1,324 research outputs found

    Conjunctive Query Answering for the Description Logic SHIQ

    Full text link
    Conjunctive queries play an important role as an expressive query language for Description Logics (DLs). Although modern DLs usually provide for transitive roles, conjunctive query answering over DL knowledge bases is only poorly understood if transitive roles are admitted in the query. In this paper, we consider unions of conjunctive queries over knowledge bases formulated in the prominent DL SHIQ and allow transitive roles in both the query and the knowledge base. We show decidability of query answering in this setting and establish two tight complexity bounds: regarding combined complexity, we prove that there is a deterministic algorithm for query answering that needs time single exponential in the size of the KB and double exponential in the size of the query, which is optimal. Regarding data complexity, we prove containment in co-NP

    On (in)tractability of OBDA with OWL 2 QL

    Get PDF
    We show that, although conjunctive queries over OWL 2 QL ontologies are reducible to database queries, no algorithm can construct such a reduction in polynomial time without changing the data. On the other hand, we give a polynomial reduction for OWL2QL ontologies without role inclusions

    Adding DL-Lite TBoxes to Proper Knowledge Bases

    Get PDF
    Levesque’s proper knowledge bases (proper KBs) correspond to infinite sets of ground positive and negative facts, with the notable property that for FOL formulas in a certain normal form, which includes conjunctive queries and positive queries possibly extended with a controlled form of negation, entailment reduces to formula evaluation. However proper KBs represent extensional knowledge only. In description logic terms, they correspond to ABoxes. In this paper, we augment them with DL-Lite TBoxes, expressing intensional knowledge (i.e., the ontology of the domain). DL-Lite has the notable property that conjunctive query answering over TBoxes and standard description logic ABoxes is re- ducible to formula evaluation over the ABox only. Here, we investigate whether such a property extends to ABoxes consisting of proper KBs. Specifically, we consider two DL-Lite variants: DL-Literdfs , roughly corresponding to RDFS, and DL-Lite_core , roughly corresponding to OWL 2 QL. We show that when a DL- Lite_rdfs TBox is coupled with a proper KB, the TBox can be compiled away, reducing query answering to evaluation on the proper KB alone. But this reduction is no longer possible when we associate proper KBs with DL-Lite_core TBoxes. Indeed, we show that in the latter case, query answering even for conjunctive queries becomes coNP-hard in data complexity

    Query inseparability by games

    Get PDF
    We investigate conjunctive query inseparability of description logic knowledge bases (KBs) with respect to a given signature, a fundamental problem for KB versioning, module extraction, forgetting and knowledge exchange. We develop a game-theoretic technique for checking query inseparability of KBs expressed in fragments of Horn-ALCHI, and show a number of complexity results ranging from P to ExpTime and 2ExpTime. We also employ our results to resolve two major open problems for OWL 2 QL by showing that TBox query inseparability and the membership problem for universal UCQ-solutions in knowledge exchange are both ExpTime-complete for combined complexity

    Inconsistency-tolerant Query Answering in Ontology-based Data Access

    Get PDF
    Ontology-based data access (OBDA) is receiving great attention as a new paradigm for managing information systems through semantic technologies. According to this paradigm, a Description Logic ontology provides an abstract and formal representation of the domain of interest to the information system, and is used as a sophisticated schema for accessing the data and formulating queries over them. In this paper, we address the problem of dealing with inconsistencies in OBDA. Our general goal is both to study DL semantical frameworks that are inconsistency-tolerant, and to devise techniques for answering unions of conjunctive queries under such inconsistency-tolerant semantics. Our work is inspired by the approaches to consistent query answering in databases, which are based on the idea of living with inconsistencies in the database, but trying to obtain only consistent information during query answering, by relying on the notion of database repair. We first adapt the notion of database repair to our context, and show that, according to such a notion, inconsistency-tolerant query answering is intractable, even for very simple DLs. Therefore, we propose a different repair-based semantics, with the goal of reaching a good compromise between the expressive power of the semantics and the computational complexity of inconsistency-tolerant query answering. Indeed, we show that query answering under the new semantics is first-order rewritable in OBDA, even if the ontology is expressed in one of the most expressive members of the DL-Lite family

    Ontology-based data access with databases: a short course

    Get PDF
    Ontology-based data access (OBDA) is regarded as a key ingredient of the new generation of information systems. In the OBDA paradigm, an ontology defines a high-level global schema of (already existing) data sources and provides a vocabulary for user queries. An OBDA system rewrites such queries and ontologies into the vocabulary of the data sources and then delegates the actual query evaluation to a suitable query answering system such as a relational database management system or a datalog engine. In this chapter, we mainly focus on OBDA with the ontology language OWL 2QL, one of the three profiles of the W3C standard Web Ontology Language OWL 2, and relational databases, although other possible languages will also be discussed. We consider different types of conjunctive query rewriting and their succinctness, different architectures of OBDA systems, and give an overview of the OBDA system Ontop

    Conjunctive queries with negation over DL-Lite: a closer look

    Get PDF
    While conjunctive query (CQ) answering over DL-Lite has been studied extensively, there have been few attempts to analyse CQs with negated atoms. This paper deepens the study of the problem. Answering CQs with safe negation and CQs with a single inequality over DL-Lite with role inclusions is shown to be undecidable, even for a fixed TBox and query.Without role inclusions, answering CQs with one inequality is P-hard and with two inequalities CoNP-hard in data complexity

    Unions of conjunctive queries in SHOQ

    Get PDF
    Conjunctive queries play an important role as an expressive query language in Description Logics (DLs). Decision procedures for expressive Description Logics are, however, only recently emerging and it is still an open question whether answering conjunctive queries is decidable for the DL SHOIQ that underlies the OWL DL standard. In fact, no decision procedure was known for expressive DLs that contain nominals. In this paper, we close this gap by providing a decision procedure for entailment of unions of conjunctive queries in SHOQ. Our algorithm runs in deterministic time single exponential in the size of the knowledge base and double exponential in the size of the query, which is the same as for SHIQ. Our procedure also shows that SHOQ knowledge base consistency is indeed ExpTime-complete, which was, to the best of our knowledge, always conjectured but never proved
    corecore