance to identify inconsistency and malignant conduct. With a specific end goal to recognize malignant assaults by means of interruption identification frameworks and dissect the information set, we have to choose some components. Thus, highlight determination assumes basic part in recognizing different assaults. In the writing, there are a few recommendations to choose such elements. For the most part, Principal Component Analysis (PCA) breaks down the information set and the chose highlights. In this paper, we have gathered a list of capabilities from some cutting edge works in the writing. Really, our reproduction demonstrates this list of capabilities identify inconsistency conduct more precise. Likewise, interestingly, we utilize PCA for investigating the information set. In contrast to PCA, our results show Sequential pattern mining (SPM) cannot be affected by outlier data within the network. The  normal and attack states are simulated and the results are analyzed using NS2 simulator
    corecore