74 research outputs found

    Investigating Generative Adversarial Networks based Speech Dereverberation for Robust Speech Recognition

    Full text link
    We investigate the use of generative adversarial networks (GANs) in speech dereverberation for robust speech recognition. GANs have been recently studied for speech enhancement to remove additive noises, but there still lacks of a work to examine their ability in speech dereverberation and the advantages of using GANs have not been fully established. In this paper, we provide deep investigations in the use of GAN-based dereverberation front-end in ASR. First, we study the effectiveness of different dereverberation networks (the generator in GAN) and find that LSTM leads a significant improvement as compared with feed-forward DNN and CNN in our dataset. Second, further adding residual connections in the deep LSTMs can boost the performance as well. Finally, we find that, for the success of GAN, it is important to update the generator and the discriminator using the same mini-batch data during training. Moreover, using reverberant spectrogram as a condition to discriminator, as suggested in previous studies, may degrade the performance. In summary, our GAN-based dereverberation front-end achieves 14%-19% relative CER reduction as compared to the baseline DNN dereverberation network when tested on a strong multi-condition training acoustic model.Comment: Interspeech 201

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    HiFi-GAN: High-Fidelity Denoising and Dereverberation Based on Speech Deep Features in Adversarial Networks

    Full text link
    Real-world audio recordings are often degraded by factors such as noise, reverberation, and equalization distortion. This paper introduces HiFi-GAN, a deep learning method to transform recorded speech to sound as though it had been recorded in a studio. We use an end-to-end feed-forward WaveNet architecture, trained with multi-scale adversarial discriminators in both the time domain and the time-frequency domain. It relies on the deep feature matching losses of the discriminators to improve the perceptual quality of enhanced speech. The proposed model generalizes well to new speakers, new speech content, and new environments. It significantly outperforms state-of-the-art baseline methods in both objective and subjective experiments.Comment: Accepted by INTERSPEECH 202

    Blind Restoration of Real-World Audio by 1D Operational GANs

    Full text link
    Objective: Despite numerous studies proposed for audio restoration in the literature, most of them focus on an isolated restoration problem such as denoising or dereverberation, ignoring other artifacts. Moreover, assuming a noisy or reverberant environment with limited number of fixed signal-to-distortion ratio (SDR) levels is a common practice. However, real-world audio is often corrupted by a blend of artifacts such as reverberation, sensor noise, and background audio mixture with varying types, severities, and duration. In this study, we propose a novel approach for blind restoration of real-world audio signals by Operational Generative Adversarial Networks (Op-GANs) with temporal and spectral objective metrics to enhance the quality of restored audio signal regardless of the type and severity of each artifact corrupting it. Methods: 1D Operational-GANs are used with generative neuron model optimized for blind restoration of any corrupted audio signal. Results: The proposed approach has been evaluated extensively over the benchmark TIMIT-RAR (speech) and GTZAN-RAR (non-speech) datasets corrupted with a random blend of artifacts each with a random severity to mimic real-world audio signals. Average SDR improvements of over 7.2 dB and 4.9 dB are achieved, respectively, which are substantial when compared with the baseline methods. Significance: This is a pioneer study in blind audio restoration with the unique capability of direct (time-domain) restoration of real-world audio whilst achieving an unprecedented level of performance for a wide SDR range and artifact types. Conclusion: 1D Op-GANs can achieve robust and computationally effective real-world audio restoration with significantly improved performance. The source codes and the generated real-world audio datasets are shared publicly with the research community in a dedicated GitHub repository1

    CMGAN: Conformer-Based Metric-GAN for Monaural Speech Enhancement

    Full text link
    Convolution-augmented transformers (Conformers) are recently proposed in various speech-domain applications, such as automatic speech recognition (ASR) and speech separation, as they can capture both local and global dependencies. In this paper, we propose a conformer-based metric generative adversarial network (CMGAN) for speech enhancement (SE) in the time-frequency (TF) domain. The generator encodes the magnitude and complex spectrogram information using two-stage conformer blocks to model both time and frequency dependencies. The decoder then decouples the estimation into a magnitude mask decoder branch to filter out unwanted distortions and a complex refinement branch to further improve the magnitude estimation and implicitly enhance the phase information. Additionally, we include a metric discriminator to alleviate metric mismatch by optimizing the generator with respect to a corresponding evaluation score. Objective and subjective evaluations illustrate that CMGAN is able to show superior performance compared to state-of-the-art methods in three speech enhancement tasks (denoising, dereverberation and super-resolution). For instance, quantitative denoising analysis on Voice Bank+DEMAND dataset indicates that CMGAN outperforms various previous models with a margin, i.e., PESQ of 3.41 and SSNR of 11.10 dB.Comment: 16 pages, 10 figures and 5 tables. arXiv admin note: text overlap with arXiv:2203.1514

    Deep Learning Based Speech Enhancement and Its Application to Speech Recognition

    Get PDF
    Speech enhancement is the task that aims to improve the quality and the intelligibility of a speech signal that is degraded by ambient noise and room reverberation. Speech enhancement algorithms are used extensively in many audio- and communication systems, including mobile handsets, speech recognition, speaker verification systems and hearing aids. Recently, deep learning has achieved great success in many applications, such as computer vision, nature language processing and speech recognition. Speech enhancement methods have been introduced that use deep-learning techniques, as these techniques are capable of learning complex hierarchical functions using large-scale training data. This dissertation investigates the deep learning based speech enhancement and its application to robust Automatic Speech Recognition (ASR). We start our work by exploring generative adversarial network (GAN) based speech enhancement. We explore the techniques to extract information about the noise to aid in the reconstruction of the speech signals. The proposed framework, referred to as ForkGAN, is a novel general adversarial learning-based framework that combines deep-learning with conventional noise reduction techniques. We further extend ForkGAN to M-ForkGAN, which integrates feature mapping and mask learning into a unified framework using ForkGAN. Another variant of ForkGAN, named S-ForkGAN, operates on spectral-domain features, which could directly apply to ASR. Systematic evaluations demonstrate the effectiveness of the proposed approaches. Then, we propose a novel multi-stage learning speech enhancement system. Each stage comprises a self-attention (SA) block followed by stacks of temporal convolutional network (TCN) blocks with doubling dilation factors. Each stage generates a prediction that is refined in a subsequent stage. A fusion block is inserted at the input of later stages to re-inject original information. Moreover, we design several multi-scale architectures with perceptual loss. Experiments show that our proposed architectures can achieve the state of the art performance on several public datasets. Recently, modeling to learn the acoustic noisy-clean speech mapping has been enhanced by including auxiliary information such as visual cues, phonetic and linguistic information, and speaker information. We propose a novel speaker-aware speech enhancement (SASE) method that extracts speaker information from a clean reference using long short-term memory (LSTM) layers, and then uses a convolutional recurrent neural network (CRN) to embed the extracted speaker information. The SASE framework is extended with a self-attention mechanism. It is shown that a few seconds of clean reference speech is sufficient, and that the proposed SASE method performs well for a wide range of scenarios. Even though speech enhancement methods that are based on deep learning have demonstrated state-of-the-art performance when compared with conventional methodologies, current deep learning approaches heavily rely on supervised learning, which requires a large number of noisy- and clean-speech sample pairs for training. This is generally not practical in a realistic environment. One cannot simultaneously obtain both noisy and clean speech samples. Thus, most speech enhancement approaches are trained with simulated speech and clean targets. In addition, it would be hard to collect large-scale dataset for the low-resource languages. We propose a novel noise-to-noise speech enhancement (N2N-SE) method that addresses the parallel noisy-clean training data issue, we leverage signal reconstruction techniques by only using corrupted speech. The proposed N2N-SE framework includes a noise conversion module that is an auto-encoder that learns to mix noise with speech, and a speech enhancement module, that learns to reconstruct corrupted speech signals. In addition to additive noise, speech is also affected by reverberation, which is caused by the attenuated and delayed reflections of sound waves. These distortions, particularly when combined, can severely degrade speech intelligibility for human listeners and impact applications, e.g., automatic speech recognition (ASR) and speaker recognition. Thus, effective speech denoising and dereverberation will benefit both speech processing applications and human listeners. We investigate the deep-learning based approaches for both speech dereverberation and speech denoising using the cascade Conformer architecture. The experimental results show that the proposed cascade Conformer can be effective to suppress the noise and reverberation
    corecore