12 research outputs found

    Toward Diverse Polymer Property Prediction Using Transfer Learning

    Full text link
    The prediction of mechanical and thermal properties of polymers is a critical aspect for polymer development. Herein, we discuss the use of transfer learning approach to predict multiple properties of linear polymers. The neural network model is initially trained to predict the heat capacity in constant pressure (Cp) of linear polymers. Once, the pre-trained model is transferred to predict four additional properties of polymers: specific heat capacity (Cv), shear modulus, flexural stress strength at yield, and tensile creep compliance. They represent a diverse set of mechanical, thermal, and rheological properties. We demonstrate the effectiveness of the approach by achieving high accuracy in predicting the four additional properties using relatively small datasets of 13 to 18 samples. Also, the performance of the base model is examined using five different loss functions. Our results suggest that the combined loss function had better performance compared to the individual loss functions

    A New Integer Linear Programming Formulation to the Inverse QSAR/QSPR for Acyclic Chemical Compounds Using Skeleton Trees

    Get PDF
    33rd International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2020, Kitakyushu, Japan, September 22-25, 2020.Computer-aided drug design is one of important application areas of intelligent systems. Recently a novel method has been proposed for inverse QSAR/QSPR using both artificial neural networks (ANN) and mixed integer linear programming (MILP), where inverse QSAR/QSPR is a major approach for drug design. This method consists of two phases: In the first phase, a feature function f is defined so that each chemical compound G is converted into a vector f(G) of several descriptors of G, and a prediction function ψ is constructed with an ANN so that ψ(f(G)) takes a value nearly equal to a given chemical property π for many chemical compounds G in a data set. In the second phase, given a target value y∗ of the chemical property π , a chemical structure G∗ is inferred in the following way. An MILP M is formulated so that M admits a feasible solution (x∗, y∗) if and only if there exist vectors x∗, y∗ and a chemical compound G∗ such that ψ(x∗)=y∗ and f(G∗)=x∗. The method has been implemented for inferring acyclic chemical compounds. In this paper, we propose a new MILP for inferring acyclic chemical compounds by introducing a novel concept, skeleton tree, and conducted computational experiments. The results suggest that the proposed method outperforms the existing method when the diameter of graphs is up to around 6 to 8. For an instance for inferring acyclic chemical compounds with 38 non-hydrogen atoms from C, O and S and diameter 6, our method was 5×104 times faster

    Rethinking drug design in the artificial intelligence era

    Get PDF
    Artificial intelligence (AI) tools are increasingly being applied in drug discovery. While some protagonists point to vast opportunities potentially offered by such tools, others remain sceptical, waiting for a clear impact to be shown in drug discovery projects. The reality is probably somewhere in-between these extremes, yet it is clear that AI is providing new challenges not only for the scientists involved but also for the biopharma industry and its established processes for discovering and developing new medicines. This article presents the views of a diverse group of international experts on the 'grand challenges' in small-molecule drug discovery with AI and the approaches to address them

    The Artificial Intelligence Explanatory Trade-Off on the Logic of Discovery in Chemistry

    Get PDF
    Explanation is a foundational goal in the exact sciences. Besides the contemporary considerations on ‘description’, ‘classification’, and ‘prediction’, we often see these terms in thriving applications of artificial intelligence (AI) in chemistry hypothesis generation. Going beyond describing ‘things in the world’, these applications can make accurate numerical property calculations from theoretical or topological descriptors. This association makes an interesting case for a logic of discovery in chemistry: are these induction-led ventures showing a shift in how chemists can problematize research questions? In this article, I present a fresh perspective on the current context of discovery in chemistry. I argue how data-driven statistical predictions in chemistry can be explained as a quasi-logical process for generating chemical theories, beyond the classic examples of organic and theoretical chemistry. Through my position on formal models of scientific explanation, I demonstrate how the dawn of AI can provide novel insights into the explanatory power of scientific endeavors

    A novel method for inference of chemical compounds of cycle index two with desired properties based on artificial neural networks and integer programming

    Get PDF
    Inference of chemical compounds with desired properties is important for drug design, chemo-informatics, and bioinformatics, to which various algorithmic and machine learning techniques have been applied. Recently, a novel method has been proposed for this inference problem using both artificial neural networks (ANN) and mixed integer linear programming (MILP). This method consists of the training phase and the inverse prediction phase. In the training phase, an ANN is trained so that the output of the ANN takes a value nearly equal to a given chemical property for each sample. In the inverse prediction phase, a chemical structure is inferred using MILP and enumeration so that the structure can have a desired output value for the trained ANN. However, the framework has been applied only to the case of acyclic and monocyclic chemical compounds so far. In this paper, we significantly extend the framework and present a new method for the inference problem for rank-2 chemical compounds (chemical graphs with cycle index 2). The results of computational experiments using such chemical properties as octanol/water partition coefficient, melting point, and boiling point suggest that the proposed method is much more useful than the previous method

    A novel method for inference of acyclic chemical compounds with bounded branch-height based on artificial neural networks and integer programming

    Get PDF
    Analysis of chemical graphs is becoming a major research topic in computational molecular biology due to its potential applications to drug design. One of the major approaches in such a study is inverse quantitative structure activity/property relationship (inverse QSAR/QSPR) analysis, which is to infer chemical structures from given chemical activities/properties. Recently, a novel two-phase framework has been proposed for inverse QSAR/QSPR, where in the first phase an artificial neural network (ANN) is used to construct a prediction function. In the second phase, a mixed integer linear program (MILP) formulated on the trained ANN and a graph search algorithm are used to infer desired chemical structures. The framework has been applied to the case of chemical compounds with cycle index up to 2 so far. The computational results conducted on instances with n non-hydrogen atoms show that a feature vector can be inferred by solving an MILP for up to n=40, whereas graphs can be enumerated for up to n=15. When applied to the case of chemical acyclic graphs, the maximum computable diameter of a chemical structure was up to 8. In this paper, we introduce a new characterization of graph structure, called “branch-height” based on which a new MILP formulation and a new graph search algorithm are designed for chemical acyclic graphs. The results of computational experiments using such chemical properties as octanol/water partition coefficient, boiling point and heat of combustion suggest that the proposed method can infer chemical acyclic graphs with around n=50 and diameter 30
    corecore