3,900 research outputs found

    Visual Landmark Recognition from Internet Photo Collections: A Large-Scale Evaluation

    Full text link
    The task of a visual landmark recognition system is to identify photographed buildings or objects in query photos and to provide the user with relevant information on them. With their increasing coverage of the world's landmark buildings and objects, Internet photo collections are now being used as a source for building such systems in a fully automatic fashion. This process typically consists of three steps: clustering large amounts of images by the objects they depict; determining object names from user-provided tags; and building a robust, compact, and efficient recognition index. To this date, however, there is little empirical information on how well current approaches for those steps perform in a large-scale open-set mining and recognition task. Furthermore, there is little empirical information on how recognition performance varies for different types of landmark objects and where there is still potential for improvement. With this paper, we intend to fill these gaps. Using a dataset of 500k images from Paris, we analyze each component of the landmark recognition pipeline in order to answer the following questions: How many and what kinds of objects can be discovered automatically? How can we best use the resulting image clusters to recognize the object in a query? How can the object be efficiently represented in memory for recognition? How reliably can semantic information be extracted? And finally: What are the limiting factors in the resulting pipeline from query to semantics? We evaluate how different choices of methods and parameters for the individual pipeline steps affect overall system performance and examine their effects for different query categories such as buildings, paintings or sculptures

    Packing bag-of-features

    Get PDF
    One of the main limitations of image search based on bag-of-features is the memory usage per image. Only a few million images can be handled on a single machine in reasonable response time. In this paper, we first evaluate how the memory usage is reduced by using lossless index compression. We then propose an approximate representation of bag-of-features obtained by projecting the corresponding histogram onto a set of pre-defined sparse projection functions, producing several image descriptors. Coupled with a proper indexing structure, an image is represented by a few hundred bytes. A distance expectation criterion is then used to rank the images. Our method is at least one order of magnitude faster than standard bag-of-features while providing excellent search quality. 1

    Leveraging Deep Visual Descriptors for Hierarchical Efficient Localization

    Full text link
    Many robotics applications require precise pose estimates despite operating in large and changing environments. This can be addressed by visual localization, using a pre-computed 3D model of the surroundings. The pose estimation then amounts to finding correspondences between 2D keypoints in a query image and 3D points in the model using local descriptors. However, computational power is often limited on robotic platforms, making this task challenging in large-scale environments. Binary feature descriptors significantly speed up this 2D-3D matching, and have become popular in the robotics community, but also strongly impair the robustness to perceptual aliasing and changes in viewpoint, illumination and scene structure. In this work, we propose to leverage recent advances in deep learning to perform an efficient hierarchical localization. We first localize at the map level using learned image-wide global descriptors, and subsequently estimate a precise pose from 2D-3D matches computed in the candidate places only. This restricts the local search and thus allows to efficiently exploit powerful non-binary descriptors usually dismissed on resource-constrained devices. Our approach results in state-of-the-art localization performance while running in real-time on a popular mobile platform, enabling new prospects for robotics research.Comment: CoRL 2018 Camera-ready (fix typos and update citations
    • 

    corecore