6 research outputs found

    Investigating word affect features and fusion of probabilistic predictions incorporating uncertainty in AVEC 2017

    Full text link
    © 2017 Association for Computing Machinery. Predicting emotion intensity and severity of depression are both challenging and important problems within the broader field of affective computing. As part of the AVEC 2017, we developed a number of systems to accomplish these tasks. In particular, word affect features, which derive human affect ratings (e.g. arousal and valence) from transcripts, were investigated for predicting depression severity and liking, showing great promise. A simple system based on the word affect features achieved an RMSE of 6.02 on the test set, yielding a relative improvement of 13.6% over the baseline. For the emotion prediction sub-challenge, we investigated multimodal fusion, which incorporated a measure of uncertainty associated with each prediction within an Output-Associative fusion framework for arousal and valence prediction, whilst liking prediction systems mainly focused on text-based features. Our best emotion prediction systems provided significant relative improvements over the baseline on the test set of 39.5%, 17.6%, and 29.3% for arousal, valence, and liking. Of particular note is that consistent improvements were observed when incorporating prediction uncertainty across various system configurations for predicting arousal and valence, suggesting the importance of taking into consideration prediction uncertainty for fusion and more broadly the advantages of probabilistic predictions

    Intelligent Advanced User Interfaces for Monitoring Mental Health Wellbeing

    Get PDF
    It has become pressing to develop objective and automatic measurements integrated in intelligent diagnostic tools for detecting and monitoring depressive states and enabling an increased precision of diagnoses and clinical decision-makings. The challenge is to exploit behavioral and physiological biomarkers and develop Artificial Intelligent (AI) models able to extract information from a complex combination of signals considered key symptoms. The proposed AI models should be able to help clinicians to rapidly formulate accurate diagnoses and suggest personalized intervention plans ranging from coaching activities (exploiting for example serious games), support networks (via chats, or social networks), and alerts to caregivers, doctors, and care control centers, reducing the considerable burden on national health care institutions in terms of medical, and social costs associated to depression cares

    Natural Language Processing Methods for Acoustic and Landmark Event-Based Features in Speech-Based Depression Detection

    Full text link
    The processing of speech as an explicit sequence of events is common in automatic speech recognition (linguistic events), but has received relatively little attention in paralinguistic speech classification despite its potential for characterizing broad acoustic event sequences. This paper proposes a framework for analyzing speech as a sequence of acoustic events, and investigates its application to depression detection. In this framework, acoustic space regions are tokenized to 'words' representing speech events at fixed or irregular intervals. This tokenization allows the exploitation of acoustic word features using proven natural language processing methods. A key advantage of this framework is its ability to accommodate heterogeneous event types: herein we combine acoustic words and speech landmarks, which are articulation-related speech events. Another advantage is the option to fuse such heterogeneous events at various levels, including the embedding level. Evaluation of the proposed framework on both controlled laboratory-grade supervised audio recordings as well as unsupervised self-administered smartphone recordings highlight the merits of the proposed framework across both datasets, with the proposed landmark-dependent acoustic words achieving improvements in F1(depressed) of up to 15% and 13% for SH2-FS and DAIC-WOZ respectively, relative to acoustic speech baseline approaches

    An Ordinal Approach to Affective Computing

    Full text link
    Both depression prediction and emotion recognition systems are often based on ordinal ground truth due to subjectively annotated datasets. Yet, both have so far been posed as classification or regression problems. These naive approaches have fundamental issues because they are not focused on ordering, unlike ordinal regression, which is the most appropriate for truly ordinal ground truth. Ordinal regression to date offers comparatively fewer, more limited methods when compared with other branches in machine learning, and its usage has been limited to specific research domains. Accordingly, this thesis presents investigations into ordinal approaches for affective computing by describing a consistent framework to understand all ordinal system designs, proposing ordinal systems for large datasets, and introducing tools and principles to select suitable system designs and evaluation methods. First, three learning approaches are compared using the support vector framework to establish the empirical advantages of ordinal regression, which is lacking from the current literature. Results on depression and emotion corpora indicate that ordinal regression with proper tuning can improve existing depression and emotion systems. Ordinal logistic regression (OLR), which is an extension of logistic regression for ordinal scales, contributes to a number of model structures, from which the best structure must be chosen. Exploiting the newly proposed computationally efficient greedy algorithm for model structure selection (GREP), OLR outperformed or was comparable with state-of-the-art depression systems on two benchmark depression speech datasets. Deep learning has dominated many affective computing fields, and hence ordinal deep learning is an attractive prospect. However, it is under-studied even in the machine learning literature, which motivates an in-depth analysis of appropriate network architectures and loss functions. One of the significant outcomes of this analysis is the introduction of RankCNet, a novel ordinal network which utilises a surrogate loss function of rank correlation. Not only the modelling algorithm but the choice of evaluation measure depends on the nature of the ground truth. Rank correlation measures, which are sensitive to ordering, are more apt for ordinal problems than common classification or regression measures that ignore ordering information. Although rank-based evaluation for ordinal problems is not new, so far in affective computing, ordinality of the ground truth has been widely ignored during evaluation. Hence, a systematic analysis in the affective computing context is presented, to provide clarity and encourage careful choice of evaluation measures. Another contribution is a neural network framework with a novel multi-term loss function to assess the ordinality of ordinally-annotated datasets, which can guide the selection of suitable learning and evaluation methods. Experiments on multiple synthetic and affective speech datasets reveal that the proposed system can offer reliable and meaningful predictions about the ordinality of a given dataset. Overall, the novel contributions and findings presented in this thesis not only improve prediction accuracy but also encourage future research towards ordinal affective computing: a different paradigm, but often the most appropriate
    corecore