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Abstract

Speech enhancement is the task that aims to improve the quality and the intelligibility of

a speech signal that is degraded by ambient noise and room reverberation. Speech enhancement

algorithms are used extensively in many audio- and communication systems, including mobile hand-

sets, speech recognition, speaker verification systems and hearing aids. Recently, deep learning has

achieved great success in many applications, such as computer vision, nature language processing

and speech recognition. Speech enhancement methods have been introduced that use deep-learning

techniques, as these techniques are capable of learning complex hierarchical functions using large-

scale training data. This dissertation investigates the deep learning based speech enhancement and

its application to robust Automatic Speech Recognition (ASR).

We start our work by exploring generative adversarial network (GAN) based speech enhance-

ment. We explore the techniques to extract information about the noise to aid in the reconstruction

of the speech signals. The proposed framework, referred to as ForkGAN, is a novel general ad-

versarial learning-based framework that combines deep-learning with conventional noise reduction

techniques. We further extend ForkGAN to M-ForkGAN, which integrates feature mapping and

mask learning into a unified framework using ForkGAN. Another variant of ForkGAN, named S-

ForkGAN, operates on spectral-domain features, which could directly apply to ASR. Systematic

evaluations demonstrate the effectiveness of the proposed approaches.

Then, we propose a novel multi-stage learning speech enhancement system. Each stage

comprises a self-attention (SA) block followed by stacks of temporal convolutional network (TCN)

blocks with doubling dilation factors. Each stage generates a prediction that is refined in a subse-

quent stage. A fusion block is inserted at the input of later stages to re-inject original information.

Moreover, we design several multi-scale architectures with perceptual loss. Experiments show that

our proposed architectures can achieve the state of the art performance on several public datasets.
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Recently, modeling to learn the acoustic noisy-clean speech mapping has been enhanced by

including auxiliary information such as visual cues, phonetic and linguistic information, and speaker

information. We propose a novel speaker-aware speech enhancement (SASE) method that extracts

speaker information from a clean reference using long short-term memory (LSTM) layers, and then

uses a convolutional recurrent neural network (CRN) to embed the extracted speaker information.

The SASE framework is extended with a self-attention mechanism. It is shown that a few seconds

of clean reference speech is sufficient, and that the proposed SASE method performs well for a wide

range of scenarios.

Even though speech enhancement methods that are based on deep learning have demon-

strated state-of-the-art performance when compared with conventional methodologies, current deep

learning approaches heavily rely on supervised learning, which requires a large number of noisy- and

clean-speech sample pairs for training. This is generally not practical in a realistic environment.

One cannot simultaneously obtain both noisy and clean speech samples. Thus, most speech en-

hancement approaches are trained with simulated speech and clean targets. In addition, it would be

hard to collect large-scale dataset for the low-resource languages. We propose a novel noise-to-noise

speech enhancement (N2N-SE) method that addresses the parallel noisy-clean training data issue,

we leverage signal reconstruction techniques by only using corrupted speech. The proposed N2N-SE

framework includes a noise conversion module that is an auto-encoder that learns to mix noise with

speech, and a speech enhancement module, that learns to reconstruct corrupted speech signals.

In addition to additive noise, speech is also affected by reverberation, which is caused by

the attenuated and delayed reflections of sound waves. These distortions, particularly when com-

bined, can severely degrade speech intelligibility for human listeners and impact applications, e.g.,

automatic speech recognition (ASR) and speaker recognition. Thus, effective speech denoising and

dereverberation will benefit both speech processing applications and human listeners. We inves-

tigate the deep-learning based approaches for both speech dereverberation and speech denoising

using the cascade Conformer architecture. The experimental results show that the proposed cascade

Conformer can be effective to suppress the noise and reverberation.
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Chapter 1

Introduction

In modern day life, our interactions with voice-based devices and services continue to in-

crease, such as personal assistant devices. However, in real-world environments, speech is inevitably

degraded by various noises like environmental noises such as traffic noise, alarms, other speaker’s

speech, and electrical noise from devices such as refrigerators, air conditioning and so forth. Besides

additive background noise, reverberation is another major distortion that we encounter in daily life.

Reverberation is typically caused by time-delayed reflections of sound waves in an enclosed space

(e.g., a conferencing room). Monaural (single-channel) speech enhancement is the task that is used

to improve the quality and the intelligibility of a speech signal that is degraded by ambient noise

and reverberation. Speech enhancement is essential both for interhuman communications and for

human-to-computer communication, where spoken language is converted into text by computers,

a process referred to as automatic speech recognition. Monaural speech enhancement is extremely

challenging [115] due to lacking of spatial information provided by a microphone array. It is used

extensively in many audio- and communication systems, including mobile handsets, speaker verifi-

cation systems and hearing aids. Popular classic techniques include spectral-subtraction algorithms,

statistical model-based methods that use maximum-likelihood (ML) estimators, Bayesian estima-

tors, minimum mean squared error (MMSE) methods, subspace algorithms based on single value

decomposition and noise-estimation algorithms (see [65] and references therein).

Modern techniques often use deep learning. Early examples include a recurrent neural

network (RNN) to model long-term acoustic characteristics [70], and a deep auto-encoder that

denoises speech signals with greedy layer-oriented pre-training [66]. In [124], a deep neural network

1



(DNN) was used as a non-linear regression function. In [100], a convolutional recurrent neural

network (CRN) was used, consisting of a convolutional encoder-decoder architecture and multiple

long short-term memory (LSTM) layers that aim to capture long-context information. Other speech

enhancement systems use a generative adversarial network (GAN), which is known for its ability

to generate natural-looking signals in the time or frequency domain [83, 18, 3]. Recent studies

consider the use of an attention mechanism [22, 44, 130, 51, 82, 129]. Self-attention [113] is an

efficient context information aggregation mechanism that operates on the input sequence itself and

that can be utilized for any task that has a sequential input and output. In [82], self-attention is

combined with a dense convolutional neural network. A time-frequency (T-F) attention method,

proposed in [129], combines time-domain and frequency-domain attention to perform denoising and

dereverberation at the same time.

Recent research shows that models based on a temporal convolutional network (TCN)

achieve excellent performance for text-to-speech [110], speech enhancement [81, 127, 52, 49, 64],

and speech separation [69]. A TCN consists of dilated 1-D convolutions that create a large tem-

poral receptive field with fewer parameters than other models. In [127], a speech enhancement

system was proposed that uses a multi-branch TCN, in short MB-TCN, which effectively performs

a split-transform-aggregate operation and enables the model to learn and determine an accurate

representation by aggregating the information from each branch. In [49], the TCN used in [69]

for speech separation was adapted for speech enhancement and integrated in a multi-layer encoder-

decoder architecture. The use of a complex Short-Time Fourier transform (STFT) for TCN-based

speech enhancement rather than magnitude or time-domain features was investigated in [52].

Recently, in addition to directly mapping the noisy signal to clean signal, modeling to

learn the acoustic noisy-clean speech mapping has been enhanced by including auxiliary information

such as visual cues [31], phonetic and linguistic information [59, 67], and speaker information [8].

In particular, the utilization of three kinds of broad phonetic class (BPC) information for speech

enhancement can achieve notable improvements [67]. In [8], a speaker-aware deep denoising auto-

encoder (SaDAE) extracts speaker representation from the noisy input using a DNN model. Target

speaker extraction was investigated in [119, 40, 86].

The above-mentioned methods can generally be classified as feature-mapping and mask-

learning methods, which are two commonly used deep-learning approaches for single-channel speech

enhancement methods for stereo data. Feature mapping approaches enhance the noisy features using
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a mapping network that minimizes the mean square error between the enhanced and clean features.

Mask-learning approaches estimate the ideal ratio mask, the ideal binary mask or the complex ratio

mask, and then use this mask to filter noisy speech signals and reconstruct the clean speech signals.

Mask-learning methods usually perform better than feature mapping methods in terms of speech

quality metrics [120, 6, 75].

Even though speech enhancement methods that are based on deep learning have demon-

strated the state-of-the-art performance when compared with conventional methodologies, they have

the following limitations: current deep learning approaches heavily rely on supervised learning, which

requires a large number of noisy- and clean-speech sample pairs for training. This is generally not

practical in a realistic environment. One cannot simultaneously obtain both noisy and clean speech

samples. Thus, most speech enhancement approaches are trained with simulated speech and clean

targets. Another case is that we cannot collect large-scale dataset for the low-resources languages.

The challenge therefore is to effectively train a deep model for speech enhancement without using

clean speech samples.

In addition, in daily listening environments, speech is inevitably corrupted by background

noise. Besides additive noises, reverberation caused by the attenuated and delayed reflections of

sound waves in a room is another major distortion that we face everyday. Besides speech denois-

ing only, deep learning based speech enhancement under noisy-reverberant condition is also worth

exploring. In [27], a DNN based approach was proposed to learn a nonlinear mapping from the

log magnitude spectrum of noisy-reverberant speech to that of clean-anechoic speech. Two-stage

approaches are investigated in [131], where noise and reverberation were removed in two separate

stages, respectively.

1.1 Problem Formulation

The objective of a monaural speech enhancement module is to filter a received noisy speech

signal and to generate an enhanced signal that is as close as possible to the original speech signal.

Let {x(t)|t ∈ Z} denote a deterministic discrete-time data sequence that is obtained by sampling a

received continuous-time noisy speech signal. v(t) and s(t) denote noise and clean speech signal. As

such,

x(t) = v(t) + s(t), (1.1)
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the quantitative objective of the speech enhancement module is to output a signal ŝ that is as close

as possible to the original speech signal s.

Time-domain based speech enhancement approaches directly operate on waveform signal.

For frequency-domain based speech enhancement, a short-time Fourier transform (STFT) is applied

on time-domain signals. The STFT of length N of {x(t)} with window function w(t) of length N

and hop-length Th is given by

Xτ,ω =

N−1∑

n=0

w(n)x(τTh + n) exp

(
−j 2πωn

N

)
, (1.2)

where τ is the index of the sliding window and 0 ≤ ω < N is the frequency index. In this dissertation,

a Hanning window is used, where

w(t) = sin2

(
πt

N − 1

)
. (1.3)

Let X and Ω denote the STFT magnitude and phase, i.e., X = {|Xτ,ω|} ∈ RF×T and Ω ∈ RF×T ,

where F = N/2 + 1 denotes the number of frequency bins and T = T`/Th + 1. Similarly, the

frequency-domain representation of noisy signal can be written as:

X = V + S. (1.4)

In addition to directly spectral-mapping, previous studies have shown that estimating mask

usually achieve better performance in terms of speech quality metrics. Two commonly used masks

are ideal ratio mask (IRM) and ideal binary mask (IBM). The IBM is a time-frequency (T-F) mask

constructed from premixed signals. For each T-F unit, the corresponding mask value is set to 1 if

the local SNR is greater than a local criterion (denoted as LC), otherwise it is set to 0. IBM is

defined as:

IBM(t, f) =





1, SNR(t, f) > LC

0, otherwise,

(1.5)

where SNR(t, f) denotes the local SNR within the T-F unit at time t and frequency f . The IRM is

defined as follows:

IRM(t, f) =

√
|S(t, f)|2

|S(t, f)|2 + |V (t, f)|2 , (1.6)
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where S(t, f)2 and V (t, f)2 represent the clean speech energy and noise energy with a T-F unit,

respectively. The enhanced speech can be obtained by the following equation:

Ŝ = MASK�X (1.7)

where the operator � denotes the Hadamard product and MASK denotes IBM or IRM.

For the noisy-reverberant condition, let h(t) denotes room impulse response (RIR) function,

the noisy-reverberant speech y(t) can be expressed as:

y(t) = v(t) + s(t) ∗ h(t) = v(t) + z(t) (1.8)

where ∗ stands for the convolution operator; s(t) and z(t) denote anechoic speech and its reverberant

speech, respectively. The objective of noisy-reverberant speech enhancement is to recover s(t) from

the observed y(t).

1.2 Dissertation Research

In this dissertation, we aim to develop monaural speech enhancement systems to improve

speech intelligibility and quality of a speech signal that is degraded by ambient noise and reverber-

ation. We have proposed several novel architectures for speech enhancement and the contributions

can be summarized as follows:

• Generative adversarial network (GAN) have shown great success in many applications, e.g.,

speech synthesis, image processing. We first explore GAN based speech enhancement ap-

proaches. We proposed a novel GAN based speech enhancement framework, named ForkGAN,

which decouples the noisy signal into speech and noise simultaneously in the time domain, and

then uses the estimated noise signal to aid in the reconstruction of the speech signals. We

further extend ForkGAN to M-ForkGAN, which takes the advantages of mask-learning based

speech enhancement. Finally, we investigate the frequency-domain based ForkGAN in which

the enhanced feature can be directly fed into ASR module.

• Recent studies show that self-attention [113] is an efficient context information aggregation

mechanism. TCN is comprised of dilated 1-D convolutions that have a large temporal recep-
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tive field with fewer parameters than other models. We proposed a self-attentive temporal

convolutional network (SA-TCN) for speech enhancement, in which the self-attention can be

used for modeling the cross channel information and TCN is used to learn the longer context

dependency. Furthermore, we also investigate a multi-stage SA-TCN, in which each stage

generates a prediction that is refined in a subsequent stage.

• TCN are typically stacked multiple layers to model a longer temporal contextual field, in

which the dilation rate in each block is exponentially increased. As the number of layers

increases, the resulting large dilation rate makes the model pay more attention to long term

dependency. However, the corresponding local information may be neglected in the higher

layers. To mitigate these limitations, we propose three multi-scale TCN architectures for

speech denoising. The first architecture refers to TCN-dual, which has intra-parallel dilation

rates in the TCN block. The second architecture refers to TCN-flatten, in which we adopt a

fixed number of dilation rates. It re-samples the feature maps to learn the representations from

large effective receptive field. Instead of directly concatenating the parallel outputs that are

fed into a convolutional based fusion layer, we adopt the pyramid dilated convolutions, which

uses the hierarchical feature fusion (HFF) [72]. We named this architecture to TCN-pyramid.

In addition, we also explored several loss functions and their combination for our proposed

framework.

• Previous studies have shown that auxiliary information is also useful for improving the per-

formance of speech enhancement. Given that it is generally possible to collect a few seconds

of clean reference speech in applications, e.g., similar to a smart virtual assistant that needs

a few-second clean speech record during its setup stage, or extracted from (prior) high-SNR

recordings, it is worthwhile investigating how a few seconds of clean reference can be best

used to improve speech enhancement performance. We propose a novel speaker-aware speech

enhancement (SASE), which extracts speaker information from a clean reference using long

short-term memory (LSTM) layers, and then uses a convolutional recurrent neural network

(CRN) to embed the extracted speaker information. It will be shown that a few seconds of

clean reference speech is sufficient, and that the proposed SASE method performs well for a

wide range of scenarios.

• Most existing speech enhancement approaches rely on noisy-clean paired training data, which
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typically is the simulated data. This is generally not practical in a realistic environment,

where only corrupted speech is available. This could have a mismatch between the training and

testing. To resolve the parallel noisy-clean training data issue, we propose a novel noise-to-noise

speech enhancement (N2N-SE) method that leverages signal reconstruction techniques [56, 53,

108] by only using corrupted speech.

• The combination of room reverberation and background noise is particularly disruptive for

speech perception. For the noisy-reverberant condition, we compare the performance between

one-stage and two-stage approaches using more advanced techniques, e.g., Conformer [26]. In

addition, we also explore different training strategies for two-stage approaches.

1.3 Contributions and Outline

The reminder of this dissertation is organized as follows.

Chapter 2 explores the ways of Generative adversarial network (GAN) based speech en-

hancement. We propose a novel framework that decouples the noisy speech into speech and noise

components and the estimated noise information is used to aid speech enhancement performance.

Chapter 3 presents the details and design architectures of the proposed self-attentive multi-

stage temporal neural networks. The idea is to utilize multi-stage learning which is an effective

technique to invoke multiple deep-learning modules sequentially.

Chapter 4 explores three multi-scale TCN architectures that learn the feature represen-

tations using multiple dilate rates in each TCN blocks. Several training targets are explored for

the proposed architectures and we also compare the performance with top systems on the INTER-

SPEECH2020 DNS challenge.

Chapter 5 studies a novel speaker-aware speech enhancement (SASE) method that extracts

speaker information using neural networks. We explore to use only a few seconds clean reference

speech, which can be collected in the real applications and devices.

Chapter 6 investigates the speech enhancement approach using non-parallel noisy-clean

paired data. Our proposed framework contains a noise conversion module and a speech enhancement

module. The noise conversion module, which is an auto-encoder, generates diverse noise augmented

speech data. The speech enhancement module uses the generated multiple noisy speech signal as

targets to filter out original clean signals.
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Chapter 7 presents a two-stage speech enhancement method where denoising and derever-

beration are performed sequentially using a cascaded conformer. Multiple training strategies are

investigated.

Chapter 8 concludes this dissertation and discusses future directions.
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Chapter 2

Generative Adversarial

Network-Based Speech

Enhancement

This chapter presents the Generative adversarial network (GAN) based speech enhancement

approaches. The work presented in this chapter has been published in INTERSPEECH2019 [61]

and INTERSPEECH2020 [60].

2.1 Introduction

Several speech enhancement methods have been developed and refined during the last sev-

eral decades, including spectral-subtraction algorithms, statistical model-based methods that use

maximum-likelihood (ML) estimators, Bayesian estimators, minimum mean squared error (MMSE)

methods, subspace algorithms based on single value decomposition and noise-estimation algorithms [65,

94, 4].

Recently, speech enhancement methods have been introduced that use deep-learning tech-

niques, as these techniques are capable of learning complex hierarchical functions using training

data, see [23] and references therein. In [70], a recurrent neural network (RNN) was used to model

long-term acoustic characteristics, and in [66], a deep auto-encoder was used to denoise the signal
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by employing a greedy layer-wise pre-training-with-fine-tuning strategy. In [124], a deep neural

network (DNN) was used as a non-linear regression function. In the training phase, a DNN-based

regression model was trained using the log-power spectral features from pairs of noisy and clean

speech data. Large training sets were used that encompassed many possible combinations of speech

and noise types. Further enhancements were made to improve the DNN-based system, including

global variance equalization and noise-aware training strategies. The resulting system outperforms

MMSE-based techniques in terms of perceptive and objective measures. However, DNN methods re-

quire additional feature extraction steps. More recent contributions propose to use an auto-encoder

that processes the received speech waveform, and a generative adversarial network (GAN) [24] that

has been trained with samples from multiple speakers and a wide variety of noise conditions [83, 23].

In [79], the auto-encoder was replaced by a multi-layer feed-forward network, and the performance

was determined when using an L1- and an L2-norm for training. In [13], it was proposed to op-

erate a GAN on log-Mel filter bank spectra instead of waveforms, and in [98], source separation

was achieved using a Wasserstein-GAN based method [2]. The latter was shown to outperform con-

ventional generative source separation methods such as non-negative matrix factorization (NMF)

algorithms [55].

2.2 GAN Concept

Let x ∈ Rn denote a received n-sample noisy speech signal that is fed to the speech en-

hancement module, and let s denote the clean speech waveform. The quantitative objective of the

speech enhancement module is to output a signal ŝ that is as close as possible to the original speech

signal s.

In the context of deep learning, speech enhancement can be viewed as a generative model

that conditions on a noisy speech signal. Instead of learning an input-output mapping, one can also

employ a generative adversarial network (GAN), which directly learns the data distribution without

explicitly defining the objective function. As such, speech enhancement can be inherently embedded

into a GAN-based framework to learn non-linear filtering functions. The speech enhancement gen-

erative adversarial network (SEGAN) model, which was introduced in [83], and its variants, e.g., in

[73], achieve state-of-the-art performance that is comparable to DNN methods. The SEGAN model

can be reformulated such that it is expressed as a combination of two networks: 1) a generator
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network G that extracts the latency representation c ∈ Rd of the noisy speech signal x ∈ Rn and

2) a discriminator network D that learns the implicit loss. Generator G takes a noisy speech signal

x as input and uses the encoder operation c = Φ(x) to extract its latency representation c ∈ Rd.

The generator G then performs the decoding operation Ψ(·), given by

ŝ = Ψ(c, z) , (2.1)

where z is a random vector. Decoder Ψ(·) concatenates vector c with a random vector z to output

an enhanced signal ŝ. Generator G is thus represented as G(z,x) = Ψ (Φ (x) , z). SEGAN employs

adversarial learning to train the generator G, and uses an L1-norm to measure the distance between

the generated and clean samples. The corresponding loss functions LD and LG are defined by

LD =
1

2
Ex,s∼pdata(x,s)[(D(s,x)− 1)2]

+
1

2
Ez∼pz(z),s∼pdata(x)[D(G(z,x),x)2] (2.2)

LG =
1

2
Ez∼pz(z),x∼pdata(x)[(D(G(z,x),x)− 1)2]

+ λEz∼pz(z),s,x∼pdata(x,s)‖G(z,x)− s‖1, (2.3)

where D(s,x) denotes the discriminator network and λ denotes a hyperparameter.

Several studies have shown that noise information is beneficial when using a deep neural

network for speech recognition, e.g., noise-aware training [96] and speech enhancement [45]. The

non-linear relationship between noisy-speech, clean-speech and the noise signal can be modeled

by the non-linear layers of a DNN by directly providing the noise log-spectra as an input to the

network. Note that the analysis in [96] is based on the assumption that the noise is stationary, i.e.,

the noise signal is fixed and is obtained using the first few frames for each sentence. However, in

reality, noise could be both stationary and non-stationary. Hence, it might be useful to estimate the

noise patterns and to use this information to decouple the noise and speech signals. The proposed

ForkGAN framework adds a dedicated noise decoder in parallel with the speech decoder. Instead of

enhancing pure speech signals, it simultaneously enhances the speech and the noise signals.

In this chapter, we explore techniques to extract the noise information to aid in the re-

construction of the speech signals. The proposed framework, referred to as ForkGAN, is a novel

general adversarial learning-based framework that combines deep-learning with conventional noise
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reduction techniques. ForkGAN forks the received waveform after initial processing to a speech

extraction module and a noise pattern identification module, respectively. As such, the speech and

noise signals are effectively decoupled. The noise pattern identification module learns to generate

noise signals conditioned on the input latent variables. An end-to-end speech enhancement model for

input speech waveforms is achieved by introducing two auxiliary loss functions to detach the noise

from the source signal: 1) a margin-based loss that pushes the speech and noise signals apart, and

2) a time-domain noise reduction loss component that combines conventional signal processing noise

subtraction with the neural network predictions. As such, ForkGAN learns to generate additive

noise and clean speech within the adversarial learning framework. We further extend ForkGAN to

M-ForkGAN, which integrates the mask-learning and time-domain feature-mapping methods into

one unified framework to take advantage of both approaches. The generated speech and noise signals

are fed into two separate short-time Fourier transform (STFT) convolution 1-D layers to generate the

speech and noise spectrograms, which are used to calculate the speech mask. The time-domain fea-

ture mapping component can preserve the phase information, which is useful to improve the speech

quality [77]. Both ForkGAN and M-ForkGAN operate on time-domain signals, we also investigate

the ForkGAN architecture on the frequency-domain signals, we refer this method to S-ForkGAN.

We will detail each proposed architectures in the following sections.

2.3 ForkGAN Architecture

The ForkGAN architecture comprises two parallel GAN-based decoders for speech and noise.

This is illustrated in Fig. 2.1. The generator G performs the following encoder and decoder opera-

tions:

• Step 1. Use the encoder operation c = Φ(x) to extract latent vector c from the received noisy

speech signal x.

• Step 2. Decouple the latent vector c and extract the two latent features cs and cv for the

decoder by performing the linear transformations cs = wsc and cv = wvc, where cs comprises

the clean speech information and cv comprises the noise information, and where ws and wc

are the weights of two fully connected layers.
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• Step 3. Simultaneously perform the speech decoder operation ŝ = Ψs(cs, zs) to denoise the

speech and the noise decoder operation v̂ = Ψv(cv, zv).

G

. . .

Φ

z1

c1

c2

z2

Fully
Connected Hinge

Loss

. . .

Ψx

. . .

Ψv

Clean Latent Variable

Noise Latent Variable
Pure Noise

Clean Speech

+

Mixed Speech

D

− Noise Reduction
(time-domain)

Generative
Pure Noise

Generative
Clean Speech

Figure 2.1: ForkGAN architecture with forked decoders for speech enhancement.

The speech decoder Ψs(·) and the noise decoder Ψv(·) have the same architecture and their

objective is to generate the speech signal and the additive noise signal, respectively. Each decoder

input concatenates an encoder-latent representation c with a random vector z that is sampled from

a normal distribution N (0, I), and that outputs the predicted signal ŝ ∈ Rn, referred to as the

clean speech prediction, and signal v̂ ∈ Rn, referred to as the noise prediction. Generator G has an

architecture that uses convolutional operations, and both decoder layers are the inverse structure

of the encoder with the same configurations. Note that each layer input is concatenated with skip

connections from the encoder.

In the training phase, the aim is to minimize the difference between the enhanced signal

pair (ŝ, v̂) and the ground truth signal pair (s,v) by optimizing the encoder and decoder functions.

Similar to SEGAN, the training procedure combines adversarial learning regularized with regression

loss. We feed ForkGAN noisy speech x, clean speech s, and additive noise signal v. During the

training process, we sample two pairs of speech signal: the real pair of samples, which consists of

a clean signal s and additive noise v, and the fake pair of samples, which consists of the enhanced

speech ŝ and predicted noise signal v̂, both conditioned on noisy speech x. In adversarial learning,

s and v are also used as ground truth for regression in the generator.
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2.3.1 Loss Functions

In the following, we improve the basic ForkGAN framework by adding training objectives

that are based on the characteristics of the proposed architecture.

ForkGAN-M – Margin-Based Loss. A max-margin-based loss function is introduced to regularize

the loss model. The basic idea is to maximize the distance between the speech signal and the noise

signal. The objective is to ensure that the distance between the embedded clean speech signal and

the noise speech signal is larger than a predefined margin, so that the generated speech and noise

are as dissimilar as possible. This is accomplished by using the Euclidean distance between the

normalized embeddings and cs ← cs/‖cs‖2 and cv ← cv/‖cv‖2. The margin-loss function LM for

each pair of a clean speech embedding and a noise embedding is specified by

LM = Ex∼pdata max(0,∆−D(x)), (2.4)

where ∆ denotes the margin hyperparameter and

D(x) =
1

d

∑

d

‖cv − cs‖2 (2.5)

represents the Euclidean distance between the two normalized embeddings cv and cs. The generator

loss LGM incorporates the margin-based loss LM and original generator loss LG, and is expressed

as

LGM = LG + αLM, (2.6)

where α denotes the coefficient that controls the strength of the auxiliary loss function.

ForkGAN-M-NR – Margin-Based and Noise-Reduction Loss. Spectral subtraction is historically

one of the techniques used for enhancing single-channel speech. Since the noisy signal x is the sum

of the desired signal value s and the noise value v, the standard spectral subtraction is defined in

the frequency domain by

S = X − V (2.7)

where X, S and V are Fourier transforms of x, s, and v, respectively. It follows from (2.7) that the

accuracy of the spectral subtraction heavily depends on accurate noise spectrum estimation. Unlike

conventional noise spectrum estimation, ForkGAN uses a neural network as a function approximator
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to estimate the noise signal. As many noise patterns are time-varying, it is easier to cancel the noise

in the time domain for these non-stationary noise patterns. Since ForkGAN directly operates on

time-domain waveforms, this results in a time-domain noise reduction loss of ForkGAN’s training

objectives. Since ForkGAN uses a neural-network-based approach to estimate the additive noise,

the noise reduction can be derived by subtracting a noise prediction from the generator, i.e.,

LNR = Ex∼pdata‖x− v̂ − s‖1. (2.8)

The generator loss of noise and speech can be expressed as:

L(s)
G =

1

2
Ez∼pz(z),x∼pdata(x)[(D(Ψs(Φ(x), zs),x)− 1)2]

+ λEz∼pz(z),s,x∼pdata(x,s)‖Ψs(Φ(x), zs))− s‖1 (2.9)

L(v)
G =

1

2
Ez∼pz(z),x∼pdata(x)[(D(Ψv(Φ(x), zv),x)− 1)2]

+ λEz∼pz(z),v,x∼pdata(x,v)‖Ψv(Φ(x), zv)− v‖1, (2.10)

The generator loss LGMNR incorporates the margin-based loss LM and the noise-reduction loss

factor LNR, and is expressed as

LGMNR = L(s)
G + L(v)

G + βLM + γLNR, (2.11)

where β and γ denote coefficients that control the strength of each auxiliary loss function.

This discriminator loss function can be expressed as:

LD =
1

2
Ex,s∼pdata(s,x)[(D(s,x)− 1)2] +

1

2
Ez∼pz(z),x∼pdata [D(Ψs(Φ(x), zs),x)2] (2.12)

+
1

2
Ev,x∼pdata(v,x)[(D(v,x)− 1)2] +

1

2
Ez∼pz(z),v∼pdata [D(Ψv(Φ(x), zv),x)2]

2.4 M-ForkGAN Architecture

The proposed M-ForkGAN uses a similar architecture to the ForkGAN as illustrated in

Fig. 2.2. It takes a raw waveform as input, and the output of the encoder Φ(x) is fed into two

separate fully-connected layers that generate the speech latent representation cs and the noise latent
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Figure 2.2: Proposed M-ForkGAN architecture.

representation cv, respectively. Each decoder input concatenates an encoder-latent representation

with a random vector z that is sampled from a normal distributionN (0, I), and outputs the predicted

time-domain speech signals ŝ = Ψs([cs, zs]) and noise signals v̂ = Ψv([cv, zv]), where Ψ(·) denotes

the decoding operation. The generator network also includes skip connections among encoder layers

and its homologous decoding layer to avoid losing many low-level details.

Two STFT convolution 1-D layers are used to map the generated speech and noise waveforms

to complex spectrograms that include both magnitude and phase components. The magnitude com-

ponent will be used only. Given a window function ω of length N , the speech complex spectrogram

Ŝt,f and the noise complex spectrogram V̂ t,f obtained by STFT can be written as

ŝ
STFT−−−−→ Ŝt,f =

N−1∑

n=0

ŝω [n− t] exp

(
−i2πn

N
f

)
(2.13)

v̂
STFT−−−−→ V̂ t,f =

N−1∑

n=0

v̂ω [n− t] exp

(
−i2πn

N
f

)
. (2.14)

After having obtained the T-F representation of the enhanced speech and noise, the ideal

ratio mask (IRM) and a modified signal approximation (SA) are calculated using

IRM =

√
|Ŝ(t, f)|2

|Ŝ(t, f)|2 + |V̂ (t, f)|2
, (2.15)

where Ŝ(t, f)2 and V̂ (t, f)2 represent the generated speech energy and noise energy with a T-F
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unit, respectively. Then a signal approximation method is used to train a ratio mask estimator

that minimizes the difference between the spectral magnitude of the clean speech and the estimated

speech. The mask loss Lmask is defined as

Lmask = Ex∼pdata‖IRM�X − S‖2, (2.16)

where X and S are noisy speech and clean speech magnitudes, respectively.

During the training phase, similar to ForkGAN, the goal is to minimize the difference

between the estimated signal pair (ŝ, v̂) and the ground truth signal pair (s,v) by optimizing

the encoder and decoder functions. We feed the noisy speech x, the clean speech s, and the additive

noise signal v into the proposed framework. In adversarial learning, s and v are also used as ground

truth for regression in the generator. As such, the generator loss LG is the weighted sum of the

mask loss, L1 regular loss and original adversarial loss, which can be written as

LG = L(s)
G + L(v)

G + α · Lmask (2.17)

where α denotes the coefficient that controls the contribution of the mask loss function. When α = 0,

the proposed model is similar to ForkGAN, but in the time domain and without noise reduction loss

and margin loss. When α is large, the proposed model becomes similar to mask-learning.

Two separate discriminators are adopted in the proposed framework to distinguish between

real and fake speech and noise, respectively. During the training process, we sample two pairs of the

speech signal: 1) the real pair of samples, which consists of a clean signal s and additive noise v;

2) the fake pair of samples, which consists of the enhanced clean speech ŝ and the predicted noise

signal v̂. Both signals are conditioned on the noisy speech x. Two separate discriminator loss terms

are then computed using (2.2) to update the parameters of the generator.

2.5 S-ForkGAN Architecture

We extend time-domain ForkGAN to frequency-domain ForkGAN, referred to S-ForkGAN.

Spectral processing has three major advantages: 1) speech enhancement can seamlessly interface

with a post-ASR system, since state-of-the-art ASRs widely use acoustic features in the frequency

domain; 2) the input dimensions of the raw time-domain noisy speech signals are typically much
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higher than for the spectral features; and 3) by performing speech enhancement in the frequency

domain, one reinforces ASR robustness. The proposed S-ForkGAN architecture is adapted from

ForkGAN, which is shown in Fig. 2.3. It takes a noisy speech signal x as input and extracts its LPS

features using a Fast Fourier transform (FFT). The training procedures are same as ForkGAN.

LPS

G

D!(⋅)
#$(⋅)

#%(⋅)

Encoder
1

0

Decoder

speech

noise

ASR

FFT

Figure 2.3: Proposed S-ForkGAN architecture which consists of forked GAN networks for simulta-
neous speech enhancement and noise identification.

2.6 Experiments Setup and Results

2.6.1 ForkGAN

The experimental setup comprises the selection of data sets, the training procedure of the

proposed ForkGAN model, and the configuration of existing DNN-based and SEGAN systems that

serve as a baseline for performance comparisons.

Data Set Selection. The data set that is used is derived from three sources. The TIMIT corpus [20]

is used for clean speech references, and the noise is extracted from the NOISEX-92 corpus [112] and

the NOISE-100 corpus [33]. The TIMIT corpus includes eight major dialects of American-English

recordings from 630 speakers, where each speaker reads ten phonetically rich sentences. This corpus

is partitioned into test and training subsets. The NOISEX-92 corpus includes 15 different noise

sounds, including babble, factory, and white noise. The NOISE-100 includes 100 different noise

sounds, e.g., animal sounds, water sounds, and bells. For the training set, a randomly-selected

noise sound from NOISEX-92 or NOISE-100 was attached to every silenced-added segment with

five different signal-to-noise ratios (SNRs): -5 dB, 0 dB, 5 dB, and 10 dB. The test set was generated

by adding noise from the NOISEX-92 or the NOISE-100 corpus using the same settings as for the
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training set. To make the data set more realistic, another scenario is to add different noise types for

each sentence. We designed a data set, which selects three different noise types from NOISEX-92

for each sentence, and refer to this data set as a multi-noise source data set. The clean speech from

the TIMIT corpus is used as the target.

ForkGAN Setup. For the experiments, the ForkGAN model is trained for 86 epochs with the

RMSprop algorithm [106], and the learning rate is set to 0.0002. The batch size is set to 32. During

training, ForkGAN operates directly on raw audio. Every 500 ms, ForkGAN uses a 1-second sliding

window with a 50-percent overlap to extract chunks of noisy speech waveforms of 16,384 samples

each. A high-frequency pre-emphasis filter with filter coefficient 0.95 is applied to all input samples

during the training and test stages. ForkGAN uses a shared encoder that is composed of 11 one-

dimensional strided convolutional filter layers of width 31 and stride length 2. The number of filters

per convolutional layer increases so that the depth increases as the width, i.e., the duration of

the signal in time, gets shorter. The resulting dimensions d per layer `, denoted as d × `, where d

corresponds to the number of samples and ` to the number of feature maps, are 16384×1, 8192×16,

4096 × 32, 2048 × 32, 1024 × 64, 512 × 64, 256 × 128, 128 × 128, 64 × 256, 32 × 256, 16 × 512,

and 8× 1024. In order to estimate the margin-based loss, a flattening operation is used to convert a

8× 1024 vector to two 8192-dimensional vectors through a fully connected layer. The noise samples

z1 and z2 from a prior 8× 1024-dimensional normal distribution N (0, I) are concatenated with the

two latent vectors (c1 and c2) that were produced by the encoder. The network parameters of the

decoder are symmetric to the encoder.

The discriminator utilizes a one-dimensional convolution similar to the generator’s encoding

stage and is adapted to behave as a classification network. The configuration of the discriminator is

16384 × 1, 8192 × 16, 4096 × 32, 2048 × 32, 1024 × 64. For the activation, a virtual batch-norm as

presented in [93] was adopted before LeakyReLU nonlinearities with α = 0.3. To reduce the number

of parameters, the final layer is merged from 8 × 1024 to 8 using convolution.

Baseline Setup. The baseline systems used for performance comparison are the SEGAN system

and the DNN-based system presented in [124]. The SEGAN set-up is very similar to ForkGAN, since

the generator is an auto-encoder architecture with the same configuration as for ForkGAN. However,

SEGAN uses only one decoder to generate clean speech. The DNN-based speech enhancement [124]

applies log-spectral features that are spliced in time by taking a context size of seven frames, i.e.,
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three preceding frames, the current frame and three succeeding frames. In the training stage, the

regression DNN model, which uses a mean absolute error (MAE) loss function, is trained with

samples from the TIMIT corpus. This corpus consists of pairs of noisy and clean speech represented

by its log-spectral features. The full network topology consists of three hidden layers and 2048 hidden

units. The network was trained for 10,000 iterations using the Adam optimizer with a mini-batch

size of 500 and 20 % drop-out in the hidden layers.

Evaluation Metrics. Speech enhancement is commonly measured in terms of the perceptual evalua-

tion of speech quality (PESQ) score [39] and the short-time objective intelligibility (STOI) score [99].

The PESQ score has a high correlation with subjective evaluation scores, and is mostly used as a

compressive objective measure. The PESQ score is computed by comparing the enhanced speech

with the clean reference speech, and it ranges from -0.5 to 4.5. The STOI score is highly relevant to

human speech intelligibility and the score ranges from 0 to 1.

ForkGAN vs SEGAN vs DNN. The results of the experiments with the TIMIT corpus and different

noise conditions ranging from -5 dB to 10 dB are shown in Table 2.1 and Table 2.2. It shows that

ForkGAN outperforms both SEGAN and the DNN-based system for most SNR conditions. In

comparison with the DNN-base system, ForkGAN significantly improves the average PESQ score

from 2.493 to 2.788 and the average STOI score from 0.7634 to 0.8134 when using the TIMIT

corpus with NOISEX-92. ForkGAN slightly outperforms SEGAN, with PESQ and STOI score

improvements of 0.07 and 0.01, respectively. This suggests that the additional decoder for noise

generation helps to purify the speech signal prediction. We also observe that for low SNR conditions,

ForkGAN performs better than SEGAN and DNN, which suggests that ForkGAN is more robust

for high noise conditions.

Effectiveness of Margin-Based Loss. The ForkGAN-M model incorporates the margin-based loss

LM that maximizes the distance between noise and speech latent variables. Table 2.1 and Table 2.2

show that margin-based loss improves the speech enhancement performance slightly. For instance,

relative to ForkGAN, the PESQ and STOI scores improve from 2.788 to 2.815 and from 0.8134 to

0.8137, respectively. The results indicate that ForkGAN-M outperforms all baseline models. This

result shows that the extra margin-based loss effectively decouples the noisy speech to noise and

clean speech.

Effectiveness of Noise Reduction Loss. ForkGAN-M-NR, which integrates time-domain noise
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subtraction loss and margin-based loss, achieves the best overall performance. Note that at a

high SNR of 10 dB, the performance decreases slightly when compared with ForkGAN-M. This is

reasonable because the noise reduction loss mainly optimizes the noise-reduced speech as in (2.8),

whereas the distortion of enhanced speech depends on the quality of predicted noise. This causes the

performance error to accumulate when the generated noise is inaccurate, especially for high SNR.

It shows that using the noise reduction loss function improves performance mainly for low SNR

conditions.

Model -5 dB 0 dB 5dB 10 dB average
Evaluation PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Noisy speech (x) 1.51± 0.51 0.5863 1.84± 0.52 0.6721 2.20± 0.50 0.7524 2.55± 0.48 0.8180 2.025 0.7072

DNN 2.01± 0.36 0.6741 2.36± 0.33 0.7479 2.67± 0.29 0.7982 2.93± 0.26 0.8333 2.493 0.7634
SEGAN 2.37± 0.54 0.7511 2.56± 0.50 0.7860 2.91± 0.40 0.8342 3.01± 0.40 0.8525 2.713 0.8059

ForkGAN 2.46± 0.53 0.7575 2.66± 0.50 0.8019 2.88± 0.41 0.8340 3.15± 0.33 0.8603 2.788 0.8134
ForkGAN-M 2.43± 0.53 0.7565 2.73± 0.46 0.8006 2.92± 0.38 0.8352 3.18± 0.34 0.8627 2.815 0.8137
ForkGAN-M-NR 2.50± 0.50 0.7593 2.77± 0.45 0.8083 2.98± 0.41 0.8395 3.15± 0.34 0.8622 2.850 0.8173

Table 2.1: Single noise source mixture: performance of the three proposed ForkGAN models and
existing DNN-based and SEGAN models for noisy speech (x) from the TIMIT and NOISEX-92 data
sets. The best values in each column are printed in boldface.

Model -5 dB 0 dB 5dB 10 dB Average
Evaluation PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Noisy speech (x) 1.52± 0.45 0.6184 1.82± 0.43 0.7037 2.13± 0.40 0.7776 2.46± 0.38 0.8349 1.982 0.7336

DNN 1.99± 0.41 0.6832 2.33± 0.36 0.7481 2.61± 0.31 0.7964 2.87± 0.29 0.8289 2.450 0.7641
SEGAN 2.14± 0.50 0.7330 2.49± 0.46 0.7979 2.85± 0.39 0.8416 3.15± 0.30 0.8696 2.658 0.8105

ForkGAN 2.12± 0.51 0.7403 2.50± 0.44 0.7998 2.91± 0.35 0.8437 3.20± 0.31 0.8721 2.682 0.8140
ForkGAN-M 2.15± 0.48 0.7292 2.56± 0.43 0.8042 2.90± 0.36 0.8413 3.20± 0.31 0.8618 2.702 0.8116
ForkGAN-M-NR 2.20± 0.50 0.7382 2.61± 0.42 0.8073 2.92± 0.36 0.8455 3.19± 0.31 0.8724 2.730 0.8159

Table 2.2: Single noise source mixture: performance of the three proposed ForkGAN models and
the baseline DNN-based and SEGAN models for noisy speech samples (x) from the TIMIT and
NOISE-100 data sets. The best values in each column are printed in boldface.

Model -5 dB 0 dB 5dB 10 dB Average
Evaluation PESQ STOI PESQ STOI PESQ STOI PESQ STOI PESQ STOI

Noisy speech (x) 1.41± 0.34 0.5836 1.78± 0.33 0.6719 2.16± 0.30 0.7524 2.53± 0.28 0.8176 1.97 0.7064

DNN 2.04± 0.29 0.6732 2.42± 0.23 0.7452 2.69± 0.22 0.7917 2.90± 0.26 0.8352 2.51 0.7613
SEGAN 2.03± 0.33 0.7152 2.41± 0.31 0.7879 2.78± 0.27 0.8347 3.09± 0.24 0.8568 2.57 0.7886
ForkGAN-M-NR 2.17± 0.30 0.7218 2.48± 0.30 0.7914 2.86± 0.26 0.8343 3.17± 0.23 0.8643 2.67 0.8030

Table 2.3: Multiple noise sources: performance of the proposed ForkGAN models and existing DNN-
based and SEGAN models for noisy speech (x) from the TIMIT and NOISEX-92 data sets. In this
scenario, each sentence is with three different noise type, which is more realistic. The best values in
each column are printed in bold.

Multi-noise sources mixture. In a practical speech environment, the speech is often mixed with

multiple noise types. We consider a multi-noise sources mixture environment to emulate more
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realistic scenario. In each dataset we randomly sample three different noise types and mix these

with the speech signal. The results are presented in Table 2.3. It shows that ForkGAN outperforms

both DNN and SEGAN in multiple noise conditions. ForkGAN’s average PESQ score is 2.67,

whereas the DNN-based system and SEGAN achieve 2.51 and 2.57, respectively.

Visualization. The network latent representation can be visualized by plotting the features of the

noise decoder using t-SNE as in [111]. The 8192-dimensional noise features are projected down to 2

dimensions. Eight noise types are sampled, where each noise type contains about 400 samples. As

shown in Fig. 2.4, ForkGAN makes use of latent variables and is capable of learning an interpretative

noise representation in latent space. Furthermore, different types of noises are discriminated in large

margin, indicating that learning noise representation is a relatively easy task when compared with

with speech signal enhancement.

The differences in performance are illustrated by spectrograms of an utterance sample as

shown in Fig. 2.5. The noisy speech mixes clean speech with additive pink noise at an SNR of

0 dB. We highlight several spots in Fig. 2.5, demonstrating that: DNN enhanced speech is distorted

heavily, and high frequency noise is not properly suppressed; the SEGAN based model inhibits

noises in a more aggressive way such that the low frequency speech information is cut sharply on the

spectrogram; ForkGAN maintains most of the speech patterns, while suppressing noise smoothly.
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Figure 2.4: Examples of t-SNE visualizations of the noise latent representation cn generated from
the encoder when eight noise types from NOISEX-92 are used: pink, F16, destroyer engine, destroyer
ops, white, buccaneer, and an HF channel.
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ASR for Noisy Speech. In order to examine how the proposed ForkGAN improves ASR performance

as a whole, an ASR is pre-trained for the speech recognition task with noisy TIMIT data set after

which the speech enhancement is embedded prior to feeding it to the ASR model. The phone error

rate (PER) is used as the evaluation metric.

Model NOISEX-92 NOISE-100
Evaluation -5 dB 0 dB 5dB 10 dB average -5 dB 0 dB 5dB 10 dB average

Noisy speech (x) 84.0 76.8 65.5 49.8 68.98 79.2 72.0 61.4 48.5 65.28

DNN 57.8 48.0 38.6 32.1 44.13 55.4 46.1 37.9 31.4 42.7
SEGAN 48.6 44.9 35.2 34.4 40.78 53.6 43.5 36.1 29.1 40.58

ForkGAN 45.7 39.2 36.3 30.2 37.85 52.6 43.9 36.1 28.9 40.3
ForkGAN-M 46.7 38.7 34.7 30.1 37.55 52.7 43.4 34.7 29.0 39.95
ForkGAN-M-NR 47.1 37.2 33.5 30.4 37.05 51.4 42.9 33.4 28.6 39.07

Table 2.4: Phone error rate (PER), as a percentage, at the output of the ASR system. Note
that baseline systems are DNN-based and SEGAN systems. (a) Noisy speech from TIMIT with
NOISEX-92 (b) Noisy speech from TIMIT with NOISE-100. The best values in each column are
boldfaced.

Pre-Trained ASR. A Deep Neural Network Hidden Markov Model (DNN-HMM) acoustic model was

used to test the ASR performance of enhanced speech. A Gaussian Mixture Model-Hidden Markov

Model(GMM-HMM) is first trained to obtain senones (tied triphone states) and the corresponding
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Figure 2.5: Single noise source mixture: Spectrograms of a sample input mixed with pink noise
(SNR = 0 dB) and for the speech enhancement methods (DNN, SEGAN, ForkGAN-M-NR).
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aligned frames for DNN training. The input feature vectors are used to train the GMM-HMM contain

13-dimensional Mel-frequency spectral coefficients (MFCCs) and their first and second derivatives.

Context-dependent phones, tri-phones, are modeled by 3-state HMMs. The splices of 9 frames (4 on

each side of the current frame) are projected down to 40-dimensional vectors by linear discriminant

analysis (LDA), together with maximum likelihood linear transform (MLLT), and then used to train

the GMM-HMM using maximum likelihood estimation.

The MFCC features stacked over an 11-frame window are used as the input layer of the

DNN. The DNN itself has six hidden layers, and each layer contains 1, 024 nodes. Since TIMIT

is a small corpus, the DNN acoustic model was first initialized with stacked restricted Boltzmann

machines (RBMs) that were pre-trained in a greedy layer-wise fashion as in [30]. After pre-training,

all weights and biases were discriminatory trained by optimizing the crossentropy between the target

(corresponding to context-dependent HMM states) probability and actual output of soft-max output

with the Back-Propagation (BP) algorithm, see [91].

As shown in Table 2.4 and Table 2.5, ForkGAN outperforms all baseline system (DNN and

SEGAN). More specifically, for TIMIT with NOISEX-92, ForkGAN achieves absolute average gains

of 7.1 %and 3.7 % relative to DNN and SEGAN, respectively, and for TIMIT with NOISE-100 it

achieves gains of 3.6 % and 1.5 %, respectively.

At each SNR condition, the best performance was obtained by ForkGAN and its variants.

The proposed use of two auxiliary loss terms are also effective in the context of ASR. ForkGAN-M-

NR provides an additional improvement of the ASR performance relative to ForkGAN when using

the TIMIT corpus of 0.8 % and 1.23 % for NOISEX-92 and NOISE-100, respectively.

Discussion. We compared the performance for two widely used noise data sets: NOISEX-92 and

NOISE-100. As shown in Table 2.1 and Table 2.2, the proposed method works better on TIMIT

with NOISEX-92 than with NOISE-100. For perceptive tests, the average PESQ score improvements

SNR -5 dB 0 dB 5 dB 10 dB average

Speech affected by noise (x) 79.7 72.6 62.5 49.2 66.0

DNN 57.9 46.8 39.1 33.7 44.38
SEGAN 54.5 45.8 37.4 31.2 42.23
ForkGAN-M-NR 53.2 44.6 37.4 29.4 41.15

Table 2.5: Multiple noise sources mixture: The Phone Error Rate (PER), in percents, at the output
of the ASR system.
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relative to SEGAN are 0.07 and 0.137 for ForkGAN-M-NR with NOISEX-92 and NOISE-100, re-

spectively. Similarly, the ASR experiments showed that the average PER improved by relative 9.1 %

and 3.7 % with NOISEX-92 and NOISE-100, respectively (Table 2.4). As NOISE-100 includes more

noise variations than NOISEX-92, this may indicate that our proposed method is sensitive to noise

variations, but it still works. This is reasonable since with the increase of noise variation, the noise

will become increasingly harder to estimate. ForkGAN-M-NR aims to use the additional noise in-

formation to improve the speech enhancement performance, the underestimated noise information

would impact the performance of ForkGAN-M-NR. The multi-noise-source experiments, which may

be closer to real-life situations, show that the proposed ForkGAN methods perform better than

the SEGAN and DNN-based systems, and as such, are likely to be more robust for the arbitrary

combinations of known noise types that were used in the training sets.

Our experiments use the same noise types in the training and the test set. Since ForkGAN

captures additional noise information, the proposed method may encounter some generalization

issues when the noise in the test set has never been seen during training. In other words, ForkGAN

is more robust for handle known noise types in the test set. This is due to the fact that ForkGAN

has two objectives that decouple noisy speech onto a noise signal and speech signal. In conditions

where the test set contains unseen noise, inaccurate noise estimation would bias the generation of

the clean speech. SEGAN or DNN systems, which do not take noise information into account in the

loss function, will not be sensitive to new noise types.

2.6.2 M-ForkGAN

Data Sets. The data sets used for the experiments are the TIMIT corpus [20] and the NOISE-100

corpus [33]. The TIMIT corpus is used for clean speech references, and it includes eight major dialects

of American-English recorded from 630 speakers, each reading ten phonetically-rich sentences, and

partitioned into test and training subsets. The NOISE-100 corpus includes 100 different noise sounds,

e.g., animal sounds, and the sound of water. For the training set, a randomly selected noise sound

from the NOISE-100 corpus was attached to every silence-added segment with signal-to-noise ratios

(SNRs): -3, 0, 3, 6, 9, 12 and 15 dB. In total, this yields 32,340 training samples. We selected 50

sentences from the TIMIT core test and mixed the noise from the NOISE-100 corpus with five SNR

conditions (250 sentences in total). For the unseen scenario, we use five unseen SNR conditions at
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-5, -2, 1, 4, and 7 dB. Note that both seen and unseen conditions were mixed with the same noise

from the NOISE-100 corpus.

Baseline Setup. The proposed method is compared with the DNN-based speech enhancement [124],

SEGAN [83], and SEGAN+ (https://github.com/santi-pdp/segan_pytorch).

DNN-based speech enhancement. Log-spectral features were applied for DNN-based speech enhance-

ment spliced in time by taking a context size of seven frames. In the training stage, a regression

DNN model using the mean absolute error (MAE) loss function is trained. The full network topology

consists of three hidden layers and 2048 hidden units. The network was trained for 100 epochs using

the Adam optimizer with a mini-batch size of 500 and a 20% drop-out in the hidden layers.

SEGAN and SEGAN+. The default parameter settings of the original SEGAN experiments are

used, except for the batch size, which is set to 32. Both SEGAN and SEGAN+ take a raw 16,384-

sample waveform as input. In SEGAN, G is composed of 22 1-D strided convolutional layers with

filter-width 31 and stride 2. For SEGAN+, this is replaced by a generator comprising 10 1-D

convolutional layers and stride 4. The virtual batch-norm (VBN) [93] that is used in SEGAN is

replaced by a normal batch normalization in the discriminator.

Setup for the Proposed Method. The proposed model is trained for 100 epochs using an Adam

optimizer [46] and a batch size of 32. The proposed approach operates directly on raw audio, which

uses a 1-second sliding window with a 50-percent overlap to extract chunks of noisy speech waveforms

of 16,384 samples each. A high-frequency pre-emphasis filter with a filter coefficient 0.95 is applied

to all input samples during the training and test stages. The generator comprises one encoder and

two decoders. Both the encoder and the two decoders consist of five 1-D convolutional layers as

shown in Table 2.6. The speech decoder and the noise decoder have the same structure. Note

that the decoder has the skip connections from the encoder part. Two separate fully-connected

layers are used for generating speech and noise latent representations. For a short time Fourier

transform (STFT) setting, we use a 20 ms Hann window, a 20 ms filter length and a 10 ms hop

size. Thus, the input size of STFT is 16,384 and the output is 161× 103. For the weight of Lmask,

we consider three settings, α ∈ {0, 30, 50}, where α = 0 means no Lmask for the training. Two

discriminators are used to distinguish fake and real speech and noise, respectively. They both have

the same model architecture, which is similar with the encoder in G. We use instance normalization

(IN) [107] instead of batch normalization (BN) [35] in the discriminator as we found that IN is
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slightly better than BN. After convolutional layers, there are three fully connected layers (hidden

layer size 256,128,1) with PReLU [29] for binary classification.

layer type output size

input layer 1 × 16384

Encoder

conv-1-D 64 × 4096

conv-1-D 128 × 1024

conv-1-D 256 × 256

conv-1-D 512 × 64

conv-1-D 1024 × 16

Fully connected layer 8192

Fully connected layer 16384

Decoders

deconv-1-D 2048 × 16

deconv-1-D 1024 × 64

deconv-1-D 512 × 256

deconv-1-D 256 × 1024

deconv-1-D 128 × 4096

deconv-1-D 1 × 16384

STFT conv-1-D 161 × 103

Table 2.6: Model Structures of the Proposed Method

Performance Results. Measurements were performed using the TIMIT corpus and NOISE-100

corpus to compare the proposed methods with α ∈ {0, 30, 50} and the baseline methods, i.e., the

DNN-based method, SEGAN, and SEGAN+. The experimental results are detailed in Table 2.7.

It is shown that the proposed method, with α = 30, consistently outperforms the baseline methods

for both seen and unseen conditions. The best baseline method is SEGAN+, and the DNN-based

method outperforms SEGAN when using the PESQ metric, and SEGAN performs better than the

DNN-based method when using the STOI metric.

Table 2.7 clearly shows the improvements obtained when applying the mask Lmask with

α = 30 relative to the situation where the mask is not used, i.e., for α = 0. This shows that the

additional mask-based loss helps purify speech signal prediction. For instance, the average PESQ

and STOI scores were improved from 2.698 to 2.856 and from 0.9061 to 0.9353 on unseen SNR

conditions, respectively. Furthermore, the proposed method outperforms all the baseline systems

on both seen and unseen SNR conditions. When compared with SEGAN+, the proposed approach

improves the average PESQ from 2.772 to 2.856, and the average STOI from 0.9132 to 0.9353 on
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Metrics w/o SE DNN SEGAN SEGAN+
Proposed method
α = 0 α = 30 α = 50

PESQ

seen

-3 dB 1.50± 0.33 2.27± 0.47 2.15± 0.48 2.52± 0.38 2.47± 0.36 2.67± 0.33 2.55± 0.33
0 dB 1.69± 0.32 2.47± 0.41 2.37± 0.43 2.70± 0.38 2.66± 0.35 2.83± 0.34 2.73± 0.34
3 dB 1.89± 0.31 2.64± 0.36 2.56± 0.40 2.86± 0.38 2.80± 0.37 2.97± 0.36 2.89± 0.35
6 dB 2.11± 0.30 2.80± 0.31 2.75± 0.37 3.00± 0.38 2.94± 0.37 3.09± 0.40 3.01± 0.37
9 dB 2.32± 0.29 2.94± 0.28 2.93± 0.33 3.12± 0.36 3.06± 0.38 3.17± 0.46 3.11± 0.38
average 1.902 2.624 2.552 2.840 2.786 2.946 2.858

unseen

-5 dB 1.40± 0.53 2.25± 0.58 2.05± 0.50 2.44± 0.42 2.34± 0.41 2.54± 0.42 2.45± 0.39
-2 dB 1.62± 0.48 2.45± 0.50 2.26± 0.46 2.63± 0.40 2.55± 0.38 2.71± 0.41 2.64± 0.38
1 dB 1.82± 0.48 2.63± 0.42 2.46± 0.42 2.79± 0.40 2.73± 0.37 2.88± 0.39 2.81± 0.37
4 dB 2.02± 0.47 2.78± 0.36 2.64± 0.39 2.94± 0.38 2.87± 0.38 3.03± 0.37 2.95± 0.38
7 dB 2.22± 0.46 2.91± 0.32 2.82± 0.35 3.06± 0.36 3.00± 0.38 3.12± 0.38 3.06± 0.38
average 1.816 2.604 2.446 2.772 2.698 2.856 2.782

STOI

seen

-3 dB 0.7086 0.7576 0.8179 0.8791 0.8634 0.9056 0.8886
0 dB 0.7608 0.7883 0.8577 0.9062 0.8956 0.9287 0.9145
3 dB 0.8094 0.8132 0.8896 0.9261 0.9181 0.9447 0.9329
6 dB 0.8535 0.8331 0.9143 0.9407 0.9351 0.9549 0.9464
9 dB 0.8918 0.8482 0.9336 0.9519 0.947 0.9577 0.9559
average 0.8048 0.8081 0.8826 0.9208 0.9118 0.9383 0.9277

unseen

-5 dB 0.6653 0.7504 0.8037 0.8646 0.8492 0.8971 0.8757
-2 dB 0.7213 0.7845 0.8468 0.8967 0.8872 0.9235 0.9067
1 dB 0.7751 0.8103 0.8809 0.9198 0.9146 0.9418 0.9285
4 dB 0.8245 0.8301 0.9082 0.9367 0.9330 0.9534 0.9440
7 dB 0.8677 0.8450 0.9290 0.9484 0.9463 0.9605 0.9546
average 0.7708 0.8041 0.8737 0.9132 0.9061 0.9353 0.9219

Table 2.7: Performance of three baseline models and the proposed model. The best values in each
column are printed in boldface.

unseen SNR conditions. We also notice that if we use a large value for α, corresponding to a strong

contribution of Lmask, the performance degrades slightly, because mask-based learning introduces

inaccurate information during training due to inaccuracies in the mask estimator. Thus, the loss of

mask-based learning and time-domain feature mapping need to be calibrated. Fig 2.6 illustrates the

effectiveness of the proposed approach by using spectrum.

2.6.3 S-ForkGAN

The performance of the proposed S-ForkGAN method is evaluated using extensive simula-

tions.

Data Setup. The data set for the experiments is generated from two sources: the DARPA TIMIT

corpus [20] is used for clean speech references, whereas the noise is extracted from the NOISEX-92

corpus [112]. The TIMIT corpus includes eight major American-English dialects recorded from 630

speakers, each reading ten phonetically rich sentences, and this corpus is partitioned into test and

training subsets. The training set includes 4620 sentences; 192 sentences are selected for the testing

set. The NOISEX-92 corpus includes 15 different noise types, ranging from machinery noise to

machine gun noise. For the training set, a randomly-selected noise sound from NOISEX-92 is added
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a) Noisy speech (PESQ = 2.046) b) Clean target c) DNN (PESQ = 2.627)

d) SEGAN (PESQ = 2.395) e) SEGAN+ (PESQ = 2.579) f) M-ForkGAN (PESQ = 2.767)

Figure 2.6: Spectrograms of a sample input mixed with N21 noise, where the SNR is equal to 1 dB.

to every silenced-added segment with a signal-to-noise ratio (SNR) of -5 dB, 0 dB, 5 dB and 10 dB.

The test set was generated by adding noise from the NOISEX-92 corpus, using the same settings as

the training set.

S-ForkGAN Setup. The proposed technique and architecture can be summarized as follows: the

model is trained for 20 epochs with the RMSprop [106] method. It operates directly on spectral

domain features, LPS, instead of on raw audio, and it aims to learn a mapping from the LPS

feature input to the LPS feature output. The input and target LPS features are normalized by

using zero mean and unit variance, respectively. The input feature contains a context window of

11 frames (+−5), thus it is a 2827-to-257 mapping relation. Further experiments with ForkGAN use

exactly the same settings. In S-ForkGAN, the shared encoder consists of 11 one-dimensional strided

convolutional layers of filter width-31 and stride length 2. The number of filters per convolutional

layer increases so that the depth increases as the width gets shorter. The resulting dimensions per

layer in terms of the number of samples times the number of feature maps is 2827 × 1, 1414 × 16,

707× 32, 354× 32, 177× 64, 89× 64, 45× 128, 23× 128, 12× 256, 6× 256, 3× 512 and 2× 1024.

A flattening operation is used for converting a 2× 1024 vector to two length-2048 vectors via fully-

connected layers. After that two encoded latent variables are obtained, which are used for speech

and noise respectively. Also, the margin-based loss is calculated by these two vectors. The two

encoded latent vectors are concatenated with two noise samples, which are from an a prior 2×1024-
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dimensional normal distribution N (0, I). The concatenated vectors are the input of each decoder.

The network parameters of the decoder are symmetric to the encoder. The discriminator also utilizes

a one-dimensional convolution similar to the generator’s encoding stage and is adapted to behave as

a classification network.

Baseline Setup. Several GAN-based method with different enhancement networks are used as

baseline systems, e.g., a DNN and long short-term memory (LSTM). Note that GAN-DNN and

GAN-LSTM were originally used for speech de-reverberation; they are adjusted here for speech

enhancement. The setup is similar to [117]. If the generator is an auto-encoder, the suffix AE is

used.

GAN-DNN. The feed-forward DNN includes four hidden layers, each of which contains 1024 ReLU

neurons. The input feature consists of a stacked 11-frame LPS feature. The mode is trained for

20 epochs using the learning rate 0.001 with a mini-batch size of length-8. Batch normalization is

performed for this model.

GAN-LSTM. Instead of using a plain-vanilla LSTM, an LSTM with recurrent projection layer

(LSTMP) [92] was adopted here. The LSTM includes four LSTMP layers followed by a linear

output layer. Each LSTMP layer has 760 memory cells and 257 projection units and the input to

the LSTM is a single acoustic frame with 257-dimensional LPS features. The learning rate was set

to 3.0 · 10−4 and the model was trained with eight full-length utterances parallel processing.

GAN-AE. The setup for GAN-AE is similar to S-ForkGAN. The only difference is that the generator

is an auto-encoder architecture with the same configuration as the proposed method, using one

decoder to generate clean speech.

ASR Setup. A Deep Neural Network-Hidden Markov Model (DNN-HMM) acoustic model is

developed to evaluate the enhanced LPS features. A Gaussian Mixture Model-Hidden Markov

Model(GMM-HMM) is first trained to obtain senones (tied tri-phone states) and the corresponding

aligned frames for DNN training. The input feature vectors that are used to train the GMM-HMM

contain 257-dimensional LPS and their first and second derivatives. The splices of nine frames

(four on each side of the current frame) are projected down to 40-dimensional vectors by linear

discriminant analysis (LDA), together with maximum likelihood linear transform (MLLT), and then

used to train the GMM-HMM using maximum likelihood estimation.
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The LPS features take a context size of 11 frames (+−5), as the input of the DNN. The DNN

topology consists of six hidden layers, and each layer contains 1, 024 nodes. Since TIMIT is a small

corpus, the DNN acoustic model was first initialized with stacked restricted Boltzmann machines

(RBMs) that were pre-trained in a greedy layered fashion [30]. After pre-training, all weights and

biases were discriminator-trained by optimizing the cross-entropy between the target probability,

corresponding to context-dependent HMM states, and the actual soft-max output with the Back-

Propagation (BP) algorithm [91]. The weights are refined using sequence-discriminative training,

state-level minimum Bayes risk (sMBR).

Performance Results. Using the experimental set-up presented in the previous section, the acoustic

model was trained using clean data, and it was determined that the phone error rate (PER) on the

TIMIT test set equals 18.0 %. The PER values were determined for several existing GAN-based

speech enhancement approaches. It can be observed from Table 2.8 that all methods reduce the

noise and improve the ASR performance. It is shown that GAN-LSTM achieves better results than

GAN-DNN for all SNR values. For example, a GAN-LSTM reduces the PER from 32.6 % to 29.4 %.

This indicates that LSTM’s ability to model long-term contextual information is essential for speech

enhancement.

SNR -5 dB 0 dB 5 dB 10 dB

LPS w/o SE 87.2 81.3 70.1 56.0
GAN-DNN (LPS) 54.6 48.0 39.4 32.6
GAN-LSTM (LPS) 51.7 42.5 34.8 29.4

GAN-AE (raw audio) 48.6 44.9 35.2 34.4
GAN-AE (LPS) 45.7 38.3 34.1 32.4

ForkGAN 47.1 37.2 33.5 30.4
S-ForkGAN 45.1 37.8 30.5 26.8

Table 2.8: Phone error rate (as a percentage) for S-ForkGAN and prior methods; the best results
for each SNR value are bold-faced.

The measurements show that GAN-AE with LPS inputs can further improve the perfor-

mance, especially for high SNR. In contrast to GAN-LSTM, the PER drops from 51.7 % to 45.7 %

and from 42.5 % to 38.3 % for an SNR of -5 dB and 0 dB, respectively. This means that the convo-

lution layers in the auto-encoder can also provide additional useful information for speech enhance-

ment. The proposed S-ForkGAN method with LPS achieved the best performance, which shows the

effectiveness of the additional decoder and two auxiliary loss functions.

Given that S-ForkGAN and GAN-AE are auto-encoder-based methods, the performance is
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determined for different input features. The raw audio input is set to be the same as for the original

SEGAN [83], where each chunk of waveform was extracted with a sliding window of approximately

one second of speech (16,384 samples) every 500 ms. A high-frequency pre-emphasis filter coefficient

of 0.95 was applied to all input samples during the training and test stages. From Table 2.8, one

can see that both GAN-AE and S-ForkGAN with LPS features outperform systems with raw audio

as input. The results show that directly operating on LPS is more helpful for the ASR tasks. Note

that S-ForkGAN outperforms GAN-AE with respect to these two features.

To visualize the performance of the GAN-based methods, a single sentence was selected

and mixed with destroyer noise at 0 dB. The spectrograms for each method are shown in Fig. 2.7.

The S-ForkGAN and GAN-AE methods are clearly better than the GAN-DNN and GAN-LSTM

methods.

Figure 2.7: Spectrograms for GAN-DNN, GAN-LSTM, GAN-AE and the proposed S-ForkGAN
method for a sample input mixture with destroyer noise and an SNR of 0 dB.

2.7 Summary

In this chapter, we have presented a novel GAN based approach for speech enhancement,

named ForkGAN. The experiment results show that our proposed method outperforms the state-

of-the-art speech enhancement methods in terms of perceptual evaluation of speech quality (PESQ)

and Short-Time Objective Intelligibility (STOI) scores, and it also improve the speech recognition
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performance. Two variants of ForkGAN are further proposed, M-ForkGAN and S-ForkGAN, the

effectiveness of them is also verified by a series of comprehensive experiments.
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Chapter 3

Speech Enhancement Using

Multi-Stage Self-Attentive

Temporal Convolutional Networks

This chapter presents the Multi-Stage Self-Attentive Temporal Convolutional Networks

(MS-SA-TCN) based speech enhancement approaches. The work presented in this chapter is to

appear in the IEEE/ACM Transactions on Audio Speech and Language Processing [62].

3.1 Introduction

Recently, multi-stage learning has been successfully applied for a wide variety of tasks,

including human pose estimation [76], action segmentation [16], speech enhancement [28, 58, 57]

and speech separation [15]. A multi-stage architecture consists of stages that sequentially use the

same model or a combination of different models, and each model operates directly on the output of

the previous stage. The effect of such an arrangement is that the model used in a given stage takes

the predictions from prior stages as input and incrementally refines these predictions.

Multi-stage learning systems that perform the same task in each stage typically use the same

supervision principles in each intermediate stage [76, 16, 57]. In [16], multiple stacked TCN networks

are proposed for action segmentation. In [57], a multi-stage network with dynamic attention was
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introduced, where the intermediate output in each stage is corrected with a memory mechanism. To

reduce the model parameters, each stage uses a shared network. It is shown that this multi-stage

approach typically performs better than systems with a larger and deeper network.

Multi-stage learning systems where each stage performs a different task are considered in [28,

58, 15]. Here, each stage has a different task and a different target. The performance can be improved

by aggregating different stages if the nature of each stage is complementary. For instance, a two-

stage speech enhancement approach is presented in [28], where the first stage uses a model to predict

a binary mask to remove frequency bins that are dominated by severe noise, and where the second

stage performs in-painting of the masked spectrogram from the first stage to recover the speech

spectrogram that was removed in the first stage. In [58], a two-stage algorithm is proposed to

optimize the magnitude and phase separately. The magnitude is optimized in the first stage and the

enhanced magnitude and phase are then further refined jointly.

This chapter details a novel multi-stage speech enhancement system, where each stage com-

prises a self-attention (SA) block [113] followed by stacks of dilated temporal convolutional network

(TCN) blocks. The system is referred to as a multi-stage SA-TCN speech enhancement system.

Each stage generates a prediction in the form of a soft mask that is refined in each subsequent stage.

Each self-attention block produces a dynamic representation for different noise environments and

their relevance across frequency bins, as such enhancing the features, and the stacks of TCN blocks

perform sequential refinement processing. A fusion block is inserted at the input of later stages to

re-inject original speech information to mitigate possible speech information loss in earlier stages.

This chapter is organized as follows. Section 3.2 details the proposed multi-stage SA-TCN

speech enhancement system and the underlying SA, TCN, and fusion blocks. Section 3.3 details

the comprehensive experiments using the LibriSpeech [78] and VCTK [109] corpus. Section 3.4

first presents the experiments that were performed to fine-tune the multi-stage SA-TCN system’s

hyperparameters, to determine the optimum number of stages, and to quantify the impact of the SA

block and the fusion block on the performance. The use of the proposed multi-stage SA-TCN system

as a front-end for automatic speech recognition (ASR) systems is investigated as well. Extensive

experiments with the LibriSpeech [78] and VCTK [109] corpus show that multi-stage SA-TCN

systems achieve significantly better speech enhancement and speech recognition scores than other

state-of-the-art speech enhancement systems. Section 3.5 concludes the paper and discusses further

research directions.
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3.2 Multi-Stage SA-TCN Systems

The proposed multi-stage SA-TCN speech enhancement system consists ofK stages. Fig. 3.1

illustrates a 4-stage SA-TCN system. Each stage comprises a self-attention (SA) block followed by

R stacks of L TCN blocks. For K-stage SA-TCN systems where K ≥ 3, a feature fusion block is

inserted prior to each stage k, where 3 ≤ k ≤ K.
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Figure 3.1: Block diagram of a multi-stage SA-TCN speech enhancement system with K = 4 stages,
where each stage consists of a self-attention (SA) block, followed by R = 3 stacks of L = 8 TCN
blocks, where the dilation factor of the `-th TCN block in the stack equals ∆` = 2`−1, i.e., the
dilation doubles for each next TCN block in the stack. A fusion block is used as of Stage 3 to re-
inject the original STFT magnitude. The figure also shows the detailed structure of the self-attention
module, with frequency and time dimensions F and T , a single TCN block with hyperparameters
B and H and P , and the proposed fusion block.

Each of the blocks have specific purposes that are particularly suited for speech enhance-

ment. The self-attention mechanism aggregates context information across channels, which is par-

ticularly helpful in obtaining a dynamic representation when the noise is non-stationary, and this is

the case for many speech enhancement scenarios.

The TCN consists of R stacks of L non-causal TCN blocks, where the dilation factor of the

`-th TCN block in the stack is given by ∆` = 2`−1. As such, each stack has a large receptive field,

which makes it particularly suited for temporal sequence modeling. Each TCN block has a skip

connection between the input and output to reduce the loss of low-level details and to provide hooks

for optimization.
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The multi-stage architecture iteratively refines the initial predictions. It should be noted

that the prediction of a previous stage may include some errors. For instance, the frequency bins

dominated by speech may be masked and the resulting magnitude spectrogram may have lost some

of the speech information. A fusion block is inserted prior to each stage k, where 3 ≤ k ≤ K, that

combines the predicted magnitude X̂(k−1) at the output of stage k − 1 and the original magnitude

X as input, in order to re-inject the original speech information.

The first stage consists of a self-attention (SA) block that takes X as input and that uses

three 1×1-convolutions to form the query Q and the key-value pair (K,V), where Q,K,V ∈ RF×T .

In order to compute the attention component A, we first compute the weight W, given by

W =
QKT

√
F
, (3.1)

and then use the soft-max function σ(·) to obtain Ŵ = {Ŵi,j} = σ (W), i.e.,

Ŵi,j =
exp (Wi,j)

wj
, where wj =

F∑

i=1

exp (Wi,j) . (3.2)

The attention component A ∈ RF×T is now determined using

A = ŴV, (3.3)

The SA block outputs X̂ = X + δA, where δ is a scalar with initial value zero that is used to allow

the network to first rely on the cues in the local channels X and then gradually assign more weight

to the non-local channels using back-propagation to reach its optimal value.

The output X̂ ∈ RF×T is fed into a TCN with input feature dimension B and network

feature map dimension H by using a bottleneck layer to reduce the number of channels from F

to B. The TCN consists of R identical stacks of L TCN blocks. Each TCN block comprises an

1×1 convolution at its input to match the input feature dimension B to the TCN block’s internal

feature map dimension H, a dilated depth-wise convolution (D-conv) layer with kernel size P and

dilation factor ∆` = 2`−1, where ` denotes the order of the TCN block in the stack of L TCN blocks,

and a 1×1 convolution layer to reduce the number of channels at the output from H to B. This

output is then recombined with the input using a skip connection to avoid losing low-level details.
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A parametric rectified linear unit (PReLU) activation layer [29] and a batch normalization layer [35]

are inserted prior to and after the depth-wise convolution layer to accelerate training and improve

performance. A sigmoid function is applied at the output of the last TCN block of the last stack to

obtain a [0-1] mask M(1) that minimizes the mean absolute error loss

L(1) = ‖M(1)�X− S‖, (3.4)

where the operator � denotes the Hadamard product and S denotes the STFT magnitude of the

clean speech signal s(t).

The stack of L TCN blocks with kernel P and dilation factor ∆` = 2`−1 create a receptive

field of size R(P,L), given by

R(P,L) = 1 +

L∑

`=1

(P − 1) · 2`−1. (3.5)

As such, a stack of L TCN blocks creates a large temporal receptive field with fewer parameters

than other models.

This chapter considers multi-stage SA-TCN systems with kernel size P = 3. An illustration

of the receptive field for a stack of L = 5 TCN blocks with kernel size P = 3 is shown in Fig. 3.2. The

∆1 = 1

∆2 = 2

∆3 = 4

∆4 = 8

∆5 = 16

Figure 3.2: Example of the connections formed by a non-causal D-convolution for a stack of L = 5
TCN blocks, each with kernel P = 3 and dilation ∆` = 2`−1, where 1 ≤ ` ≤ L.

multi-stage SA-TCN system’s hyperparameters (B,H,R,L) will be optimized using experiments.

As indicated, the same SA-TCN structure is used for subsequent stages, and an additional

element, a fusion block, is inserted prior to each stage if there are three or more stages.

For notational convenience, let Ψ
(R,L)
k (·) denote the mapping performed by the R stacks of

L TCN blocks in stage k, and let Υk(·) denote the self-attention operation at stage k. It follows

that M(1) can now be expressed as

M(1) = S(Ψ
(R,L)
1 (Υ1(X))), (3.6)
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where S(·) denotes the sigmoid function. As such, M(1) is the predicted mask at the output of

the first stage. The enhanced speech STFT magnitude X̂(1) at the output of stage 1 is given by

X̂(1) = M(1)�X.

In a similar fashion, the predicted mask M(2) at the output of the second stage can be

obtained by evaluating

M(2) = S(Ψ
(R,L)
2 (Υ2(X̂(1)))) (3.7)

and the estimated STFT magnitude X̂(2) = M(2)�X̂(1).

A multi-stage SA-TCN speech enhancement system with three or more stages (K ≥ 3) is

constructed by inserting a fusion block that performs operation Φ(·) prior to each stage k, where

3 ≤ k ≤ K, taking the masked STFT magnitude X̂(k−1) and STFT magnitude X as inputs.

Each input is passed through a 1×1-convolution and a PReLU operation, after which a global layer

normalization (gLN) is performed [69]. The operation gLN(Y) is given by

gLN(Y) =
Y − E [Y]√
var(Y) + ε

� γ + β, (3.8)

where Y ∈ RF×T is the input feature with mean E [Y] and variance var(Y), γ,β ∈ RF×1 are

trainable parameters, and ε is a small constant for numerical stability.

The outputs of the two gLN are added, and the result is again sent through a 1×1-convolution,

a PReLU, another gLN, another 1×1-convolution and another PReLU. The output, denoted as

X̆(k−1), is given by

X̆k−1 = Φk

(
M(k−1)�X, X̂(k−1)

)
. (3.9)

The output X̆k−1 is then used as an input to the next stage, and the expression for the mask M(k)

at the output of the k-th stage is now given by

M(k) = S
(
Ψk

(R,L)
(
Υk

(
X̆k

)))
. (3.10)

The enhanced magnitude X̂(k) at stage k is given by

X̂
(k)

= M(k)�X̂(k−1). (3.11)

Each next stage k, where k > 1, computes mask M(k) that minimizes the mask-based signal
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approximation mean absolute error loss L(k) using

L(k) =
∥∥M(k)�X̂(k−1) − S

∥∥, (3.12)

where X̂(k−1) denotes the estimated STFT magnitude at stage k − 1.

At the output of the last stage of the multi-stage SA-TCN system, the time-domain waveform

ŝ is computed using the processed STFT magnitude X̂(k) and the original STFT phase Ω by applying

the inverse STFT, in short ISTFT, denoted as

ŝ = ISTFT(X̂(K),Ω). (3.13)

The proposed multi-stage SA-TCN system provides a mean absolute error loss L(k) at the

output of each stage. Since each stage provides an equal contribution during the training process,

we use the accumulated mask-based signal approximation training objective function

L =

K∑

k=1

L(k). (3.14)

The use of the mean absolute error loss is motivated by recent observations that it achieves better

objective quality scores when using spectral mapping techniques [79, 80].

3.3 Experimental Setup

In the following, the data set, model set up and the evaluation metrics are detailed.

3.3.1 Data Set

To verify the effectiveness of the proposed multi-stage SA-TCN system, we conduct experi-

ments using the LibriSpeech and VCTK data sets. The detailed set-up for each data set is detailed

below.

LibriSpeech is an open-source corpus that contains 960 hours of speech derived from audio

books in the LibriVox project. The sampling frequency is 16 kHz. The clean source is trained using

100 hours of speech data from the “train-clean” data set. The validation set uses 800 sentences from

the “dev-clean” data set, and the test set uses 500 sentences from the “test-clean” data set. The

40



training set uses 10,000 randomly selected noise sample sequences from the DNS Challenge [87].

The training clean speech has been cut to 75,206 4-second segments. The training and validation

sets distort the clean segments with a randomly-selected noise sound from the DNS Challenge noise

set with an SNR in the set {−5,−4, · · · , 9, 10} (in dB), The test set uses three distinct noise types:

“babble noise” from the NOISEX-92 corpus [112], and “office noise” and “kitchen noise” from the

DEMAND noise corpus [105]. The first channel signal of the corpus is used for data generation.

Each clean utterance is distorted by a randomly selected noise type at a randomly selected SNR

from the set {−5, 0, 5, 10, 15} (in dB).

The VCTK database used here is derived from the Valentini-Botinhao corpus [109]. Each

speaker fragment contains about 10 different sentences. The training set uses 28 speakers, and the

test set uses two speakers. The training set used here uses 40 noise conditions: eight noise types

and two artificial noise types from the Demand database [105]) are used at a randomly selected

SNR from the set {0, 5, 10, 5} (in dB). The test set uses 20 noise conditions: five noise types from

the Demand database at a randomly selected SNR from the set {2.5, 7.5, 12.5, 17.5} (in dB). There

are about 20 different sentences in each condition for each test speaker. The test set conditions are

different from the training set, as the test set uses different speakers and noise conditions.

3.3.2 Model Setup

The baseline systems used for performance comparison are a CRN system [100], a complex-

CNN system that is based on concepts proposed in [119] and that was adapted for speech enhance-

ment, and a multi-stage system DARCN [57]. The setup of the baseline systems and the proposed

multi-stage SA-TCN systems are detailed below.

CRN: The CRN-based approach takes the magnitude as input. Instead of directly mapping the

noisy magnitude to the clean magnitude, we adapted the CRN to predict the ratio mask and as

such improve its performance. The CRN-based method consists of five 2D convolution layers with

filters of size 3×2 each and [16, 32, 64, 128, 256] output channels, respectively. This output is

post-processed by two LSTM layers with 1024 nodes each, and five 2D deconvolution layers with

filter size 3×2 each and output channels [128, 64, 32, 16, 1], respectively.

Complex-CNN. The complex-CNN performs a complex spectral mapping [17, 101], where the real

and imaginary spectrograms of the noisy speech signal are treated as two different input channels.

An STFT is used with a 20 ms Hanning window, a 20 ms filter length and a 10 ms hop size. The
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architecture uses eight convolutional layers, one LSTM layer and two fully-connected layers, each

with ReLU activations except for the last layer, which has a sigmoid activation. The parameters

used here are similar to the ones used in [119], but now both the input and the output have two

channels with real and imaginary components, respectively. The prediction serves as a complex

mask, consisting of a real and imaginary mask. The training stage uses a multi-resolution STFT

loss function [12], which is the sum of all STFT loss functions using different STFT parameters.

DARCN. DARCN [57] is a recently proposed monaural speech enhancement technique that uses

multiple stages and that combines dynamic attention and recursive learning. Experiments are con-

ducted with the open-source code (https://github.com/Andong-Li-speech/DARCN) using a non-

causal, 3-stage configuration.

Proposed multi-stage SA-TCN Systems. The proposed multi-stage SA-TCN systems are

characterized by the number of stages K and the hyperparameters (H,B,R,L). Each K-stage

SA-TCN system uses an STFT with a 32 ms Hanning-window, a 32 ms filter length and a 16 ms

hop size. As such, F = 257. The multi-stage SA-TCN systems are trained using 80 epochs of

4-second utterances from the LibriSpeech corpus and using 100 epochs of variable-length utterances

from the VCTK corpus. The proposed multi-stage SA-TCN systems are trained using the Adam

optimizer [47] with an initial learning rate of 0.0002. All models use a mini-batch of 16 utterances.

For each mini-batch of 16 utterances from the VCTK corpus, the longest utterance is determined

and the other utterances are zero-padded to obtain equal-length utterances.

3.3.3 ASR Setup.

The automatic speech recognition (ASR) experiments use a time-delay neural network-

hidden Markov model (TDNN-HMM) hybrid chain model [84]. The TDNN models long-term tem-

poral dependencies with training times that are comparable to standard feed-forward DNNs. The

data is represented at different time points by adding a set of delays to the input, which allows

the TDNN to have a finite dynamic response to the time series input data. This acoustic model

is trained using the Kaldi toolkit [85] with the standard recipe (https://github.com/kaldi-asr/

kaldi/tree/master/egs/librispeech/s5). The ASR acoustic models were trained using 960 hours

from the LibriSpeech training set. The word error rate (WER) was measured using the LibriSpeech

“test-clean” set.
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3.3.4 Evaluation Metrics

The speech enhancement systems are evaluated using the commonly used wide-band per-

ceptual evaluation of speech quality (PESQ) score [90, 37, 38], the short-time objective intelligibility

(STOI) score [99], the scale-invariant signal-to-distortion ratio (SI-SDR) [54], and the CSIG, CBAK

and COVL scores. The CSIG score is a signal distortion mean opinion score, the CBAK score mea-

sures background intrusiveness, and the COVL score measures the speech quality. The automatic

speech recognition performance is measured by determining the word error rate (WER).

3.4 Experimental Performance Results

Extensive experiments have been performed to determine the performance of the proposed

multi-stage SA-TCN speech enhancement systems, This section first details the findings of the

ablation studies, and then presents the performance results for the multi-stage SA-TCN systems.

3.4.1 Ablation Studies

Ablation studies were performed to fine-tune the multi-stage SA-TCN system’s hyperpa-

rameters (H,B,R,L), and to analyze the effectiveness of the self-attention and fusion blocks.

The performance of 5-stage SA-TCN systems is measured in terms of PESQ and STOI

scores for several hyperparameter configurations. The results are listed in Table 3.1. We observe

that it is more effective to increase the number of channels (hyperparameters B and H) in each TCN

block than to increase the number of TCN blocks per stack (L). For instance, when R = 2 and H

and B are doubled, the PESQ score improves from 2.59 to 2.65 and the STOI score improves from

92.36 to 93.02. At the same time, using L = 8 instead of L = 5 causes a slight degradation of the

PESQ score. The performance can also be improved significantly by increasing the number of stacks

R. We determined the model size for the larger TCN with R = 3 stacks and L = 8 TCN blocks per

stack, which accounts for about 1.68 M parameters. Each SA block has about 0.2 M parameters and

each fusion block has about 0.17 M parameters. If we only consider models with less than 10 million

parameters, the model where (H,B,R,L) = (256, 128, 3, 8) performs best. We should also note that

there is a trade-off between the performance and the model size.

Next, we investigate the impact of the number of stages K on the performance of a multi-

stage SA-TCN speech enhancement system. The motivation for employing multi-stage learning is
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R L H B P model size PESQ STOI

2 5 128 64 3 2.38 M 2.59 92.36

2 5 256 128 3 5.19 M 2.65 93.02

2 8 128 64 3 2.90 M 2.53 92.32

2 8 256 128 3 7.21 M 2.64 93.05

3 5 128 64 3 2.81 M 2.61 92.67

3 5 256 128 3 6.88 M 2.71 93.40

3 8 128 64 3 3.59 M 2.60 92.20

3 8 256 128 3 9.91 M 2.73 93.37

The best score in a column is bold-faced, the second best

is navy blue and the third best is dark pink.

Table 3.1: Performance for Several 5-stage SA-TCN Configurations

that the initial prediction is refined by the next stage. The results in Table 3.2 show that the

performance improves step-wise after each stage. For instance, when comparing the first and the

fifth stage, it shows that the PESQ score improves from 2.60 to 2.73, and the STOI score improves

from 93.08 % to 93.37 %. We also observe that the PESQ score’s rate of improvement gradually

decreases from 0.5 to 0.1, which suggests that adding further stages has diminishing returns in

terms of performance and that a 5-stage SA-TCN system is likely close to the upper bound on

performance for this multi-stage TCN-based approach.

Stage PESQ STOI

stage 1 2.60 93.08

stage 2 2.65 93.10

stage 3 2.70 93.22

stage 4 2.72 93.33

stage 5 2.73 93.37

Table 3.2: Per-Stage PESQ and STOI Scores for a 5-Stage SA-TCN System

The performance impact of using self-attention was determined using PESQ and STOI

scores. The results are shown in Fig. 3.3. On average, a 5-stage SA-TCN system provides a STOI

score improvement of 3.5 % and a PESQ score improvement of 1.05 relative to unprocessed noisy

speech. The insertion of the SA block prior to the stacked layers of TCN blocks consistently improves

PESQ and STOI scores for all SNR conditions: the average PESQ score improves from 2.68 to 2.73

and the average STOI score improves from 93.16 % to 93.37 %. This indicates that the SA block is

able to aggregate the frequency context, which is helpful for TCN-based speech enhancement. We

also observe that the use of SA blocks show more significant performance gains at low SNR, e.g.,
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at -5 dB, the PESQ score improves from 2.04 to 2.14 and the STOI score improves from 86.57 % to

87.05 %. This also indicates that multi-stage SA-TCN systems are more robust for lower SNR.
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Figure 3.3: Impact of using a self-attention module in a 5-stage SA-TCN system, where
(H,B,R,L) = (256, 128, 3, 8).

The effectiveness of the proposed fusion block, which re-injects original information in stages

3–5 in a 5-stage SA-TCN system to alleviate any speech signal loss, is considered next. The PESQ

and STOI scores are shown in Fig. 3.4. It shows that both scores improve for all SNR scenarios. The

average PESQ score improves from 2.65 to 2.73, and the average STOI score improves from 93.08 %

to 93.37 %. The impact of the fusion block is, as expected, more prominent at lower SNR, when the

model not only removes the noise, but can also easily partly remove the speech signal itself.

3.4.2 Baseline System Comparison

Extensive experiments with the proposed multi-stage SA-TCN system and the CRN-based,

complex-CNN and DARCN systems were conducted using the LibriSpeech data set. All multi-

stage SA-TCN systems use hyperparameters (H,B,R,L) = (256, 128, 3, 8). Table 3.3 shows that all

multi-stage SA-TCN systems outperform the baseline systems in terms of the PESQ score for the

different noise types and SNR conditions. The results also show that multi-stage SA-TCN systems
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Figure 3.4: Impact of using a fusion block in a 5-stage SA-TCN system, where (H,B,R,L) =
(256, 128, 3, 8).

with more stages have a better PESQ score. Similarly, Table 3.4.2 shows that the STOI scores of

the multi-stage SA-TCN systems are generally better than the baseline systems, and that the best

STOI scores are generally obtained for 4-stage and 5-stage SA-TCN systems. Interestingly, even the

single-stage SA-TCN system outperforms all baseline systems in terms of PESQ score. Adding more

stages improves the overall performance significantly. For instance, the single-stage SA-TCN and the

2-stage SA-TCN have average PESQ scores of 2.47 and 2.67, respectively, and average STOI scores

of 92.52% and 92.88%. The best performance is achieved with K = 5 stages, with an average PESQ

score of 2.73 and an average STOI score of 93.37 %. The proposed 5-stage SA-TCN system has much

better PESQ and STOI scores than the baseline systems, which demonstrates the effectiveness of

the proposed approach. We also observe that multi-stage learning is more effective at a low SNR.

For example, the 5-stage SA-TCN system achieves much better performance for Office and Kitchen

Noise at -5 dB, and it also performs well for Babble Noise at low SNR.

Finally, we determined the SI-SDR metrics that quantify speech distortion. Table 3.5 shows

that the proposed multi-stage SA-TCN sytems generally outperform the baseline systems. We also

observe that the SI-SDR performance for multi-stage SA-TCN systems with K > 3 stages decreases
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slightly, which indicates that the additional stages not only mask the noise, but also distort the

speech signal. However, it will be shown next that these speech distortions do not impact the ASR

performance.

Noise type Office Noise Babble Noise Kitchen Noise
Average

SNR -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

Noisy speech 1.30 1.68 2.01 2.60 3.39 1.06 1.09 1.22 1.37 1.80 1.07 1.18 1.30 1.62 2.10 1.63

CRN 1.90 2.16 2.58 3.07 3.45 1.08 1.20 1.46 1.75 2.24 1.43 1.81 2.19 2.44 2.78 2.09

Complex-CNN 2.14 2.40 2.84 3.01 3.24 1.13 1.30 1.70 2.06 2.54 1.77 2.20 2.46 2.67 2.95 2.30

DARCN 2.23 2.48 3.02 3.35 3.62 1.14 1.33 1.72 1.97 2.52 1.80 2.16 2.45 2.64 2.82 2.35

1-stage SA-TCN 2.29 2.60 3.11 3.38 3.64 1.15 1.38 1.85 2.28 2.81 1.83 2.27 2.69 2.84 2.87 2.47

2-stage SA-TCN 2.55 2.85 3.46 3.65 3.84 1.17 1.44 1.94 2.37 2.89 1.93 2.47 2.94 3.09 3.39 2.67

3-stage SA-TCN 2.67 2.93 3.43 3.58 3.83 1.17 1.42 1.97 2.39 2.92 1.95 2.47 2.94 3.18 3.30 2.69

4-stage SA-TCN 2.61 2.90 3.42 3.56 3.81 1.19 1.46 2.03 2.48 2.95 1.97 2.49 2.98 3.11 3.35 2.70

5-stage SA-TCN 2.74 2.90 3.38 3.57 3.82 1.18 1.47 2.05 2.51 3.02 2.10 2.53 2.94 3.19 3.30 2.73

All multi-stage SA-TCN models use hyperparameters (H,B,R,L) = (256, 128, 3, 8). The best score in a column is bold-faced, the second best

is navy blue and the third best is dark pink.

Table 3.3: PESQ Scores for Multi-Stage SA-TCN and Baseline Systems Using Samples from the
LibriSpeech Corpus

Noise type Office Babble Kitchen
Average

SNR [dB] -5 0 5 10 15 -5 0 5 10 15 -5 0 5 10 15

Noisy speech 92.91 96.81 98.50 98.62 99.25 54.94 64.93 80.04 87.10 91.08 84.59 91.75 95.40 98.21 98.86 89.66

CRN 93.02 96.15 97.29 97.55 98.07 54.44 68.15 83.75 90.04 91.98 87.14 92.60 95.57 97.15 97.23 90.23

Complex-CNN 93.23 95.78 97.25 96.91 97.01 60.70 72.92 87.01 91.85 93.26 87.38 92.63 95.11 96.83 96.83 91.09

DARCN 95.08 97.04 98.46 98.44 98.82 62.60 75.20 88.90 91.72 94.41 90.31 93.71 96.60 98.31 98.31 92.64

1-stage SA-TCN 94.81 97.09 98.55 98.52 98.76 61.51 74.96 88.62 92.89 94.26 89.37 94.11 96.37 98.08 98.27 92.52

2-stage SA-TCN 94.85 96.98 98.35 98.24 98.89 64.91 76.59 89.89 93.29 94.47 89.45 93.72 96.76 97.67 98.65 92.88

3-stage SA-TCN 95.02 97.23 98.48 98.32 98.92 63.30 75.75 89.92 93.63 94.64 88.71 93.68 96.79 98.12 98.60 92.82

4-stage SA-TCN 94.93 97.14 98.52 98.22 98.75 65.47 76.94 90.33 93.70 94.73 89.41 94.47 96.74 98.10 98.62 93.10

5-stage SA-TCN 95.43 97.24 98.62 98.60 98.96 64.26 77.57 90.33 93.94 94.94 90.82 94.84 96.88 98.22 98.78 93.37

All multi-stage SA-TCN models use hyperparameters (H,B,R,L) = (256, 128, 3, 8). The best score in a column is bold-faced, the second best

is navy blue and the third best is dark pink.

Table 3.4: STOI Scores for Multi-Stage SA-TCN and Baseline Systems Using Samples from the
LibriSpeech Corpus

3.4.3 Automatic Speech Recognition

We conducted automatic speech recognition (ASR) experiments using LibriSpeech to assess

the performance of multi-stage SA-TCN systems with up to five stages and determined the word

error rate (WER) as well as the WER reduction. The baseline systems are the CRN-based method,

and the complex-CNN and DARCN methods. The results are shown in Table 3.6. Our 1-stage SA-

TCN system performs slightly worse than the best baseline systems, but the multi-stage SA-TCN

methods perform better, and the the proposed 5-stage SA-TCN achieves an absolute improvement

of 18.8 %, 8.4 % and 4.6 % relative to CRN, complex-CNN and the DARCN methods, respectively.
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SNR [dB] -5 0 5 10 15 Average

CRN 1.43 5.72 9.63 13.07 16.39 9.28

Complex-CNN 9.66 11.32 13.35 14.49 16.86 13.15

DARCN 11.00 12.65 15.84 17.60 19.87 15.41

1-stage SA-TCN 11.13 13.40 16.77 18.05 19.77 15.84

2-stage SA-TCN 10.80 12.71 16.60 17.42 19.44 15.42

3-stage SA-TCN 11.41 13.03 17.01 18.34 20.33 16.04

4-stage SA-TCN 10.48 12.69 16.25 17.10 19.51 15.23

5-stage SA-TCN 11.43 12.82 16.29 17.41 19.67 15.55

The best score in a column is bold-faced, the second best

is navy blue and the third best is dark pink.

Table 3.5: SI-SDR scores for Multi-Stage SA-TCN and Baseline Systems Using Samples from the
LibriSpeech Corpus

The ASR results are similar to the STOI performance.

Method WER [%] WER reduction [%]

Noisy Speech 32.94 –

CRN 30.86 6.3

Complex-CNN 27.44 16.7

DARCN 26.18 20.5

1-stage SA-TCN 27.86 15.4

2-stage SA-TCN 25.32 23.1

3-stage SA-TCN 26.11 20.7

4-stage SA-TCN 25.27 23.3

5-stage SA-TCN 24.67 25.1

The best score in a column is bold-faced, the second best

is navy blue and the third best is dark pink.

Table 3.6: Speech Recognition Performance of Multi-Stage SA-TCN and Baseline Systems

3.4.4 Spectrogram-Based Visualization

Speech enhancement performance can be assessed using spectrograms. Consider the situa-

tion where clean speech is perturbed by Babble noise at an SNR of 5 dB. Fig. 3.5 shows spectrograms

of the noisy speech signal, the clean speech target, as well as the CRN-based and complex CNN-

based systems, the DARCN system, and the proposed 5-stage SA-TCN enhanced speech system.

The spectrograms clearly show that the proposed system is best at suppressing residual noise while

preserving the speech patterns.
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Figure 3.5: Spectrograms of a sample input mixed with Babble Noise at an SNR of 5 dB and the
speech-enhanced signals at the output of SA-TCN and baseline systems.

3.4.5 Speech-Enhancement Benchmark Results

The proposed multi-stage SA-TCN speech enhancement systems are compared with state-

of-the-art methods using the publicly available benchmark data set VCTK. As shown in Table 3.7,

the proposed multi-stage SA-TCN systems outperform methods that use T-F frequency features, in-

cluding magnitude, gamma-tone spectral and complex STFT in terms of all the speech enhancement

metrics used in this paper. Compared with the recently proposed time-domain method DEMUCS,

our proposed method uses fewer parameters and achieves better performance in terms of CBAK

and COVL metrics, while the PESQ, STOI and CSIG are slightly worse. The experiments with the

VCTK corpus show that adding more stages still provides some incremental performance improve-

ments.

3.5 Summary

In this chapter, we have presented novel multi-stage SA-TCN speech enhancement systems,

where each stage consists of a self-attention block followed by R stacks of L temporal convolutional

network blocks with doubling dilation factors. The stacks of L TCN blocks effectively perform se-
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model size feature type PESQ STOI CSIG CBAK COVL SI-SDR

noisy speech – – 1.97 0.921 3.35 2.44 2.63 8.45

SEGAN [83] (2017) 43.2 M Waveform 2.16 0.93 3.48 2.94 2.80 –

Wave-U-Net [71] (2018) 10.2 M Waveform 2.40 – 3.52 3.24 2.96 –

DFL [21] (2018) 0.64 M Waveform – – 3.86 3.33 3.22 –

MMSE-GAN [97] (2018) 0.79 M Gamma-tone spectral 2.53 0.93 3.80 3.12 3.14 –

MetricGAN [18] (2019) 1.89 M Magnitude 2.86 3.99 3.18 3.42 –

MB-TCN [127] (2019) 1.66 M Magnitude 2.94 0.9364 4.21 3.41 3.59 –

DeepMMSE [128] (2020) – Magnitude 2.95 0.94 4.28 3.46 3.64 –

MHSA-SPK [51] (2020) – STFT 2.99 – 4.15 3.42 3.57 –

STFT-TCN [52] (2020) – STFT 2.89 – 4.24 3.40 3.56 –

DEMUCS [12] (2020) 127.9 M Waveform 3.07 0.95 4.31 3.40 3.63 –

1-stage SA-TCN 1.88 M Magnitude 2.84 0.9402 4.16 3.37 3.50 17.98

2-stage SA-TCN 3.76 M Magnitude 2.96 0.9422 4.25 3.45 3.62 18.19

3-stage SA-TCN 5.81 M Magnitude 2.99 0.9423 4.27 3.48 3.64 18.38

4-stage SA-TCN 7.86 M Magnitude 3.01 0.9428 4.27 3.49 3.66 18.40

5-stage SA-TCN 9.91 M Magnitude 3.02 0.9439 4.29 3.50 3.67 18.48

The best score in a column is bold-faced, the second best is navy blue and the third best is dark pink.

Table 3.7: Performance Evaluation Scores of Multi-Stage SA-TCN and Baseline Systems Using
Samples from the VCTK Corpus

quential refinement processing. Multi-stage SA-TCN systems with three or more stages use a fusion

block as of the third stage to mitigate any possible loss of the original speech information loss in

later stages. The proposed self-attention module is used to provide a dynamic representation by ag-

gregating the frequency context. Extensive experiments were used to fine-tune the hyperparameters.

It was shown that both the addition of the self-attention modules and the fusion blocks resulted in

better performance. We noted that even the basic 1-stage SA-TCN system performs well and that

adding stages improves the speech enhancement scores. The model size increases almost linearly

with the number of stages. The relative improvement when adding an additional stage reduces when

more stages are added and as such one approaches an implicit upper bound for this approach. The

best overall performance with a reasonable model size was obtained with a 5-stage SA-TCN system.

Extensive experiments were conducted using the LibriSpeech and VCTK data sets to de-

termine the performance of the multi-stage SA-TCN speech enhancement systems and to compare

the proposed system with other state-of-the-art deep-learning speech enhancement systems. It was

shown that the proposed multi-stage SA-TCN methods achieve better performance in terms of widely

used objective metrics while having fewer parameters. Speech enhancement, especially in mobile

applications, requires computational- and parameter-efficient models. The proposed methods meet

this requirement and at the same time provide excellent performance. Spectrograms were used to
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visualize that the proposed 5-stage SA-TCN systems can remove noise effectively while preserving

the speech patterns. The proposed multi-stage SA-TCN systems predict a soft mask at each stage,

which can be viewed as an implicit ideal ratio mask (IRM). For speech signals that are dominated

by noise, the noise is suppressed gradually in each stage, which is a main reason for the excellent

performance. The proposed multi-stage SA-TCN systems are also shown to have excellent ASR

performance.

The focus of this chapter is to process and enhance the spectrum magnitude, and the

unaltered noisy phase is used when reconstructing the waveforms in the time domain. Recently,

several studies have shown that phase information is also important for improving the perceptual

quality [77, 58]. Thus, incorporating phase information into the proposed approach may lead to

further improvements.
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Chapter 4

On Loss Functions for Multi-scale

Temporal Convolutional

Network-Based Speech

Enhancement

In this chapter we investigate multi-scale temporal convolutional network (TCN) for speech

denoising. We propose three multi-scale architectures to improve the speech enhancement per-

formance, which consist of 1) TCN-dual, which has two different dilation factors in one dilated

convolutional block; 2) TCN-flatten, which uses a fixed number of dilation factors in each dilated

convolutional block and the output of each dilation factor are concatenated; 3) TCN-pyramid, which

is similar to TCN-flatten, adopts an additional hierarchical feature fusion mechanism.

4.1 Introduction

Recently deep learning based speech enhancement approaches have become the mainstream.

Early methods include a recurrent neural network(RNN) [70], a deep auto-encoder [66], a deep

neural networks (DNN) [124] and so on. Recent studies consider the use of temporal convolutional
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network (TCN) for speech enhancement [49, 52] and speech separation [69] as its ability to model

longer context dependencies with fewer parameters. For example, in [49], the TCN used in [69]

for speech separation was adapted for speech enhancement and integrated in a multi-layer encoder-

decoder architecture. [52] proposed to use complex Short-Time Fourier transform (STFT) features

for TCN-based speech enhancement. TCN are typically stacked multiple layers to model a longer

temporal contextual field, in which the dilation rate in each block is exponentially increased. As

the number of layers increases, the resulting large dilation rate makes the model pay more attention

to long term dependency. However, the corresponding local information may be neglected in the

higher layers. To mitigate these limitations, several multi-scale TCN architectures were proposed.

For instance, FurcaNeXt was proposed in [126], which includes several multi-scale gated TCN for

speech separation. In [127], a speech enhancement system was proposed that uses a multi-branch

TCN, which adopts different dilation rates in each branch and enables the model to learn useful

representation by aggregating the information from each branch. In [58], a dual gated TCN was

proposed for speech denoising and showed improved performance.

4.2 Multi-Scale TCN Framework

The objective of a speech enhancement module is to filter a received noisy speech signal and

to generate an enhanced signal that is as close as possible to the original speech signal. Let x ∈ Rn

denote a received n-sample noisy speech signal that is fed to the speech enhancement module, and let

y denote the clean speech waveform. The quantitative objective of the speech enhancement module

is to output a signal ŷ that is as close as possible to the original speech signal y.

4.2.1 Overview of the proposed framework

As shown in Fig. 4.1, the proposed framework is adapted from Conv-tasnet architecture [69].

Instead of using a trainable encoder/decoder, Short-Time Fourier transform (STFT)/Inverse STFT

is adopted for feature processing. The architecture consists of R stacks of K TCN blocks, where

the dilation factor of the i-th TCN block in the stack is given by ∆i = 2i−1. As such, each stack

has a large receptive field, which makes it particularly suited for temporal sequence modeling. Each

TCN block has a residual connection between the input and output to reduce the loss of low-level

details and to provide hooks for optimization. A sigmoid are applied at the output to generate a
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[0-1] mask. The enhanced magnitude is obtained by multiplying noisy magnitude and the predicted

mask. When performing the inverse STFT to reconstruct the waveform, we use the phase of the

original noisy speech. Next we detail the TCN used in the proposed framework.
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Figure 4.1: The overall framework of the proposed approach. The waveform with green box is the
target waveform and the waveform with red box is the enhanced output.

4.2.2 Multi-Scale TCN Block

We explore three different multi-scale TCN blocks. Each TCN block comprises an 1×1

convolution at its input to match the input feature dimension B to the TCN block’s internal feature

map dimension H, a dilated depth-wise convolution (D-conv) layer with kernel size P and dilation

factor ∆i = 2i−1, where i denotes the order of the TCN block in the stack of K TCN blocks, and a

1×1 convolution layer to reduce the number of channels at the output from H to B. A parametric

rectified linear unit (PReLU) activation layer [29] and a batch normalization layer [35] are inserted

prior to and after the depth-wise convolution layer to make the training stable. To simplify the

figure, we only describe the depth-wise convolution layer (D-Conv) in Fig. 4.2. As we can see in

Fig. 4.2, TCN-dual consists of two parallel branches, which can model two different dilation rates.

For example, if the the total number of TCN blocks is 8, then the first TCN block will have 1 (20)

and 128 (27) dilation rates, where both local and longer context can be learned by the TCN-dual

design. For the TCN-flatten design, each TCN block has a fixed number of dilation rates, which

is the total number of the TCN blocks. Different dilation rates in each branch allow the TCN block

to learn the representations from a large effective receptive field. We explore to merge the output

of each branch using grouped 1×1 convolution that can reduce the parameters. TCN-pyramid is

similar to TCN-flatten, the only difference is that a hierarchical feature fusion (HFF) [72] is adopted

as shown in Fig. 4.2. The outputs of each dilation rates are hierarchically added before concatenating
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them, which does not increase the complexity of the TCN block.
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Figure 4.2: The architectures of TCN block.

4.2.3 Loss function

We investigate four loss functions for the proposed multi-scale TCN. The mask-based signal

approximation mean absolute error loss Lmag is defined as:

Lmag = ||mask�X −Y||1, (4.1)

where X and Y denote the noisy STFT magnitude and target magnitude, and the operator � denotes

the Hadamard product. The predicted waveform is defined as:

ŷ = ISTFT(mask�X,Ω), (4.2)

where Ω denotes original STFT phase. The L1waveform loss can be obtained by:

Lwav = ||ŷ − y||1, (4.3)

SI-SNR is commonly used as an loss function at the time-domain. LSI-SNR is defined as:





ytarget := (< ŷ,y > ·y)/||y||22,

enoise := ŷ − ytarget,

LSI-SNR := 10 log10
||ytarget||22
||enoise||22

,

(4.4)
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Recent studies have shown that additional perceptual loss can improve the speech enhancement

performance [21, 43, 32]. In particular, wav2vec [95], which is a self-supervised that learns generic

speech representations, performs well for speech denoising. We adopt it as one of the loss functions

for the proposed framework. In addition, we also explore several combinations of these loss functions

and more details can be found in the result section.

4.3 Experiments and results

4.3.1 Data set

To verify the effectiveness of the proposed multi-scale TCN system, we conduct experiments

using the LibriSpeech and DNS data sets. The detailed set-up for each data set is detailed below.

LibriSpeech is an open-source corpus that contains 960 hours of speech derived from audio

books in the LibriVox project. We select 100 hours of speech data from the “train-clean” data set,

800 sentences from the “dev-clean” data set, and 500 sentences from the “test-clean” data set for

training set validation set and test set, respectively. The training set uses 10,000 randomly selected

noise sample sequences from the DNS Challenge [87]. The speech data of training and validation

sets are mixed with a randomly-selected noise sound from the DNS Challenge noise set with an SNR

in the set {−5,−4, · · · , 9, 10} (in dB), three distinct noise types: “babble noise” from the NOISEX-

92 corpus [112], and “office noise” and “kitchen noise” from the DEMAND noise corpus [105] are

selected for test set. The first channel signal of the corpus is used for data generation. Each clean

utterance is distorted by a randomly selected noise type at a randomly selected SNR from the set

{−5, 0, 5, 10, 15} (in dB).

We also conduct experiments on the DNS-Challenge dataset [87]. For DNS-Challenge

dataset, we totally generate around 60000 noisy-clean pairs for training with the provided clean

utterances and noise sets. The development test set with 150 pairs is adopted for model evaluation.

4.3.2 Model setup

Proposed Multi-scale TCN: The proposed framework takes magnitude as input that is extracted

by an STFT with a 32 ms Hanning-window, a 32 ms filter length and a 8 ms hop size. As such,

F = 257. The hyperparameters (H,B,R,K) are set to (256, 128, 3, 8) and kernel size P is 3.
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All the proposed methods in this chapter are causal setting, thus it can be applied to real-time

applications.

The multi-scale TCN systems are trained using 80 epochs of 4-second utterances from the

LibriSpeech corpus and using 60 epochs of 4-second utterances from the DNS corpus. The proposed

systems are trained using the Adam optimizer [47] with an initial learning rate of 0.0002. The

proposed models use a mini-batch of 16 utterances for Librispeech and a mini-batch of 20 utterances

for DNS corpus.

4.3.3 Evaluation Metrics

The speech enhancement systems are evaluated using the commonly used wide-band per-

ceptual evaluation of speech quality (PESQ) score [90, 37, 38], the short-time objective intelligibility

(STOI) score [99], the scale-invariant signal-to-distortion ratio (SI-SDR) [54], and the CSIG, CBAK

and COVL scores. The CSIG score is a signal distortion mean opinion score, the CBAK score

measures background intrusiveness, and the COVL score measures the speech quality.

4.3.4 Result

We first compare the performance of proposed approaches using different loss functions

mentioned 4.2.3. We observe that using Lwav and LSI-SNR can get better SI-SDR performance. This

is due to SDR mainly reflects the similarity between the original and reconstructed waveforms in the

time domain. Using Lmag and Lperceptual can achieve better PESQ and STOI metrics. Moreover,

the combination of Lmag+Lperceptual and Lmag+Lwav can further improve the performance in terms

of PESQ and STOI. For example, compared with the TCN-pyramid system only using Lmag, the

TCN-pyramid system using Lmag+Lperceptual improves the PESQ and STOI from 2.79 to 2.85 and

93.77% to 93.80%, respectively. We also observe that TCN-pyramid achieves the best performance

in contrast to TCN-dual and TCN-flatten. This indicates that using hierarchical feature fusion and

parallel dilate rates are effective.

Next, we compare our proposed methods with other state of the art systems on DNS chal-

lenge dataset. The baseline systems list in Table 4.2 are the top systems in INTERSPEECH2020

DNS challenge [88]. NSnet [123] is the official baseline system. DCCRN [34] is a complex-domain

neural network, where both CNN and RNN structures can handle complex-valued operation. It
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Models PESQ STOI SI-SDR

Noisy 1.63 89.66 5.03

TCN-dual

¬mag loss 2.72 93.54 11.56
snr loss 2.50 92.75 16.14
®wav loss 2.45 92.83 14.73

¯perceptual loss 2.65 93.17 11.40
¬+ 2.47 92.97 13.74
¬+® 2.80 93.49 13.74
¬+¯ 2.78 93.55 15.66

TCN-flatten

¬mag loss 2.77 93.58 15.18
snr loss 2.56 92.98 14.67
®wav loss 2.48 92.81 15.53

¯perceptual loss 2.75 93.42 12.38
¬+ 2.64 93.26 12.76
¬+® 2.80 93.64 15.55
¬+¯ 2.83 93.78 13.29

TCN-pyramid

¬mag loss 2.79 93.77 14.77
snr loss 2.48 92.94 15.44
®wav loss 2.40 92.79 15.90

¯perceptual loss 2.75 93.43 12.78
¬+ 2.64 93.04 13.81
¬+® 2.81 93.57 13.66
¬+¯ 2.85 93.80 14.60

Table 4.1: Performance comparison for proposed multi-scale TCN using samples from the Lib-
riSpeech corpus.

ranked first for the real-time-track and second for the non-real-time track. PoCoNet [36] ar-

chitecture proposed to use the frequency-positional embeddings, which is able to more efficiently

build frequency-dependent features in the early layers. It ranked first for the non-real-time-track.

DTLN [121] proposed a dual-signal transformation LSTM network (DTLN) for real-time speech

enhancement, which also achieved the state of the art performance.

As shown in Table 4.2, all of our proposed methods can achieve competitive results com-

pared with previous SOTA systems. In particular, the proposed TCN-pyramid is close to the top-1

performance in terms of WB-PESQ and NB-PESQ. This illustrates the effectiveness of our proposed

multi-scale approach. We should also note that with large training data, the improvement of TCN-

Pyramid over TCN-default becomes smaller. Compared TCN-flatten with TCN-pyramid, it further

verified the effectiveness of the HFF techniques.

58



WB-PESQ NB-PESQ CBAK COVL CSIG SI-SDR STOI
Noisy 1.58 2.16 2.53 2.35 3.19 9.07 91.52
NSnet [123] 1.81 2.68 2.00 2.24 2.78 12.47 90.56
DTLN [121] - 3.04 - - - - -
DCCRN [34] - 3.27 - - - - -
PoCoNet [36] 2.75 - 3.04 3.42 4.08 - -
TCN-Default 2.71 3.24 3.53 3.43 4.21 16.43 96.02
TCN-Dual 2.72 3.25 3.51 3.47 4.19 16.08 96.07
TCN-Flatten 2.70 3.24 3.53 3.46 4.20 16.43 95.60
TCN-Pyramid 2.73 3.25 3.54 3.48 4.21 16.45 96.03

Table 4.2: Performance comparison for proposed multi-scale TCNs using magnitude loss and per-
ceptual loss and other state of the art systems using samples from the DNS Corpus.

4.4 Summary

In this chapter, we have presented three multi-scale TCN architectures for speech enhance-

ment. Multiple training targets are investigated in the proposed approaches. Experiments show

that the combination of magnitude loss and perceptual loss can achieve the best performance in

terms of the commonly used speech enhancement metrics. We also compare the proposed systems

with the top systems on INTERSPEECH2020 DNS challenge. It was shown that the proposed

approaches can achieve comparable performance in contrast to the top-1 system. The future work

could be explored to combine the multi-stage and multi-scale into a unified framework to improve

the performance.
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Chapter 5

Speaker-Aware Speech

Enhancement with Self-Attention

This chapter presents the speaker-aware speech enhancement. The work presented in this

chapter has been accepted by European Signal Processing Conference, EUSIPCO 2021.

5.1 Introduction

Recently, modeling to learn the acoustic noisy-clean speech mapping has been enhanced by

including auxiliary information such as visual cues [31], phonetic and linguistic information [59, 67],

and speaker information [8]. In particular, the utilization of three kinds of broad phonetic class

(BPC) information for speech enhancement can achieve notable improvements [67]. In [8], a speaker-

aware deep denoising auto-encoder (SaDAE) extracts speaker representation from the noisy input

using a DNN model. Target speaker extraction was investigated in [119, 40, 86].

In this chapter, we first visualize the impact of the quality of a clean speech reference signal

on speaker representation. Given that it is generally possible to collect a few seconds of clean

reference speech in applications, e.g., similar to a smart virtual assistant that needs a few-second

clean speech record during its setup stage, or extracted from (prior) high-SNR recordings, it is

worthwhile investigating how a few seconds of clean reference can be best used to improve speech

enhancement performance. In this chapter, we propose a novel speaker-aware speech enhancement
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(SASE) method that extracts speaker information from a clean reference using long short-term

memory (LSTM) layers, and then uses a convolutional recurrent neural network (CRN) to embed the

extracted speaker information. The SASE framework is extended with a self-attention mechanism.

Extensive simulations are performed using the Valentini-Botinhao corpus [109] to determine the

performance of the proposed SASE method. It will be shown that a few seconds of clean reference

speech is sufficient, and that the proposed SASE method performs well for a wide range of scenarios.

5.2 Speaker Embedding

The need for accurate speaker information is visualized by an experiment with fifteen speak-

ers from the Valentini-Botinhao corpus [109], where two noise sources from the DEMAND corpus

were added at an SNR of -5 dB, 0 dB, and 5 dB. Fig. 5.1 shows the t-distributed stochastic neighbor

embedding (t-SNE) [111] of the speaker embedding information affected by noise. One clearly sees

that speaker embedding information is very sensitive to noise. To mitigate the effects of noise, we

propose to use clean reference speech, and show that a few seconds suffice to properly extract speaker

embedding information. Given that it is often feasible to use a few seconds of clean reference speech

in real applications, e.g., from pre-recorded training samples or from prior high SNR recordings, it

is worth investigating how the availability of a few seconds of clean reference can be best used to

improve speech enhancement performance.

5.3 Proposed SASE Framework

We propose a novel speaker-aware speech enhancement (SASE) system that uses a short

clean-speech reference. The system consists of three components: a pre-trained speaker embedding

extractor to process the reference clean speech, a CRN-based speech enhancement module, and a

self-attention module. The CRN comprises a convolutional encoder-decoder structure which extracts

high-level features with a 2-D convolution, and a long short-term memory (LSTM) layers to capture

long-span dependencies in temporal sequences. A block diagram is shown in Fig. 5.2.
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Figure 5.1: Example of t-SNE visualization for speaker embedding of 15 speakers for various SNR
conditions using two noise types from the DEMAND corpus [105].

5.3.1 Speaker embedding extractor

The speaker embedding extractor, proposed in [114], is shown to perform well and is used

here. It consists of three LSTM layers with 768 nodes in each layer and one linear layer with a

256-dimensional output.

The pre-trained model (https://github.com/mindslab-ai/voicefilter) is trained using

the VoxCeleb2 data set [9], which comprises records of thousands of speakers. The model takes as

input a Mel-spectrogram, which is extracted using a Short Time Fourier Transform (STFT) with an

80 ms window and a 40 ms hop size. The model achieves a 7.4 % equal error rate on the VoxCeleb1

test data set (first eight speakers of the data set).
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Figure 5.2: Proposed SASE framework.

5.3.2 Self-Attention Module

Self-attention [113] is an efficient context information aggregation mechanism that operates

on the input sequence itself and that can be utilized for any task that has a sequential input and

output. Consider an 4-dimensional input X of shape [B,C, T, F ], where B, C, T , and F denote

the batch size, number of channels, and the time and frequency dimensions, respectively. The self-

attention layer takes X as input and uses three 1×1-convolutions to form the query Q and the
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key-value pair (K,V), where Q and K have shape [B,C ′, T, F ], and V has shape [B,C, T, F ]. To

reduce memory requirements, we use C ′ = C/8. Next, Q, K and V are reshaped to form 3D

matrices (including batch size).

In order to compute the attention component A, we first compute the weight W, given by

W = QTK, (5.1)

and then use the soft-max function σ(·) to obtain Ŵ = {Ŵi,j} = σ (W), i.e.,

Ŵi,j =
exp (Wi,j)

wj
, where wj =

T ·F∑

i=1

exp (Wi,j) . (5.2)

The attention component A ∈ RB×C×T×F is now determined using

A = ŴVT, (5.3)

The attention module outputs X̂ = X + δA, where δ is a learnable scalar with initial value zero.

5.3.3 Proposed SASE framework

The SASE framework, shown in Fig. 5.2, has three main components: an encoder-decoder

based CRN, a LSTM-based speaker embedding extractor and a self-attention module. The encoder

of the CRN consists of five 2-D convolutional blocks, each of which includes a 2-D convolutional layer,

a batch normalization layer [35], and exponential linear units (ELUs) [10]. The decoder uses five

2-D deconvolutional blocks to convert the low-resolution features into high-resolution spectrograms.

Each deconvolutional block consists of a 2-D transposed convolutional layer, followed by batch

normalization and the ELU activation. We include skip connections from each encoder layer to

its corresponding decoder layer, in order to avoid losing fine-resolution details and to facilitate

optimization. There are two LSTM layers between the encoder and decoder to capture long-term

temporal dependencies.

Training Flow. The proposed SASE method takes noisy speech and reference clean speech as

input. The reference clean speech is fed into the speaker embedding extractor to obtain speaker

information. The noisy speech is fed into the encoder to determine the low-resolution features. The
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concatenation of the speaker representation and the encoder output are then fed into LSTM layers.

The LSTM output is also fed into the self-attention module. The attention output is then followed

by the encoder. We apply a sigmoid at the encoder output to generate a [0-1] mask. The following

loss function, referred to as SA-MSE, is used during the training stage:

L = ‖M�X− S‖2. (5.4)

where X and S denote the magnitude of the noisy speech and clean speech signals, respectively, and

the operator � denotes the Hadamard product. The mean squared error (MSE) loss function that

is determined using the clean and predicted magnitude directly is referred to as SM-MSE. When

performing the inverse STFT to reconstruct the waveform, we use the phase of the original noisy

speech.

5.4 Experiments and Results

In the following, the data set, model set up and the evaluation metrics are detailed. The

results will be discussed at the end of this section.

5.4.1 Data Set

The database used here is derived from the Valentini-Botinhao corpus [109]: 84 speakers

and two speakers in the original data set are used for training and test, respectively. Each speaker

fragment consists of about 10 different sentences. The noisy training set used here considers 40

conditions: 10 noise types (two artificial noise types and eight noise types selected from the Demand

database [105]), where each noise type is considered at an SNR of 0 dB, 5 dB, 10 dB, 15 dB. For the

test set, a total of 20 different conditions are considered: five types of noise (all from the Demand

database) with four SNRs each (2.5 dB, 7.5 dB, 12.5 dB and 17.5 dB). There are around 20 different

sentences in each condition for each test speaker. The test set condition is totally different with the

training set, as it uses different speakers and conditions. For each speaker, we generate a 60-second

segment as clean reference speech. The clean reference is processed by removing the silence part.

After holding out the utterance for clean reference, there are 722 sentences in total for testing.

During the training stage or testing stage, we randomly choose a small segment from the clean
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reference for the given segment size, e.g., 2 s, 4 s, 6 s, and 8 s.

5.4.2 Model Setup

The baseline systems considered here are the LSTM- and CRN-based speech enhancement

methods. The LSTM baseline model consists of two LSTM layers with 768 nodes each, followed

by a fully-connected output layer that reduces the dimension to 161. The CRN-based method

consists of five conv2d blocks with filters of size 3×2 each and [16, 32, 64, 128, 128] output channels,

respectively. This output is post-processed by two LSTM layers with 512 nodes each, followed by

five deconv2d blocks with filter size 3×2 each and output channels [128, 64, 32, 16, 1], respectively.

The proposed SASE method has a similar encoder-decoder as the CRN-based method. The

speaker representation (256-D) and the encoder output (512-D) are concatenated and then fed into

two LSTM layers of 768 nodes each. The output is then projected onto 512 feature dimensions and

reshaped to match the encoder output, and then post-processed by the self-attention module and

the decoder.

The feature input for all models is a spectral magnitude vector of length 161 of the noisy

speech signal, which is computed using a STFT with a 20 ms Hamming window and a 10 ms window

shift. All models are trained using the Adam optimizer [47] with an initial learning rate of 0.0006.

A mini-batch size of 32 utterances is used for all models except for SASE with attention. SASE

with attention uses mini-batch size of 16 utterances. We zero-pad all utterances to have the same

length as the longest utterance within a mini-batch.

5.4.3 Evaluation Metrics

The speech enhancement systems are evaluated using the commonly used perceptual eval-

uation of speech quality (PESQ) score [90, 37, 38], the short-time objective intelligibility (STOI)

score [99], the scale-invariant signal-to-distortion ratio (SI-SDR) [54], and the CSIG, CBAK and

COVL scores. The CSIG score is a signal distortion mean opinion score, the CBAK score measures

background intrusiveness, and the COVL score measures the speech quality.
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Loss Model size PESQ STOI SI-SDR CSIG CBAK COVL

Noisy Speech – – 1.970 92.06 8.51 3.35 2.45 2.63

LSTM

SM-MSE

7.71 M 2.608 93.44 16.36 2.91 3.10 2.74

CRN 4.69 M 2.598 93.49 16.52 3.31 3.14 2.94

SASE (2s)

10.33 M (12.13 M)

2.636 93.67 16.80 3.42 3.18 3.02

SASE (4s) 2.627 93.72 16.73 3.44 3.18 3.02

SASE (6s) 2.649 93.80 16.93 3.48 3.20 3.05

SASE (8s) 2.651 93.72 16.84 3.52 3.19 3.07

LSTM

SA-MSE

7.71 M 2.614 93.65 16.70 3.96 3.19 3.29

CRN 4.69 M 2.658 93.87 16.67 4.02 3.22 3.34

SASE (2s)

10.33M (12.13 M)

2.702 93.95 16.86 4.08 3.26 3.40

SASE (4s) 2.699 94.07 16.97 4.09 3.27 3.40

SASE (6s) 2.696 94.00 16.92 4.08 3.26 3.40

SASE (8s) 2.693 93.98 17.05 4.08 3.27 3.39

SASE (2s) + attn

SA-MSE 10.35M (12.13 M)

2.670 93.92 17.14 4.05 3.26 3.36

SASE (4s) + attn 2.706 94.02 17.34 4.05 3.29 3.38

SASE (6s) + attn 2.756 94.05 17.35 4.09 3.32 3.43

SASE (8s) + attn 2.703 93.97 17.23 4.05 3.28 3.38

The acronyms SM-MSE and SA-MSE denote spectral mapping and mask-based signal approximation with MSE loss, respectively.

The values in parenthesis specify the duration of the reference speech signals. The best score in a column is bold-faced,

the second best is navy blue and the third best is dark pink.

Table 5.1: Performance Scores for the Proposed SASE and Baseline Systems

5.4.4 Experiments and Results

We first investigate the performance of all models by determining the mean squared error

(MSE) loss on the predicted and clean magnitude directly, which is denoted as SM-MSE. The results

are provided in Table 5.1. The performance metrics for the CRN-based method are better than the

LSTM-based method, except in terms of PESQ. The proposed SASE approach outperforms the CRN

baseline system, even with only 2 s reference clean speech. The best performance when applying the

SM-MSE loss function is achieved by SASE with 8 s reference speech. This indicates that additional

speaker information is useful to further improve speech enhancement performance. Next, we replace

the SM-MSE loss function by a mask-based signal approximation loss function (SA-MSE) at the

training stage. Table 5.1 shows that all SA-MSE-based loss models perform better than the models

that use the SM-MSE loss function, in particular for the PESQ, CSIG and COVL metrics. For

instance, relative to SASE with 2 s reference speech using SM-MSE loss, the PESQ score improves

from 2.636 to 2.702 and the COVL score improves from 3.02 to 3.40.
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Further adding self-attention can boost the performance as well in terms of most metrics. We

observe that adding self-attention improves the SI-SDR consistently for all SASE-based approaches.

The best PESQ, SI-SDR, CISG, CBAK, and COVL scores are achieved by SASE with a 6-second

reference speech signal.

The detailed PESQ, STOI, SI-SDR scores for the baseline systems and the proposed SASE

method with self-attention (6s) with respect to the four SNR conditions considered here are shown

in Fig. 5.3. One can clearly see that the proposed SASE method is more effective at lower SNR

conditions. This suggests that additional speaker information provides important cues to distinguish

the speech and noise at high noise conditions.

Model complexity. The proposed SASE method has more parameters than the baseline systems,

because of the three LSTM layers of the speaker embedding extractor. It is planned to replace

the LSTM-based speaker embedding extractor with an extractor that uses CNN models with fewer

parameters.

5.5 Summary

In this chapter, we presented and validated a novel speaker-aware speech enhancement

method that uses a few seconds of reference clean speech. We first compared the proposed SASE

with baseline systems using spectral mapping-MSE and mask-based signal approximation-MSE loss,

respectively. The experimental results indicate that the proposed SASE system outperforms the

baseline systems using both loss functions. The results also show that using mask-based signal

approximation loss is better than spectral mapping-MSE loss. Adding self-attention achieves the

best performance in terms of most metrics, especially for SI-SDR metric. We tested the proposed

SASE approach with four different reference-speech durations. All achieved better performance in

comparison with the CRN baseline, which demonstrates the effectiveness of the proposed method.
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Figure 5.3: The detailed scores for baseline systems and the proposed SASE framework with self-
attention for four tests with different SNR conditions.
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Chapter 6

N2N-SE: Noise2Noise for Speech

Enhancement

This chapter presents a novel noise-to-noise speech enhancement method, referred as N2N-

SE, that is trained with actual speech without the need for clean speech targets.

6.1 Related Work

Speech Enhancement In [124], the SEDNN architecture was introduced, which deploys a deep

neural network (DNN) as a regression model and trains it using the log-power spectral features of

noisy- and clean-speech data pairs. This method outperformed prior techniques such as such as

global variance equalization and noise-aware training strategies in terms of perceptive and objective

measures. In [118], a DNN-based architecture was proposed that uses a multi-objective learning and

ensemble (MOLE) framework, which shows that one can improve the performance by combining

two compact DNNs via boosting. Such DNN-based methods are commonly referred to as feature-

mapping methods. Other speech enhancement methods are based on mask-learning [74, 120], where

a DNN is used to estimate the ideal ratio mask or the ideal binary mask based on the noisy input

features. The mask is used to filter noisy speech signals and recover clean speech signals.

In [83], a speech enhancement generative adversarial network (SEGAN) was introduced to

train the model directly based upon receiving raw audio data in an end-to-end fashion, and it shows
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significant performance gains in terms of perceptual speech quality metrics compared with previous

work. Similarly, [79] leverages GAN framework using a standard DNN, and they demonstrate the

performance improvement via L1 norm instead of using L2 norm. In [13], the SEGAN concept

is extended to the spectral domain by modeling noise patterns, and it is shown that this further

improves performance.

Denoising and Restoration In [108], it is shown that the structure of a convolutional neural

network (CNN) can be used for image restoration without requiring additional training data due

to the prior distribution of natural images. The CNN was fed with a random but constant noise

input and trained to approximate a single noisy image as output. The network could produce a

cleanly denoised image if training processing is stopped at the right moment before convergence.

The Noise-to-Noise (N2N) framework proposed in [56] attempts to learn a mapping between pairs of

independently degraded versions of the same training image. The networks that are trained this way

aim to learn the targets’ invariant signals, and they could produce the denoised image when pairs of

noisy images are available. However, the acquisition of such pairs with same signal only possible for

static scenes. To address this limitation, a novel training scheme called NOISE2VOID (N2V) [53]

was proposed. N2V is a self-supervised training approach, which can be used in the situations for

which neither noisy images pairs nor clean target images are available.

6.2 Proposed N2N-SE Framework

A novel noise-to-noise speech enhancement (N2N-SE) method is proposed, which takes noisy

speech as input and outputs the clean speech signal. The overall objective is to learn the expectations

among different noisy speech samples so that the model can capture the invariant signal, which is

the clean speech signal. The N2N-SE framework consists of a speech enhancement module and a

noise conversion module as shown in Fig. 6.1.

6.2.1 Theoretical Analysis

The enhancement module takes noisy speech signals as input, and is tasked to reconstruct

the signal from multiple corrupted speech signals. Let P(M) denote a set of M different noise types

or augmentations. We consider the input x̂ = x + ε, where x denotes the clean speech signal,
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Figure 6.1: The proposed N2N-SE framework, which comprises a noise conversion module and a
speech enhancement module. The noisy speech is first fed into noise conversion network to generate
multiple new noisy speech as the targets for the speech enhancement network. The enhanced speech
is then fetched into ASR for post-processing based on applications.

ε ∼ P(M) denotes the noise that is mixed with the original signal. Note that we only observe x̂ and

that our objective is to recover x.

Recently, a novel approach to restore images by only processing noisy samples was introduced

in [56, 53]. A similar idea was applied to speech enhancement [1]. These methods use the hypothesis

that the noise has a zero mean, i.e., E (ε) = 0, and therefore

E (x̂) = E (x) + E (ε) = x (6.1)

However, this is generally not true in the speech domain, since a speech signal can be non-stationary

with an arbitrary distribution. In [1], it is assumed that dual mics are used to collect multiple noisy

speech sources. Here, we rewrite (6.1) as a vector which operates on the raw audio signal:

E (x̂) = E (x) + E (ε) = E (x) +
1

M
Σiεi (6.2)

when we have a sufficient number of noise variants mixed with the clean speech signal, we can still

reconstruct the clean speech x from corrupted samples. In this chapter, we consider M to be number

of noise types. The second term goes to zero as the number of samples grows. Therefore, the model’s

target is the same source signal that is mixed with multiple noise types. The model gθ can be simply
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Figure 6.2: Model structure of the noise conversion module (a) and speech enhancement module
(b).

trained in a batch:

∇θEεi∼P(M) [L(gθ(x+ ε0), x+ εi)] =

Eεi∼P(M) [∇θL(gθ(x+ ε0), x+ εi)] (6.3)

In practical experiments, we often have a limited number of noise types, and as such the

second term in (6.2) could create a bias. Assuming that µε and σε denotes to the mean and variance

of noises, based on the central limited theory, when M becomes efficiently large, this bias term (the

mean of the ε values) would be normally distributed. Hence, we could approximate Equation 6.2 as

E (x) +ω, where ω ∼ N (µε, σε/
√
M). Then, we can simply use a linear filter such as a Wiener filter

to remove this bias term. The upper bound of noise2noise based speech enhancement would be the

mapping between noisy speech with clean target.

6.2.2 Noise Conversion Module

We propose to use a noise conversion module to generate multiple types of noisy speech as

shown in the left part of Fig. 6.2. The noise conversion module takes a noisy speech signal x̂ and

a noise source εi as input, and generates a new speech signal x̂′i with additive noise from εi, which

can be represented as

f(x+ ε0, εi)→ x+ εi, where εi ∼ P(M), (6.4)
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where f(·) is an auto-encoder where both the encoder and decoder are a convolution neural network

(CNN). The encoder consists of a content encoder Ec that captures phonetic information, and a

noise encoder En that generates the noise embedding. The computational procedure is outlined in

Algorithm 1. The noisy speech signal x̂ is fed to the content encoder and transformed to content

embedding cx; the noise signal εi, which is selected from the noise pool P(M), feeds into the noise

encoder to generate noise embedding cn. Next, cx and cn are concatenated and then fed into the

decoder to generate a new noisy speech signal. Note that we train the noise encoder first. During

the training of the noise conversion module, the gradients do not update the weights of encoder

En. We enumerate εi from P(M), and store the generated x̂′i as speech enhancement targets in the

generated speech set D.

6.2.3 Speech Enhancement Module

The speech enhancement module, which is shown on the right-hand side of Fig. 6.2, takes

the noisy speech signal x̂ as input and a number of generated noisy speech signals x̂′i as targets, and

aims to recover the clean speech signal x. Note that the output of encoder is concatenated with a

random vector sampled from a normal distribution N (0, I). We empirically found that the random

vector could help training process converge faster, see Fig 6.5 and Fig 6.4. The speech enhancement

module g is a convolutional auto-encoder with objective function:

arg min
θ

Ex̂{Ex̂′
i|x̂{L(gθ(x̂), x̂′i)}} (6.5)

It follows that the network parameter θ is sample-dependent. For each sample x̂, instead of perform-

ing a one-to-one mapping between the input and the output, (6.5) performs a one-to-many mapping.

In addition, we attempt to learn the mapping from a noisy input to other noisy targets, and the

model still converges. This is due to the fact that the expectation of the noisy targets is equal to the

clean signal, as discussed earlier. The computation procedure is detailed in Algorithm 1, Phase II,

below. Since we cannot collect an infinite number of noisy targets, it is inevitable that there is some

residual noise in the enhanced speech signal. The performance can be further improved by using a

Wiener Filter to remove this residual noise at the output of the auto-encoder.
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6.2.4 Training

The noise conversion module is trained separately with the speech enhancement module. To

train noise conversion, we pre-trained an auto-encoder first to generate the noise embedding, where

both input and output of this auto-encoder is the same noise samples. After pre-training, we only

use the encoder part (En) to generate latent noise embedding. The training pairs of noise conversion

network (< x+ ε0, εi >, x+ εi) are fed into the network with a L1 loss functions.

L = ‖Dn(Ec(x+ ε0), En(εi))− (x+ εi)‖1 (6.6)

For specific noise, we train the separate network parameters respectively. After training of noise

conversion module, the corresponding noise conversion network is selected according the noise type

of input sample. The generated noisy targets then feed into the speech enhancement module. The

training objective of speech enhancement is also L1 loss as shown in Algorithm 1. The model would

learn the invariant signal of noisy targets and converge after several epochs, See Fig 6.5 and 6.4 in

Section 6.3.

6.3 Experiments

6.3.1 Dataset

The dataset for the experiments is generated from two sources: the DARPA TIMIT cor-

pus [20] is used as clean speech references, whereas the collection of noise is from the 100 OSU noise

corpus [33]. The TIMIT corpus includes eight major American-English dialects recorded from 630

speakers, each reading ten phonetically rich sentences, and this corpus is partitioned into test and

training subsets. In this chapter, we only consider the situation where the signal-to-noise ratio (SNR)

is 0 dB for speech enhancement, and we select the popular deep learning methods SEDNN [124] and

SEGAN [83] as our baseline. We create training set for the deep learning models and N2N-SE’s noise

conversion module. To train noise conversion module, which is a one-to-many mapping function, we

use the TIMIT training set (4620 sentences) and four specific noise types: the sound of an alarm,

wind, car noise, and falling water. In other words, we train four noise-specific conversion modules,

where each module can convert one specific noise type to the other 99 noise types from the OSU

noise corpus. We use two randomly-selected noise types from the OSU corpus, and perform additive
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Algorithm 1 Denoising Algorithm

Input: Noisy speech signal set X , noise set P(M)

Output: Enhanced signal x

Phase I: Noise Conversion Module

1: for each x̂ ∈ X do
2: initialize Di as an empty set;
3: for each εi ∈ P(M) do
4: cx ← Ec(x̂); cn ← En(εi);
5: c← {concat(cx, cn)};
6: x̂′i ← Dn(c);
7: add x̂′i to Di;
8: end for
9: end for

Phase II: Speech Enhancement Module

10: initialize R as an empty set for results
11: for each 〈x̂, x̂′i〉 ∈ 〈X ,Di〉 do
12: while not converge do
13: c← ESE(x̂); z ← N (0, I);
14: c← {concat(c, z)};
15: train and calculate loss:

L = ‖DSE(c))− x̂′i‖1
16: do the inference for x: x = DSE(ESE(x̂))
17: end while
18: add x to R
19: end for
20: return R

mixing with each sentence from the TIMIT training set for baseline systems. A total of 50 sentences

from the core TIMIT test set are selected for the test set. Each sentence is combined with one of

four noise types (alarm, wind, car noise, and falling water).

6.3.2 Model Setup

Baseline Setup Our baseline systems consist of a Wiener filter, SEDNN and SEGAN. For

SEDNN, log-spectral features were applied for DNN-based speech enhancement spliced in time by

taking a context size of seven frames, i.e., three preceding frames, the current frame, and the three

next frames. The full network topology consists of three hidden layers and 2048 hidden units. The

network was trained for 10,000 iterations using the Adam optimizer with a mini-batch size of 500

and 20% drop-out in the hidden layers. For SEGAN, we use the same setting as in [83], except for

the batch size, which is set to 32.
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Evaluations
Noise Type 1 (Alarm) Noise Type 2 (Wind) Noise Type 3 (Car Noise) Noise Type 4 (Water)

PESQ STOI PESQ STOI PESQ STOI PESQ STOI

w/o SE 1.59± 0.17 0.7525 1.52± 0.15 0.7578 1.51± 0.14 0.7031 1.26± 0.17 0.6418
Wiener Filter 2.16± 0.12 0.8012 1.32± 0.20 0.7303 1.46± 0.14 0.7041 1.10± 0.16 0.6062

SEDNN 2.46± 0.12 0.8342 2.05± 0.17 0.7835 2.29± 0.16 0.8338 1.89± 0.15 0.7255
SEGAN 2.14± 0.25 0.8298 1.88± 0.22 0.8205 2.02± 0.19 0.8306 1.98± 0.23 0.8139
N2N-SE 2.72± 0.18 0.9375 2.58± 0.22 0.9014 2.68± 0.21 0.9233 2.57± 0.21 0.9124

N2N-SE + WF 2.97± 0.18 0.9370 2.59± 0.23 0.8989 2.69± 0.21 0.9236 2.69± 0.23 0.9121

Table 6.1: Performance of the proposed models and existing DNN-based, SEGAN models and Wiener
Filter methods using the evaluation metrics PESQ, STOI, and PER (the best values per column are
printed in bold-face).

N2N-SE Setup The N2N-SE method directly operates on raw waveforms using a one-second

sliding window, where each extract chunks of noisy speech waveforms of 16,384 samples with a 50-

percent overlapped. Both noise conversion and speech enhancement modules use CNN structure.

The speech enhancement is an auto-encoder, which encoder and the decoder has symmetric network

configuration. The feature maps of the encoder are 16384×1, 8192×16, 4096×32, 2048×32, 1024×64,

512×64, 256×128, 128×128, 64×256, 32×256, 16×512, and 8×1024. In the speech enhancement module,

we sample the noise z from our prior distribution N (0, I), which is 8×1024-dimensional. The noise

conversion module has same structure except for an additional encoder for noise embedding. For

each sentence, we use the noise conversion module to generate 99 noisy pairs. The noise embedding

dimension of pre-trained encoder En is also set as 8×1024. The training process of noise conversion

network and speech enhancement network is same, which uses RMSprop [106] optimizer and a

learning rate of 0.0002, using an batch size of 8. We set a total number iterations to be 5000 for

speech enhancement and 100 epochs for noise conversion module.

ASR Setup The Deep Neural Network-Hidden Markov Model (DNN-HMM) acoustic model is

used to test the ASR performance of the enhanced speech signals. We first train a Gaussian Mix-

ture Model-Hidden Markov Model (GMM-HMM) to obtain senones (tied triphone states) and the

corresponding aligned frames for DNN training. The input feature vectors are used to train the

GMM-HMM that contains 13-dimensional Mel-frequency spectral coefficients (MFCCs) and their

first and second derivatives. Context-dependent phones, tri-phones, are modeled by 3-state HMMs.

The splices of 9 frames (4 on each side of the current frame) are projected down to 40-dimensional

vectors by linear discriminant analysis (LDA), together with maximum likelihood linear transform

(MLLT), and then used to train the GMM-HMM using maximum likelihood estimation.

The MFCC features which is stacked over an 11-frame window are used as the input layer
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of the DNN. The DNN has six hidden layers, and each layer contains 1, 024 nodes. Since TIMIT

is a small corpus, the DNN acoustic model was first initialized with stacked restricted Boltzmann

machines (RBMs) that were pre-trained in a greedy layer-wise fashion as in [30]. After pre-training,

all weights and biases were discriminatory trained by optimizing the cross entropy between the target

(corresponding to context-dependent HMM states) probability and actual output of softmax output

with the Back-Propagation (BP). We used the default TIMIT s5 recipe in Kaldi [85].

Evaluation Metrics We evaluate speech enhancement via the perceptual evaluation of speech

quality (PESQ) score [39] and the Short-Time Objective Intelligibility (STOI) score [99]. The PESQ

score has a high correlation with subjective evaluation scores, and is mostly used as a compressive

objective measure. The PESQ score is computed by comparing the enhanced speech with the clean

reference speech, and it ranges from -0.5 to 4.5. The STOI score is highly relevant to human speech

intelligibility and the score ranges from 0 to 1. In order to evaluate the ASR performance, we use

the phone error rate (PER) to demonstrate the effectiveness of enhanced speech signal, where we

expect ASR to be robust with noisy speech signal.

6.3.3 Speech Enhancement Performance

N2N-SE vs. Baselines: As shown in the Table 6.1, the N2N-SE method outperforms all

baseline in terms of perceptual quality and intelligibility with marginal gap. For example, compared

with SEDNN, N2NSE significantly improves the average PESQ from 2.46 to 2.72 and average STOI

from 0.8342 to 0.9375 on alarm noise condition. Also, N2N-SE clearly outperforms SEGAN with

a 0.58 improvement of PESQ on alarm conditions. This demonstrates that the N2N-SE method

effectively suppresses the noise signal, and it maintains the clean speech signal with only a minimal

amount of distortion.

N2N-SE with Wiener Filter: The Table 6.1 shows that N2N-SE post-processed with a

Wiener Filter (N2N-SE+WF) further improves the speech perceptual quality compare with pure

N2N-SE. N2N-SE+WF outperforms N2NSE in most cases, indicating that the additional wiener

filter can further purify the speech signal prediction. This is expected that when we do not have

enough noisy targets, and the bias term in Equation 6.2 (the mean of the noise signal) would be a

normal distribution, which can be effectively removed by wiener filter as discussed in Section 6.2.1.

Signal fidelity: As shown in Fig 6.3, we plot the spectrograms of a one-sentence speech
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Figure 6.3: Spectrograms of a) a sample input mixed with alarm noise, where the SNR = 0 dB, b)
the clean target, c) Wiener Filter, d) SEDNN, e) SEGAN, and f) the proposed N2N-SE method.

sample, and list visualization of different methods. As shown in the plot, the proposed N2N-SE

method not only effectively inhibit noise sources, but also it incurs only minimal distortions on the

speech signal, which is illustrated by the red boxes. This indicates that N2N-SE can suppress noise,

while preserving signal fidelity with minimal distortion.
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Figure 6.4: The STOI performance with and without random noise vector on different number of
noisy targets (higher is better).
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Figure 6.5: The PESQ performance with and without random noise vector on different number of
noisy targets (higher is better).

Number of noise targets effectiveness: As discussed in Section 6.2, the noise term in Equa-

tion 6.2 can be suppressed when M increases. To verify the hypothesis, we adjust the number of

noisy speech signals that are generated by the noise conversion module using the same input sample.

As shown in Fig 6.7, both PESQ and STOI improves significantly as M increases for different noise

types, which verify our assumption in Section 6.2.1.

Random noise vector effectiveness: In the speech enhancement module, we find that con-

catenating a random noise vector with the output of encoder would make training converge faster.

As shown in Fig 6.5 and Fig 6.4, both PESQ and STOI of the model without random noise vector

are slightly worse than that of the system with random noise vector. We speculate that adding these

noise vector would avoid the speech enhancement network overfit to the noisy targets and learn the

invariant signal as much as possible.

Convergence Speed: Similar as [56], we observe that the training loss of N2N-SE becomes

diverge. Each loss value of one iteration is calculated from 16384 sample points (the input dimension).

We demonstrate the training loss of two noise conditions as shown in Fig 6.6. In Fig 6.6, although the

loss does not show any convergence at 3, 000 iterations, the enhancement performance has already

converged to stable level, which is 3, 000 shown in Fig 6.7.
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Figure 6.6: Training loss of N2N-SE would not converge

6.3.4 Noisy Speech Recognition Performance:

We further evaluate the how much ASR performance gain would be obtained by using

our proposed framework. Many state-of-art speech recognition systems use multi-style training

(MTR) [63] to achieve robustness to noise at inference time. In order to verify this strategy is also

effective for the preprocessing stage, we examine the speech enhancement module with two scenarios:

1) the acoustic model is trained only using clean speech and 2) the acoustic model is trained by

conventional MTR, where we use enhanced speech as ASR input. We use original TIMIT clean

speech and mixed noisy speech for MTR. A randomly selected noise sound from OSU-100 sources

was attached to every sentence of TIMIT training set with five different signal-to-noise ratios (SNRs):

-5, 0, 5, 10 and 15dB.

ASR trained with clean speech: As we shown in Table 6.2, where the ASR is trained on

clean speech while testing on the enhanced speech samples, the N2N-SE+WF outperform most

of baselines. Specifically, the N2N-SE method achieves an absolute PER gain of 16.9 %, 5.8 %

and 7.5 % when compared with the Wiener Filter, SEDNN and SEGAN on alarm noise condition,

respectively. Additionally, we observe the downgraded ASR performance on car noise even though

the corresponding perceptual quality and intelligibility metrics show best results. On the other

hand, Table 6.2 indicate the closeness between enhanced speech and clean target: Since clean speech
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(training phase) and enhanced speech (prediction phase) would have mismatched distribution, the

improved ASR performance shows that N2N-SE+WF output would be more close with clean speech

compared with other alternatives.

ASR trained with MTR: As the ASR is trained with enhanced speech at both training and

evaluation phase, the performance of acoustic model in Table 6.3 is more robust with noisy speech

compared with Table 6.2. As shown in Table 6.3, N2N-SE outperform all previous baseline with

large gap. However, when training ASR, we find that the extra Wiener Filter would downgrade

the performance of our model. One possible reason is that the Wiener Filter would employ extra

distortions on original speech signal. Another explanation is that the approximate Gaussian noise

act as regularization role, such that it provides ASR better generalization.

Evaluations Alarm Wind Car Noise Water

w/o SE 72.8 74.1 71.9 75.4
Wiener Filter 60.5 54.4 72 75.8

SEDNN 49.4 53.9 42.5 59.7
SEGAN 51.1 50.5 50.2 49.8
N2N-SE 43.6 52.4 45.2 49.4

N2N-SE + WF 43.4 50.4 44.9 48.9

Table 6.2: PER(%) with acoustic model using clean speech

Evaluations alarm wind car noise water

w/o SE 50.4 50.8 56.3 54
Wiener Filter 51.4 53.1 69.5 57.5

SEDNN 44.3 40.2 56.8 47.6
SEGAN 49.3 46.7 46.6 48.4
N2N-SE 34.3 36.8 38.5 40.6

N2N-SE + WF 38.4 36.9 42.7 44.7

Table 6.3: PER(%) with acoustic model using multi-style training

Number of noise targets on ASR: We also investigate the how ASR performance is influenced

when the number of noisy targets varies. Based on trained ASR in both clean speech and MRT

cases, we tune the number of generated noise targets from noise conversion module. As shown in

Fig 6.8, we observe that PER decreases as the number of noisy target increased for both cases.

Furthermore, the performance of MTR based acoustic model is significantly better than that of the
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acoustic model which only use clean speech.
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Figure 6.7: The performance impact of using different number of noisy targets (higher is better).
For each noise condition, we plot the PESQ and STOI, respectively. Note that noise-19 means that
19 noise types used in this case.
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Figure 6.8: ASR performance on two different acoustic models with different number of noisy targets
(lower is better).

83



6.4 Summary

In this chapter, we proposed a novel speech enhancement framework without the need to use

clean speech. The proposed N2N-SE method comprises a noise conversion module to generate noisy

targets and a speech enhancement module that reconstructs expectations of the corrupted signal.

A series of experiments have been conducted for four specific noise types. The proposed N2N-SE

method achieves the best performance on perceptual quality and intelligibility metrics, and also

shows marginal ASR performance gains in most cases. The multi-style training ASR experiment

results also show that MTR based acoustic model is also the effective for the enhanced speech.

In future work, the noise conversion module could be replaced by a GAN, such as style-

GAN [41] or starGAN [7], to realize non-parallel noisy speech conversion. In addition, since the

current speech enhancement parameters are sample-dependent, another potential direction is to ex-

plore a model that can infer clean signals without re-training. Furthermore, we would like to test

the proposed approach on a large scale data set and a more diverse noise corpus.
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Chapter 7

Speech Enhancement Using

Cascaded Conformers to Suppress

Noise and Reverberation

7.1 Introduction

During the last several decades, a wide variety of noisy-reverberant speech enhancement

methods have been developed and refined to improve the quality and intelligibility of the degraded

speech signal. In [27], a deep neural network (DNN) was used as a non-linear regression function

that maps the log-magnitude spectrum of noisy-reverberant speech to that of clean anechoic speech.

In [122], the complex ideal ratio mask was proposed to separate speech in reverberant and noisy en-

vironments. Normally, background noise is an additive signal to clean speech, while reverberation is

a convolution of the speech signal with the room impulse response (RIR) [125]. In order to deal with

the different natures of background noise and room reverberation, a step-by-step approach was pro-

posed in [48], which first performs speech denoising by using spectral subtraction, and then removes

the reverberation from the denoised reverberant signal by a multi-step linear prediction dereverber-

ation algorithm. A DNN-based two-stage approach was proposed in [131], where denoising and

dereverberation are performed in two separate stages. During the inference time, the time-domain

signals are resynthesized using the Griffin-Lim phase enhancement algorithm [25]. In [89], a wide
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residual network (WRN) was used to leverage the residual connections in a very deep architecture.

Tang et al. [104] proposed a long short-term memory (LSTM) network with progressive learning for

noisy-reverberant speech enhancement. DenseUNet, proposed in [129], uses time-frequency (T-F)

attention for noisy-reverberant speech enhancement in the complex domain [129]. Fan et al. [14]

proposed to simultaneously denoise and dereverberate using deep embedding features, which are

generated from the anechoic speech and residual reverberation signals. DESNet, proposed in [19],

performs speech dereverberation, enhancement and separation simultaneously.

Recently, a conformer was introduced for speech recognition [26]. A conformer is composed

of a feed-forward module, a self-attention module, a convolution module, and a second feed-forward

module. It combines convolution neural networks and transformers to model both local and global

dependencies of an audio sequence in a parameter-efficient way. Very recently, the conformer was

adapted for speech separation [5] and speech denoising [42], and it was shown to be very effective.

In this chapter, we propose a speech enhancement method that uses cascaded conformers

to denoise and dereverberate speech signals sequentially. We first investigate the conformer’s effec-

tiveness in removing noise and reverberation in a single processing stage, and then explore the use

of two cascaded conformers for denoising and dereverberation, respectively. Specifically, we develop

two conformer-based subsystems that are trained for denoising and dereverberation individually.

Then, the two sub-systems are concatenated for testing. We also develop and explore several joint

training strategies and weight initialization procedures. The effectiveness of the proposed systems

is compared with LSTM-based systems using the LibriSpeech corpus in terms of the commonly

used perceptual evaluation of speech quality (PESQ) score [37], the short-time objective intelligibility

(STOI) score [99], and the word error rate for the automatic speech recognition (ASR) experiments.

7.2 Speech Enhancement Using Cascaded Conformers

Consider an anechoic speech signal s(t) that is affected by background noise and reverber-

ance. The noise-affected reverberant speech signal y(t) is given by

y(t) = x(t) + v(t) = s(t)∗h(t) + v(t). (7.1)
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where v(t) denotes the background noise, x(t) denotes the reverberant speech and h(t) denotes the

impulse response function that reflects the reverberation. The operator ∗ denotes the convolution

operator.

The objective is to process the observed noise-affected reverberant speech signal y(t) and

recover the anechoic signal s(t). It is natural to first remove the noise and then recover the anechoic

speech. In this chapter, the estimation of the reverberant speech signal x̂(t) given the noise-affected

reverberant speech signal y(t) is referred to as the denoising operation and the estimation of the clean

anechoic signal ŝ(t) given x(t) is referred to as the dereverberation operation. The estimation of ŝ(t)

given y(t) is referred to as combined denoising and dereverberation. The model name with suffix “-N”

denotes the denoising operation, e.g., LSTM-N, CONF-N, the suffix “-R” denotes the dereverberation

operation, and the suffix “-N-R” denotes simultaneous denoising and dereverberation.

7.2.1 Conformer Architecture

A conformer, originally proposed in 2020 for ASR, increases the local information modeling

capability of a traditional transformer [113] by inserting a convolution layer into the transformer

block. In addition, it combines the power of relative position encoding (PE) and a half-step feed-

forward Macaron net [68]. The architecture of a conformer block is shown in Fig. 7.1. It takes input

x and first uses a feed-forward network (FFN), given by

x̃ = x+
1

2
FFN(x). (7.2)

Next, it uses a multi-headed self-attention (MHSA) module µ to obtain

x′ = x̃+ µ(x̃). (7.3)

The MHSA module used in the conformer uses a variant of self-attention, which allows the model

to learn from different representation sub-spaces. Self-attention is an efficient context information

aggregation mechanism, which can be formulated as querying a dictionary with key-value pairs [113].

The self-attention function α(K,V ,Q) is defined as

α(K,V ,Q) = σ

(
QKT

√
d

)
· V , (7.4)
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Figure 7.1: Conformer block architecture.

where σ(·) denotes the soft-max function, Q, K and V are hidden representations of the previous

layer of dimension d, which are referred to as the query, and the key-value pair, respectively.

The MHSA used in the conformer is defined by

µ(K,V ,Q) = [H1,H2, · · · ,Hn]W h (7.5)

where W h ∈ Rd×d is an output linear projecting matrix, and

Hi = α(Ki,Vi,Qi) (7.6)

The conformer also integrates a position encoding scheme from the TransformerXL [11] to

generate better position information for the input sequence with various lengths, named relative
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positional encodings.

The output x′ of the MHSA module is fed into a convolution (CONV) module, i.e.,

x′′ = x′ + CONV(x′). (7.7)

Lastly, a second feed-forward network is used to obtain conformer output z, given by

z = LayerNorm(x′′ + FFN(x′′)) (7.8)

7.2.2 Cascaded Conformers

The proposed speech enhancement system consists of two cascaded conformers that are used

for speech denoising and speech dereverberation, respectively. We refer to the proposed approach

as a two-stage approach. A block diagram of the proposed system is shown in Fig. 7.2. Each

conformer stacks several conformer blocks. The proposed system takes noisy reverberant speech

signal as input and uses its magnitude. Previous studies have shown that methods that are based on

masked-learning for speech denoising usually perform better than feature mapping methods in terms

of speech quality metrics [120, 75]. Guided by this observation, the first conformer is used to predict

the ratio mask using a sigmoid function and as such attenuate background noise, and the second

conformer performs spectral mapping for speech dereverberation. Ratio masking is a good choice for

speech denoising as speech and noise are uncorrelated, whereas spectal mapping is effective in dealing

with artifacts introduced by ratio masking and in suppressing dereverberation [116, 131, 103]. The

estimated magnitude and the phase of the noisy reverberant signal are fed into an inverse STFT to

reconstruct the anechoic speech.

7.2.3 Training

For notational convenience, let Φ(·) denote the conformer for speech denoising and let Ψ(·)

denote the conformer for speech dereverberation. The cascaded conformer takes the magnitude Y

of the noisy-reverberant speech as input. Let Ŷ1 denotes the intermediate output of Φ(·) and Ŷ2

denotes the output of Ψ(·). The training objective function of the proposed approach can be defined
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Figure 7.2: Proposed cascaded conformers for noisy-reverberant speech enhancement.

as

L = ‖X − Ŷ 1‖1 + ‖S − Ŷ 2‖1

= ‖X −Φ(Y )‖1 + ‖S −Ψ(Φ(Y ))‖1 (7.9)

where S and X are the magnitudes of the anechoic speech and reverberant speech, respectively.

The use of the mean absolute error loss is motivated by recent observations that it achieves better

objective quality scores when using spectral mapping techniques [79, 80].

We investigate four training strategies for the proposed two-stage approach: i) The de-

noising and dereverberation conformers are trained individually and then concatenated in the test

stage (CONF-N – CONF-R (fixed-wgt)). ii) The cascaded conformer is trained jointly from scratch

(CONF-N – CONF-R (scratch)). iii) The denoising conformer is loaded from the pre-trained model

and then jointly trained with the dereverberation conformer (CONF-N – CONF-R (N-tuned)). iv)

Both the denoising and the dereverberation conformer are fine-tuned using pre-trained models

(CONF-N – CONF-R (N-R-tuned)).

7.3 Experiments

In the following, the data set, the model set up and the ASR set up are detailed.

Data Set. In the experiments, the clean source is obtained from LibriSpeech [78], and for training

100 hours of speech data from the “train-clean” data set is selected. The RIRs are obtained from [50]

and include both recorded and synthesized RIRs for small, medium and large rooms. The training
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clean speech is cut into 4-second segments. The validation set uses 1400 sentences from the “dev-

clean” data set, and the test set uses 500 sentences from the “test-clean” data set. The clean speech

is convolved with recorded and synthesized RIRs to obtain the reverberant utterances. We formed

two testing sets: one is the recorded set that contains 500 reverberant speech utterances convolved

with recorded RIRs and the other test set, referred to as synthesized, contains 500 reverberant speech

utterances convolved with synthesized RIRs. The RIRs used for training and testing do not overlap.

The reverberant speech is generated by convolving the clean signal with a given RIR using Kaldi [85].

Next, we generate the noisy-reverberant speech. The training set uses 10,000 randomly

selected noise sample sequences from the DNS Challenge [87]. The training and validation sets

distort the reverberant clean segments with randomly-selected noise from the DNS Challenge noise

set with an SNR in the set {−5,−4, · · · , 9, 10} (in dB). The test set uses three distinct noise types:

“babble noise” from the NOISEX-92 corpus [112], and “office noise” and “kitchen noise” from the

DEMAND noise corpus [105]. The first channel signal of the corpus is used for data generation.

Each clean utterance is distorted by a randomly selected noise type at a randomly selected SNR

from the set {−5, 0, 5, 10} (in dB).

Model Setup. The proposed cascaded conformer-based systems are compared with LSTM-based

baseline systems. All models take the magnitude as input. An STFT is used with a 32 ms Hanning

window, a 32 ms filter length and a 16 ms hop size. As such, the number of frequency bins equals

257. The LSTM baseline model consists of three LSTM layers followed by a fully-connected output

layer. Each LSTM layer has 1,024 memory cells. The output layer reduces the dimensionality from

1,024 to 257. The total number of parameters of the baseline system is 22.31 M.

Each conformer model consists of four conformer blocks with four attention heads and 128

attention dimensions, which amounts to 10.71 M parameters. The single-stage conformer used to

predict the ratio mask employ a sigmoid function to simultaneously suppress the noise and the

reverberation. The two-stage conformer-based systems use a denoising conformer to predict the

mask, and its output is then multiplied with the noisy spectra and fed into the dereverberation

conformer.

All models are trained using the Adam optimizer [47] with an initial learning rate of 0.0002

and use a mini-batch of 16 utterances.

ASR Setup. The automatic speech recognition (ASR) experiments use a time-delay neural

network-hidden Markov model (TDNN-HMM) hybrid chain model [84] to account for long-term
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temporal dependencies with training times that are comparable to standard feed-forward DNNs.

The data is represented at different time points by adding a set of delays to the input, which allows

the model to have a finite dynamic response to the time series input data. This acoustic model

is trained using the Kaldi toolkit [85] with the standard recipe (https://github.com/kaldi-asr/

kaldi/tree/master/egs/librispeech/s5). The ASR acoustic models were trained using 960 hours

from the LibriSpeech training set.

7.4 Results

The speech enhancement systems are evaluated using the commonly used perceptual evalua-

tion of speech quality (PESQ) score [37] and the short-time objective intelligibility (STOI) score [99].

The automatic speech recognition performance is measured by determining the word error rate

(WER). We first compare the conformer with an LSTM baseline system for speech denoising and

dereverberation, respectively. The resulting PESQ and STOI scores are listed in Table 7.1. We can

see that the conformer-based systems outperform LSTM systems significantly. Using recorded RIR

signals, the conformer-based system achieves denoising with a STOI score improvement of 2.47 %

and a PESQ score improvement of 0.18 relative to the LSTM system. For dereverberation, the

average PESQ score improves from 2.34 to 2.44 and the average STOI score improves from 89.46 %

to 91.01 %. Similar results are observed when using synthesized RIR signals, which demonstrates

the effectiveness of the conformer-based system.

Next, we investigate the single stage for speech denoising and dereverberation simultane-

ously. As shown in Table 7.1, the conformer-based system is also better than the LSTM-based

system. For example, when using recorded RIR signals, the average PESQ and STOI improve from

1.60 to 1.71 and from 78.25 % to 81.55 %. Both the LSTM and the two-stage conformer-based

systems that use fixed weights boost the performance. For instance, the average PESQ scores of

the LSTM-based system improves from 1.60 to 1.66, and for the proposed conformer-based system,

it improves from 1.71 to 1.87. This observation is consistent with observations for the two-stage

approach in [131]. This indicates the effectiveness of decomposing the original difficult task into

multiple “easier” sub-tasks.

We further investigate the performance of the conformer-based two-stage system using the

three fine-tuned training strategies presented earlier. We observe that all conformer-based two-
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stage approaches achieve similar PESQ scores, except for the CONF-N – CONF-R (scratch) ap-

proach, which is slightly worse. This demonstrates that proper weight initialization is also useful

for noisy-reverberant speech enhancement. We also observe that fine-tuning the pre-trained models

achieves better STOI scores than fixed pre-trained model weight approaches. The best performance

is achieved by CONF-N – CONF-R (N-R-tuned) where both the denoising and the dereverberation

conformer are fine-tuned using pre-trained models. The PESQ and STOI scores for each considered

SNR condition are provided in Table 7.2.

System recorded RIRs synthesized RIRs

PESQ STOI PESQ STOI

Noisy-reverberant speech 1.61 81.97 1.54 81.24

LSTM-N 2.47 85.07 2.44 84.58

CONF-N 2.65 87.54 2.60 87.40

Reverberant speech 1.84 83.09 1.83 86.09

LSTM-R 2.34 89.46 2.45 91.26

CONF-R 2.44 91.01 2.55 92.31

Noisy-reverberant speech 1.20 72.77 1.21 74.97

LSTM-N-R 1.60 78.25 1.64 80.41

CONF-N-R 1.71 81.55 1.72 82.60

Fixed Weights

LSTM-N – LSTM-R (fixed-wgt) 1.66 78.52 1.71 80.62

CONF-N – CONF-R (fixed-wgt) 1.87 82.79 1.91 84.42

Fine-tuned weights

CONF-N – CONF-R (scratch) 1.82 82.51 1.86 84.02

CONF-N – CONF-R (N-tuned) 1.87 82.99 1.90 84.56

CONF-N – CONF-R (N-R-tuned) 1.88 83.07 1.91 84.95

Table 7.1: Performance in terms of PESQ and STOI scores for the proposed and baseline systems.

The LibriSpeech corpus is also used to assess the ASR performance of the proposed conformer-

based and baseline systems in terms of the word error rate (WER) and the WER reduction relative

to unprocessed speech (RWER). The results are shown in Table 7.3. Both the LSTM-based and

the conformer-based systems improve the ASR performance when compared with the unprocessed

speech. Both single-stage and two-stage conformer-based systems perform better than LSTM-based

systems. We observe that CONF-N – CONF-R (N-R-tuned) and CONF-N – CONF-R (N-tuned) out-

perform CONF-N – CONF-R (fixed-wgt). This also supports the observation that the ASR results

are related to the STOI scores. As mentioned in the ASR setup, we use the clean speech for acoustic

model training. There is a significant mismatch between training and testing, which causes the

overall WER to be very high. We believe that re-training the ASR with corrupted and enhanced
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recorded RIRs

System
PESQ STOI

-5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB

Noisy-reverberant speech 1.09 1.17 1.18 1.36 64.03 73.68 73.49 80.64

LSTM-N – LSTM-R (fixed-wgt) 1.41 1.66 1.68 1.93 68.21 79.51 81.02 86.30

CONF-N-R 1.41 1.68 1.74 2.04 71.85 82.55 83.98 88.70

CONF-N – CONF-R (fixed-wgt) 1.55 1.87 1.90 2.19 72.81 84.05 85.56 89.67

CONF-N – CONF-R (N-R-tuned) 1.57 1.88 1.92 2.19 73.53 84.29 85.67 89.68

synthesized RIRs

System
PESQ STOI

-5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB

Noisy-reverberant speech 1.10 1.15 1.23 1.36 65.60 74.86 76.81 81.93

LSTM-N – LSTM-R (fixed-wgt) 1.38 1.66 1.76 2.01 68.99 81.05 83.71 87.75

CONF-N-R 1.38 1.69 1.82 1.98 72.30 83.16 85.56 88.48

CONF-N – CONF-R (fixed-wgt) 1.51 1.85 2.00 2.24 74.11 84.84 87.36 90.46

CONF-N – CONF-R (N-R-tuned) 1.51 1.86 2.00 2.24 74.71 85.15 87.44 90.43

Table 7.2: Performance in terms of PESQ and STOI scores for several SNRs.

speech will lead to further performance improvements.

System
recorded synthesized

WER [%] RWER [%] WER [%] RWER [%]
Noisy-reverberant speech 63.01 – 55.25 –
LSTM-N-R 56.37 10.5 50.00 9.5
CONF-N-R 46.89 25.6 41.08 25.6
LSTM-N – LSTM-R (fixed-wgt) 54.10 14.1 50.11 9.3
CONF-N – CONF-R (fixed-wgt) 45.85 27.2 41.15 25.5
CONF-N – CONF-R (scratch) 46.03 26.9 41.61 24.7
CONF-N – CONF-R (N-tuned) 45.77 27.4 40.53 26.6
CONF-N – CONF-R (N-R-tuned) 45.71 27.5 40.26 27.1

Table 7.3: Speech recognition performance of the proposed and baseline speech enhancement systems

Finally, we visualize some examples of the enhanced speech. Consider the situation where

clean speech is perturbed a recorded RIR and by Babble noise at an SNR of 5 dB. Fig. 7.3 shows

spectrograms of the noisy speech signal, the clean speech target, the LSTM-based system and the

proposed conformer-based enhanced speech system. Listening samples can be found in https:

//linjucs.github.io/demo/nrdemo.html.

7.5 Summary

In this chapter, we have introduced a novel speech enhancement method that uses two cas-

caded conformers that sequentially remove background noise and reverberation. Multiple training

strategies were developed and their effectiveness was assessed. Experiments show that the pro-
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a. Noisy, reverberant speech b. Clean speech

c. LSTM-N – LSTM-R (fixed-wgt) d. CONF-N-R

e. CONF-N – CONF-R (fixed-wgt) f. CONF-N – CONF-R (scratch)

g. CONF-N – CONF-R (N-tuned) h. CONF-N – CONF-R (N-R-tuned)

Figure 7.3: Spectrograms of a sample input mixed with Babble Noise at an SNR of 5 dB and recorded
RIR, and of the signal output of the proposed conformer-based and baseline speech-enhancement
systems.

posed conformer-based speech enhancement system outperforms single-stage methods in terms of

commonly used speech enhancement metrics. It was shown that the pre-trained models can be

fine-tuned to further boost performance, in particular the STOI score, which is an indicator for ASR

performance. Future work will extend the proposed monaural algorithm to multi-channel scenar-

ios. The performance of speech dereverberation is expected to be further improved by using spatial

information.
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Chapter 8

Conclusions and Future work

8.1 Conclusions

Room reverberation and background noise are two common distortions to speech signal in

daily life. These distortions impact the effective communication among people and between human

and machines. In this dissertation, we aim to develop monaural speech enhancement systems to im-

prove speech intelligibility and quality of a speech signal that is degraded by these distortions. We

have proposed several novel architectures for speech enhancement and the effectiveness of the pro-

posed frameworks and techniques is verified by speech enhancement metrics and speech recognition

scores. The contributions can be summarized as follows:

Chapter 2 presented a novel GAN based speech enhancement approach, named ForkGAN,

and its variants. ForkGAN framework uses two decoders to extract the clean speech signal and the

noise signal. Subsequent experiments demonstrate the effectiveness of the ForkGAN architecture.

To further decouple the speech and the noise signals, two auxiliary training objectives are proposed

based on the ForkGAN framework: margin-based loss, which explicitly maximizes the distance be-

tween clean speech and the noise signal, and a time-domain noise reduction loss which improves the

prediction based upon the estimated noise signal. Both loss functions further boost the speech en-

hancement performance when compared with DNN-based and SEGAN methods. ForkGAN and its

enhancements achieve consistent gains for many different noise conditions. We further extend Fork-

GAN to M-ForkGAN, which integrates mask-learning and feature-mapping. Experimental results

with the TIMIT data set show that the proposed approach achieves a better performance for seen and
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unseen conditions with varying SNR when compared with the baseline systems. We also verified the

effectiveness of the proposed mask-based loss. Finally, we adapted ForkGAN to S-ForkGAN, which

directly operates on the acoustic features that use for speech recognition. The experiments show

that the proposed S-ForkGAN method outperforms well-known GAN-based speech enhancement

techniques, including GAN-DNN, GAN-LSTM and GAN-AE (SEGAN).

Chapter 3 demonstrated a novel multi-stage speech enhancement technique where each

stage consists of a self-attention block followed by multiple stacks of temporal convolutional network

blocks, and where a fusion block is inserted in systems with more than two stages. We show that

the multi-stage structure serially refines the predictions. We show that the self-attention module

produces dynamic representations effectively and that it is effective in mitigating non-stationary

noise conditions. We show that the fusion block mitigates any speech loss in later stages. Extensive

experiments have been conducted, which show that the proposed multi-stage speech enhancement

system performs well, in particular with respect to the PESQ and STOI scores, and that it also

performs well when used in speech recognition experiments, as it suppresses the word error rate.

Chapter 4 investigated the multi-scale temporal convolutional network (TCN) for speech

denoising. We propose three multi-scale architectures to improve the speech enhancement per-

formance, which consists of 1) TCN-dual, which has two different dilation factors in one dilated

convolutional block; 2) TCN-flatten, which uses a fixed number of dilation factors in each dilated

convolutional block and the output of each dilation factor are concatenated; 3) TCN-pyramid, which

is similar to TCN-flatten but using a hierarchical feature fusion mechanism. In addition, we also

explored several loss function for our proposed framework. The experiment results show that the

proposed multi-scale TCN outperforms the villian TCN and combining the spectral domain loss

and perceptual loss can further improve the performance. The proposed framework also achieved

state-of-the-art performance on the public INTERSPEECH2020 DNS challenge dataset.

Chapter 5 presented and validated a novel speaker-aware speech enhancement method that

uses a few seconds of reference clean speech. We first compared the proposed SASE with baseline

systems using spectral mapping-MSE and mask-based signal approximation-MSE loss, respectively.

The experimental results indicate that the proposed SASE system outperforms the baseline systems

using both loss functions. The results also show that using mask-based signal approximation loss

is better than spectral mapping-MSE loss. Adding self-attention achieves the best performance in

terms of most metrics, especially for SI-SDR metric. We tested the proposed SASE approach with
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four different reference-speech durations. All achieved better performance in comparison with the

CRN baseline, which demonstrates the effectiveness of the proposed method.

In Chapter 6, we proposed a novel speech enhancement framework without the need to use

clean speech. The proposed N2N-SE method comprises a noise conversion module to generate noisy

targets and a speech enhancement module that reconstructs expectations of the corrupted signal.

A series of experiments have been conducted for four specific noise types. The proposed N2N-SE

method achieves the best performance on perceptual quality and intelligibility metrics, and also

show marginal ASR performance gains in most cases. The multi-style training ASR experiment

results also show that MTR based acoustic model is also the effective for the enhanced speech.

Chapter 7 introduced a novel speech enhancement method that uses two cascaded conform-

ers that sequentially remove background noise and reverberation. Multiple training strategies were

developed and their effectiveness was assessed. Experiments show that the proposed conformer-

based speech enhancement system outperforms single-stage methods in terms of commonly used

speech enhancement metrics. It was shown that the pre-trained models can be fine-tuned to further

boost performance, in particular the STOI score, which is an indicator for ASR performance.

8.2 Future work

In this dissertation, we have developed several monaural speech enhancement systems and

the experimental results show that the proposed approaches can improve the speech perceptual

quality and intelligibility, and also speech recognition performance. In order to apply the proposed

enhancement systems to real-world applications, more studies need to be conducted in the following

aspects.

1. Multi-channel Speech Enhancement: In this dissertation, we mainly focus on single-

channel speech enhancement algorithms. However, microphone arrays are widely used in

many modern speech processing systems, including smart phones, personal assistant, and other

smart devices. With multiple microphones, spatial information can be exploited to complement

spectral information for better de-noising and dereverberation. Thus, how to incorporate this

information into the proposed systems could be an interesting research direction.

2. Real-time Speech Enhancement: Real-time speech enhancement has been an increasingly
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important application in modern devices. All the models proposed in this dissertation are

offline systems except for multi-scale TCN based methods, which does not consider causal

setting and latency. To meet real-time applications, we need to adapt the proposed systems to

causal systems and reduce the processing latency for inference, while keeping the performance

to a high level. This could be an useful direction to explore.

3. Complex-domain Feature based Speech Enhancement: All speech enhancement ap-

proaches developed in this dissertation use real-valued DNNs and real-valued input features.

However, recent studies [34, 102] show that using complex-valued DNNs or complex-domain

input for complex spectral mapping achieved excellent speech enhancement performance. It

would be interesting to explore more complex-domain based speech enhancement frameworks.

4. Jointly training with ASR: Speech enhancement is usually as a pre-processing module of

the speech recognition systems. However, enhanced speech produced by neural network-based

systems inevitably contains distortions, which could impact the performance for downstream

task, e.g., speech recognition. Hence speech enhancement jointly training with ASR task could

be an interesting research direction.
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