
RIGHT:

URL:

CITATION:

AUTHOR(S):

ISSUE DATE:

TITLE:

A novel method for inference of chemical
compounds of cycle index two with desired
properties based on artificial neural
networks and integer programming

Zhu, Jianshen; Wang, Chenxi; Shurbevski,
Aleksandar; Nagamochi, Hiroshi; Akutsu, Tatsuya

Zhu, Jianshen ...[et al]. A novel method for inference of chemical compounds of cycle
index two with desired properties based on artificial neural networks and integer
programming. Algorithms 2020, 13(5): 124.

2020-05

http://hdl.handle.net/2433/261997

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

algorithms

Article

A Novel Method for Inference of Chemical
Compounds of Cycle Index Two with Desired
Properties Based on Artificial Neural Networks and
Integer Programming

Jianshen Zhu 1,†, Chenxi Wang 1,†, Aleksandar Shurbevski 1 , Hiroshi Nagamochi 1,∗ and
Tatsuya Akutsu 2,∗

1 Department of Applied Mathematics and Physics, Kyoto University, Kyoto 606-8501, Japan;
zhujs@amp.i.kyoto-u.ac.jp (J.Z.); chenxi@amp.i.kyoto-u.ac.jp (C.W.); shurbevski@amp.i.kyoto-u.ac.jp (A.S.)

2 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji 611-0011, Japan
* Correspondence: nag@amp.i.kyoto-u.ac.jp (H.N.); takutsu@kuicr.kyoto-u.ac.jp (T.A.);

Tel.: +81-75-753-4920 (H.N.); +81-774-38-3015 (T.A.)
† These authors contributed equally to this work.

Received: 22 April 2020; Accepted: 13 May 2020; Published: 18 May 2020
����������
�������

Abstract: Inference of chemical compounds with desired properties is important for drug design,
chemo-informatics, and bioinformatics, to which various algorithmic and machine learning
techniques have been applied. Recently, a novel method has been proposed for this inference
problem using both artificial neural networks (ANN) and mixed integer linear programming (MILP).
This method consists of the training phase and the inverse prediction phase. In the training phase,
an ANN is trained so that the output of the ANN takes a value nearly equal to a given chemical
property for each sample. In the inverse prediction phase, a chemical structure is inferred using MILP
and enumeration so that the structure can have a desired output value for the trained ANN. However,
the framework has been applied only to the case of acyclic and monocyclic chemical compounds
so far. In this paper, we significantly extend the framework and present a new method for the
inference problem for rank-2 chemical compounds (chemical graphs with cycle index 2). The results
of computational experiments using such chemical properties as octanol/water partition coefficient,
melting point, and boiling point suggest that the proposed method is much more useful than the
previous method.

Keywords: mixed integer linear programming; QSAR/QSPR; molecular design

1. Introduction

Inference of chemical compounds with desired properties is important for computer-aided drug
design. Since drug design is one of the major targets of chemo-informatics and bioinformatics, it is also
important in these areas. Indeed, this problem has been extensively studied in chemo-informatics
under the name of inverse QSAR/QSPR [1,2], where QSAR/QSPR denotes Quantitative Structure
Activity/Property Relationships. Since chemical compounds are usually represented as undirected
graphs, this problem is important also from graph theoretic and algorithmic viewpoints.

Inverse QSAR/QSPR is often formulated as an optimization problem to find a chemical graph
maximizing (or minimizing) an objective function under various constraints, where objective functions
reflect certain chemical activities or properties. In many cases, objective functions are derived from
a set of training data consisting of known molecules and their activities/properties using statistical
and machine learning methods.

Algorithms 2020, 13, 124; doi:10.3390/a13050124 www.mdpi.com/journal/algorithms

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
https://orcid.org/0000-0001-9224-6929
https://orcid.org/0000-0001-9763-797X
http://dx.doi.org/10.3390/a13050124
http://www.mdpi.com/journal/algorithms
https://www.mdpi.com/1999-4893/13/5/124?type=check_update&version=2

Algorithms 2020, 13, 124 2 of 30

In both forward and inverse QSAR/QSPR, chemical graphs are often represented as vectors of real
or integer numbers because it is difficult to directly handle graphs using statistical and machine learning
methods. Elements of these vectors are called descriptors in QSAR/QSPR studies, and these vectors
correspond to feature vectors in machine learning. Using these chemical descriptors, various heuristic
and statistical methods have been developed for finding optimal or nearly optimal graph structures
under given objective functions [1,3,4]. In many cases, inference or enumeration of graph structures
from a given feature vector is a crucial subtask in these methods. Various methods have been developed
for this enumeration problem [5–8] and the computational complexity of the inference problem has
been analyzed [9–11]. On the other hand, enumeration in itself is a challenging task, since the number
of molecules (i.e., chemical graphs) with up to 30 atoms (vertices) C, N, O, and S, may exceed 1060 [12].

As in many other fields, Artificial Neural Network (ANN) and deep learning technologies
have recently been applied to inverse QSAR/QSPR. For example, variational autoencoders [13],
recurrent neural networks [14,15], and grammar variational autoencoders [16] have been applied.
In these approaches, new chemical graphs are generated by solving a kind of inverse problems
on neural networks, where neural networks are trained using known chemical compound/activity
pairs. However, the optimality of the solution is not necessarily guaranteed in these approaches.
In order to guarantee the optimality, a novel approach has been proposed [17] for ANNs with ReLU
activation functions and sigmoid activation functions, using mixed integer linear programming (MILP).
In their approach, activation functions on neurons are efficiently encoded as piece-wise linear functions
so as to represent ReLU functions exactly and sigmoid functions approximately.

Recently, a new framework has been proposed [18–20] by combining two previous approaches;
efficient enumeration of tree-like graphs [5], and MILP-based formulation of the inverse problem
on ANNs [17]. This combined framework for inverse QSAR/QSPR mainly consists of two phases,
one for constructing a prediction function to a chemical property, and the other for constructing graphs
based on the inverse of the prediction function. The first phase solves (I) PREDICTION PROBLEM,
where a prediction function ψN on a chemical property π is constructed with an ANN N using a
data set of chemical compounds G and their values a(G) of π. The second phase solves (II) INVERSE

PROBLEM, where (II-a) given a target value y∗ of the chemical property π, a feature vector x∗ is inferred
from the trained ANN N so that ψN (x∗) is close to y∗ and (II-b) then a set of chemical structures
G∗ such that f (G∗) = x∗ is enumerated. In (II-b) of the above-mentioned previous methods [18–20],
an MILP is formulated for acyclic chemical compounds. Their methods were applicable only to acyclic
chemical graphs (i.e., tree-structured chemical graphs), where the ratio of acyclic chemical graphs in a
major chemical database (PubChem) is 2.91%. Afterward, Ito et al. [21] designed a method of inferring
monocyclic chemical graphs (chemical graphs with cycle index or rank 1) by formulating a new MILP
and using an efficient algorithm for enumerating monocyclic chemical graphs [22]. This still leaves a
big limitation because the ratio of acyclic and monocyclic chemical graphs in the chemical database
PubChem is only 16.26%.

To break this limitation, we significantly extend the MILP-based approach for inverse
QSAR/QSPR so that “rank-2 chemical compounds” (chemical graphs with cycle index or rank 2) can
be efficiently handled, where the ratio of chemical graphs with rank at most 2 in the database PubChem
is 44.5%. Note that there are three different topological structures, called polymer-topologies over all
rank-2 chemical compounds. In particular, we propose a novel MILP formulation for (II-a) along with
a new set of descriptors. One big advantage of this new formulation is that an MILP instance has a
solution if and only if there exists a rank-2 chemical graph satisfying given constraints, which is useful
to significantly reduce redundant search in (II-b). We conducted computational experiments to infer
rank-2 chemical compounds on several chemical properties.

The paper is organized as follows. Section 2.1 introduces some notions on graphs, a modeling
of chemical compounds, and a choice of descriptors. Section 2.2 reviews the framework for inferring
chemical compounds based on ANNs and MILPs. Section 2.3 introduces a method of modeling rank-2
chemical graphs with different cyclic structures in a unified way and proposes an MILP formulation

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 3 of 30

that represents a rank-2 chemical graph G of n vertices, where our MILP requires only O(n) variables
and constraints when the maximum height of subtrees in G is constant. Section 3 reports the results on
some computational experiments conducted for chemical properties such as octanol/water partition
coefficient, melting point, and boiling point. Section 4 makes some concluding remarks. Appendix A
provides the detail of all variables and constraints in our MILP formulation.

2. Materials and Methods

2.1. Preliminary

This section introduces some notions and terminology on graphs, a modeling of chemical
compounds, and our choice of descriptors.

2.1.1. Multigraphs and Graphs

Let R and Z denote the sets of reals and non-negative integers, respectively. For two integers a
and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Multigraphs

A multigraph is defined to be a pair (V, E) of a vertex set V and an edge set E such that each edge
e ∈ E joins two vertices u, v ∈ V (possibly u = v) and the vertices u and v are called the end-vertices
of the edge e, and let V(e) denote the set of the end-vertices of an edge e ∈ E, where an edge e with
|V(e)| = 1 is called a loop. We denote the vertex and edge sets of a multigraph M by V(M) and E(M),
respectively. A path with end-vertices u and v is called a u, v-path, and the length of a path is defined
to be the number of edges in the path.

Let M be a multigraph. An edge e ∈ E(M) is called multiple (to an edge e′ ∈ E(M)) if there is
another edge e′ ∈ E(M) with V(e) = V(e′). For a vertex v ∈ V(M), the set of neighbors of v in M
is denoted by NM(v), and the degree degM(v) of v is defined to be the number of times an edge in
E(M) is incident to v; i.e., degM(v) = |{e ∈ E(M) | v ∈ V(e), |V(e)| = 2}| + 2|{e ∈ E(M) | v ∈
V(e), |V(e)| = 1}|. A multigraph is called simple if it has no loop and there is at most one edge
between any two vertices. We observe that the sum of the degrees over all vertices is twice the number
of edges in any multigraph M; i.e.,

2|E(M)| = ∑
v∈V(M)

degM(v).

For a subset X of vertices in M, let M− X denote the multigraph obtained from M by removing
the vertices in X and any edge incident to a vertex in X. An operation of subdividing a non-loop edge
(resp., loop) e ∈ E(M) with V(e) = {v1, v2} (resp., V(e) = {v1 = v2}) is to replace e with two new
edges e1 and e2 incident to a new vertex ve such that each ei is incident to vi. An operation of contracting
a vertex u of degree 2 in M is to replace the two edges uv and uv′ incident to u with a single edge vv′

removing vertex u, where the resulting edge is a loop when v = v′. The rank r(M) of a multigraph M
is defined to be the minimum number of edges to be removed to make the multigraph acyclic. We call
a multigraph M with r(M) = k a rank-k graph. Let Vdeg,i(M) denote the set of vertices of degree i in
M. The core Cr(M) of M is defined to be an induced subgraph M∗ that is obtained from M′ := M
by setting M′ := M′ − Vdeg,1(M′) repeatedly until M∗ contains at most two vertices or consists of
vertices of degree at least 2. The core M∗ of a connected multigraph M consists of a single vertex (resp.,
two vertices) if and only if M is a tree with an even (resp., odd) diameter. A vertex (resp., an edge) in
M is called a core vertex (resp., core edge) if it is contained in the core of M and is called a non-core vertex
(resp., non-core edge) otherwise. The core size cs(M) is defined to be the number of core vertices of M,
and the core height ch(M) is defined to be the maximum length of a path between a vertex v ∈ V(M∗)
to a leaf of M without passing through any core edge. The set of non-core edges induces a collection of
subtrees, each of which we call a non-core component of M, where each non-core component C contains

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 4 of 30

exactly one core vertex vC and we regard C as a tree rooted at vC. Let C be a non-core component of M.
The height height(v) of a vertex v in C is defined to be the maximum length of a path from v to a leaf u
in the descendants of v.

A multigraph is called a polymer topology if it is connected and the degree of every vertex is
at least 3. Tezuka and Oike [23] pointed out that a classification of polymer topologies will lay a
foundation for elucidation of structural relationships between different macro-chemical molecules
and their synthetic pathways. For integers r ≥ 0 and d ≥ 3, let PT (r, d) denote the set of all rank-r
polymer topologies with maximum degree at most d. Figure 1 illustrates the three rank-2 polymer
topologies in PT (2, 4).

(b) M2(a) M1 (c) M3

Figure 1. An illustration of the three rank-2 polymer topologies M1, M2, M3 ∈ PT (2, 4).

For a polymer topology M, the least simple graph S(M) of M is defined to be a simple graph
obtained from M by subdividing each loop in M with two new vertices of degree 2 and subdividing
all multiple edges (except for one) between every two adjacent vertices in M. Note that |V(S(M))| =
|V(M)|+ r + s for the rank r of M and the number s of loops in M.

The polymer topology Pt(M) of a multigraph M with r(M) ≥ 2 is defined to be a multigraph
M′ of degree at least 3 that is obtained from the core Cr(M) by contracting all vertices of degree 2.
Note that r(Pt(M)) = r(M). Figure 2a–c illustrate the least simple graph S(M) of each polymer
topology M ∈ PT (2, 4), where Figure 2d illustrates a graph that contains all least simple graphs.

(c) S(M3)

(a) S(M1)

a2

a3

u3 u4u1 u2
a7a6

a2

u3 u4u1 u2
a7a6

a2

a4

a1

a3

a5

u3 u4
u1 u2

a7a6

a2

a1

a3

u3 u4u1 u2
a7a6

(b) S(M2)

(d) (K,E)

Figure 2. An illustration of the least simple graphs of the rank-2 polymer topologies M1, M2, M3 ∈
PT (2, 4) in Figure 1 and a scheme graph (K, E): (a) S(M1); (b) S(M2); (c) S(M3); (d) a scheme graph
(K = ({u1, u2, u3, u4}, E), E = (E1, E2, E3)) where each edge uiuj is directed from one end-vertex
ui to the other end-vertex uj with i < j, and E1 = {a1 = (u1, u4), a2 = (u2, u3), a3 = (u2, u4)},
E2 = {a4 = (u1, u2), a5 = (u3, u4)} and E3 = {a6 = (u1, u2), a7 = (u3, u4)}, and the edges in E1 (resp.,
E2 and E3) are depicted with dashed (resp., dotted and solid) lines.

Graphs

Let H = (V, E) be a graph with a set V of vertices and a set E of edges. Define the 1-path
connectivity κ1(H) of H to be ∑uv∈E 1/

√
degH(u)degH(v).

Let H be a rank-2 connected graph such that the maximum degree is at most 4. We see that
H contains two vertices va and vb such that either there are three disjoint paths between va and vb
or H contains two edge disjoint cycles C and C′, which are joined with a path between va and vb

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 5 of 30

(possibly va = vb). We introduce the topological parameter θ(H) of rank-2 connected graph H as follows.
When H has three disjoint paths between va and vb, define θ(H) to be the minimum number of edges
along a path between va and vb. When H contains two edge disjoint cycles C and C′, which are joined
with a path P between va and vb (possibly va = vb), define θ(H) to be −|E(P)|.

For positive integers a, b and c with b ≥ 2, let T(a, b, c) denote the rooted tree such that the number
of children of the root is a, the number of children of each non-root internal vertex is b and the distance
from the root to each leaf is c. In the rooted tree T(a, b, c), we denote the vertices by v1, v2, . . . , vn

(n = a(bc − 1)/(b−1) + 1) with a breadth-first-search order, and denote the edge between a vertex vi
with i ∈ [2, n] and its parent by ei. For each vertex vi in T(a, b, c), let Cld(i) denote the set of indices j
such that vj is a child of vi, and prt(i) denote the index j such that vj is the parent of vi when i ∈ [2, n].

2.1.2. Modeling of Chemical Compounds

Chemical Graphs

We represent the graph structure of a chemical compound as a graph with labels on vertices
and multiplicity on edges in a hydrogen-suppressed model. Nearly 68.5% (resp., 99%) of the rank-2
chemical graphs with at most 200 non-hydrogen atoms registered in chemical database PubChem have
a maximum degree at most 3 (resp., 4) for all non-core vertices in the hydrogen-suppressed model.

Let Λ be a set of labels, each of which represents a chemical element such as C (carbon), O (oxygen),
N (nitrogen) and so on, where we assume that Λ does not contain H (hydrogen). Let mass(a) and val(a)
denote the mass and valence of a chemical element a ∈ Λ, respectively. In our model, we use integers
mass∗(a) = b10 ·mass(a)c, a ∈ Λ and assume that each chemical element a ∈ Λ has a unique valence
val(a) ∈ [1, 4].

We introduce a total order < over the elements in Λ according to their mass values; i.e.,
we write a < b for chemical elements a, b ∈ Λ with mass(a) < mass(b). Choose a set Γ< of tuples
γ = (a, b, k) ∈ Λ×Λ× [1, 3] such that a < b. For a tuple γ = (a, b, k) ∈ Λ×Λ× [1, 3], let γ denote
the tuple (b, a, k). Set Γ> = {γ | γ ∈ Γ<}, Γ= = {(a, a, k) | a ∈ Λ, k ∈ [1, 3]} and Γ = Γ< ∪ Γ=.
A pair of two atoms a and b joined with a bond of multiplicity k is denoted by a tuple γ = (a, b, k) ∈ Γ,
called the adjacency-configuration of the atom pair.

We use a hydrogen-suppressed model because hydrogen atoms can be added at the final stage.
A chemical graph over Λ and Γ is defined to be a tuple G = (H, α, β) of a graph H = (V, E), a function
α : V → Λ and a function β : E→ [1, 3] such that

(i) H is connected;
(ii) ∑uv∈E β(uv) ≤ val(α(u)) for each vertex u ∈ V; and

(iii) (α(u), α(v), β(uv)) ∈ Γ for each edge uv ∈ E.

Let G(Λ, Γ) denote the set of chemical graphs over Λ and Γ.

Descriptors

In our method, we use only graph-theoretical descriptors for defining a feature vector,
which facilitates our designing an algorithm for constructing graphs. Given a chemical graph
G = (H, α, β), we define a feature vector f (G) that consists of the following 14 kinds of descriptors:

- n(G): the number of vertices in G;
- cs(G): the core size of G;
- ch(G): the core height of G;
- κ1(G): the 1-path connectivity of G;
- dgi(G) (i ∈ [1, 4]): the number of vertices of degree i in G;
- ceco

a (G) (a ∈ Λ): the number of core vertices with chemical element a ∈ Λ;
- cenc

a (G) (a ∈ Λ): the number of non-core vertices with chemical element a ∈ Λ;

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 6 of 30

- ms(G): the average of mass∗ of atoms in G;
- bco

k (G) (k ∈ [2, 3]): the number of double and triple bonds in core edges;
- bnc

k (G) (k ∈ [2, 3]): the number of double and triple bonds in non-core edges;
- acco

γ (G) (γ = (a, b, k) ∈ Γ): the number of adjacency-configurations (a, b, k) of core edges;
- acnc

γ (G) (γ = (a, b, k) ∈ Γ): the number of adjacency-configurations (a, b, k) of non-core edges;
- θ(H): the topological parameter of H; and
- nH(G): the number of hydrogen atoms to be included in G; i.e.,

nH(G) = ∑a∈Λ val(a)(ceco
a (G) + cenc

a (G))− 2(n(G) + 1 + bco
2 (G) + bnc

2 (G) + 2bco
3 (G) + 2bnc

3 (G)).

The number k of descriptors in our feature vector x = f (G) is k = 2|Λ|+ 2|Γ|+ 15.

2.2. A Method for Inferring Chemical Graphs

This section reviews the framework that solves the inverse QSAR/QSPR by using MILPs [18].
For a specified chemical property π such as boiling point, we denote by a(G) the observed value of
the property π for a chemical compound G. As the Phase 1, we solve (I) PREDICTION PROBLEM with
the following three steps.

Phase 1.

Step 1: Let DB be a set of chemical graphs. For a specified chemical property π, choose a class G of
graphs such as acyclic graphs or monocyclic graphs. Prepare a data set Dπ = {Gi | i = 1, 2, . . . , m} ⊆
G ∩ DB such that the value a(Gi) of each chemical graph Gi, i = 1, 2, . . . , m is available. Set reals
a, a ∈ R so that a ≤ a(Gi) ≤ a, i = 1, 2, . . . , m. See Figure 3 for an illustration of Step 1.

G : a class of chemical
 graphs

a(G1)

R

a: property
 function

G1

Gm

G2 a(G2)

a(Gm)

. . .

a
-

a
-

Figure 3. An illustration of Step 1: A data set Dπ of chemical graphs Gi, i = 1, 2, . . . , m in a class G of
graphs whose values a(Gi) ∈ [a, a] of a chemical property π are available.

Step 2: Introduce a feature function f : G → Rk for a positive integer k. We call f (G) the feature vector
of G ∈ G, and call each entry of a vector f (G) a descriptor of G. See Figure 4 for an illustration of Step 2.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 7 of 30

 Rk

f : feature
 function

ADD
A

f(G1)

f(G2)

f(Gm)

G

G1

Gm

G2

. . .

Figure 4. An illustration of Step 2: Each chemical graph G ∈ G is mapped to a vector f (G) in a feature
vector space Rk for some positive integer k.

Step 3: Construct a prediction function ψN with an ANN N that, given a vector in Rk, returns a real
in the range [a, a] so that ψN (f (G)) takes a value nearly equal to a(G) for many chemical graphs in D.
See Figure 5 for an illustration of Step 3.

R

a-

a
-

a(G)

y (x)

ANN

N

N

y : prediction
 function

N

 Rk

x:=f(G)

A

G G

Figure 5. An illustration of Step 3: A prediction function ψN from the feature vector space Rk to the
range [a, a] is constructed based on an ANN N .

Next we explain how to solve the inverse problem to the prediction in Phase 1 using an MILP
formulation. A vector x ∈ Rk is called admissible if there is a graph G ∈ G such that f (G) = x [18].
Let A denote the set of admissible vectors x ∈ Rk. In this paper, we use the range-based method to
define an applicability domain (AD) [24] to our inverse QSAR/QSPR. Set xj and xj to be the minimum
and maximum values of the j-th descriptor xj in f (Gi) over all graphs Gi, i = 1, 2, . . . , m (where
we possibly normalize some descriptors such as ceco

a (G), which is normalized with ceco
a (G)/n(H)).

Define our AD D to be the set of vectors x ∈ Rk such that xj ≤ xj ≤ xj for the variable xj of each
j-th descriptor, j = 1, 2, . . . , k. As the second phase, we solve (II) INVERSE PROBLEM for the inverse
QSAR/QSPR by treating the following inference problems.

(II-a) Inference of Vectors
Input: A real y∗ ∈ [a, a].
Output: Vectors x∗ ∈ A ∩ D and g∗ ∈ Rh such that ψN (x∗) = y∗ and g∗ forms a chemical graph
G∗ ∈ G with f (G∗) = x∗.

(II-b) Inference of Graphs
Input: A vector x∗ ∈ A ∩D.
Output: All graphs G∗ ∈ G such that f (G∗) = x∗.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 8 of 30

To treat Problem (II-a), we use MILPs for inferring vectors in ANNs [17]. In MILPs, we can easily
impose additional linear constraints or fix some variables to specified constants. We include into the
MILP a linear constraint such that x ∈ D to obtain the next result.

Theorem 1. Let N be an ANN with a piecewise-linear activation function for an input vector x ∈ Rk,
nA denote the number of nodes in the architecture and nB denote the total number of break-points over all
activation functions. Then there is an MILP M(x, y; C1) that consists of variable vectors x ∈ D (⊆ Rk),
y ∈ R, and an auxiliary variable vector z ∈ Rp for some integer p = O(nA + nB) and a set C1 of O(nA + nB)

constraints on these variables such that: ψN (x∗) = y∗ if and only if there is a vector (x∗, y∗) feasible to
M(x, y; C1).

See Appendix A for the set of constraints to define our ADD in the MILPM(x, y; C1) in Theorem 1.
To attain the admissibility of inferred vector x∗, we also introduce a variable vector g ∈ Rq for

some integer q and a set C2 of constraints on x and g such that x∗ ∈ A holds in the following sense:
(x∗, g∗) is feasible to the MILP M(x, g; C2) if and only if g∗ forms a chemical graph G∗ ∈ G with
f (G∗) = x∗. The Phase 2 consists of the next two steps.

Phase 2.

Step 4: Formulate Problem (II-a) as the above MILPM(x, y, g; C1, C2) based on G and N . Find a set
F∗ of vectors x∗ ∈ A ∩D such that (1− ε)y∗ ≤ ψN (x∗) ≤ (1 + ε)y∗ for a tolerance ε set to be a small
positive real. See Figure 6 for an illustration of Step 4.

R

a-

a
-

G
 Rk

x*

MILP

g*

y*: target
 value

 input

output

f(G*)

G*

M(x,y,g;C1,C2)

(x*,g*)

M(x,y;C1)

M(x,g;C2)

x*

ADD

A

(1-e)y*≦y (x*)≦(1+e)y*
N

no G* G s.t.
detect

deliver

F*

Figure 6. An illustration of Step 4: Given a target value y∗ ∈ [a, a], solving MILPM(x, y, g; C1, C2)

either delivers a set F∗ of vectors x∗ ∈ A∩D such that (1− ε)y∗ ≤ ψN (x∗) ≤ (1 + ε)y∗ or detects that
no such vector x exists.

Step 5: To solve Problem (II-b), enumerate all graphs G∗ ∈ G such that f (G∗) = x∗ for each vector
x∗ ∈ F∗. See Figure 7 for an illustration of Step 5.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 9 of 30

f(G*)i

G
 Rk

x*

ADD

A

F*

G*

G*
1
,G*,...

2

Figure 7. An illustration of Step 5: For each vector x∗ ∈ F∗, all chemical graphs G∗ ∈ G such that
f (G∗) = x∗ are generated.

In this paper, we set a graph class G to be the set of rank-2 graphs. In Step 4, we solve an MILP
M(x, g; C2) that is formulated on a novel idea of representing rank-2 chemical graphs, as will be
discussed in Section 2.3.2. In Step 5, we use branch-and-bound algorithms for enumerating rank-2
chemical compounds [25,26].

2.3. Representing Rank-2 Chemical Graphs

This section introduces a method of modeling rank-2 chemical graphs with different cyclic
structures in a unified way and proposes an MILP formulation that represents a rank-2 chemical graph
G of n vertices.

2.3.1. Scheme Graphs and Tree-Extensions

Given positive integers n∗ and p, a graph with n∗ vertices and p edges can be represented as a
subgraph of a complete graph Kn∗ with n∗(n∗ − 1)/2 edges. However, formulating this as an MILP
may require to prepare Ω((n∗)2) variables and constraints. To reduce the number of variables and
constraints in an MILP that represents a rank-2 graph, we decompose a rank-2 graph G into the core
and non-core of G so that the core is represented by one of the three rank-2 polymer topologies and
the non-core is a collection of trees in which the height is bounded by the core height of G. We do
not specify how many subtrees will be attached to each edge in the polymer topology in advance,
since otherwise we would need a different MILP for a distinct combination of such assignments of
subtrees. Instead we allow each edge in a polymer topology to collect a necessary number of subtrees
in our MILP (see the next section for more detail). In this section, we introduce a “scheme graph” to
represent three possible rank-2 polymer topologies, an “extension” of the scheme graph to represent
the core of a rank-2 graph and a “tree-extension” to represent a combination of the core and non-core
of a rank-2 graph, so that any of the three kinds of rank-2 polymer topologies can be selected in a
single MILP formulation.

Scheme Graphs

Formally, we define the scheme graph for rank 2 to be a pair (K, E) of a multigraph K and an
ordered partition E = (E1, E2, E3) of the edge set E(K). Figure 2d illustrates the scheme graph
(K = ({u1, u2, u3, u4}, E), E = (E1, E2, E3)). An edge in E1 is called a semi-edge, an edge in E2 is called
a virtual edge and an edge in E3 is called a real edge.

Extensions of Scheme Graphs

Based on the scheme graph (K, E), we construct the core of a rank-2 graph H as an “extension,”
which is defined as follows (see also Figure 8). The extension Hcore in Figure 9a An extension of
the scheme graph (K, E) is defined to be a simple graph obtained from K by using each real edge

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 10 of 30

e = uv ∈ E3, by eliminating or replacing each virtual edge e = uv ∈ E2 (resp., semi-edge e = uv ∈ E1)
with a u, v-path of length at least two (resp., 1) in the core of H, where a u, v-path of length 1 means
an edge uv. Figure 9a illustrates an extension Hcore of the scheme graph (K, E) which is obtained by
removing virtual edges a4, a5 ∈ E2 and by replacing semi-edge a1 ∈ E1 with a path (u1,1, v1,1, v2,1, u4,1),
semi-edge a2 ∈ E1 with a path (u2,1, v3,1, v4,1, v5,1, u3,1) and by using semi-edge a3 ∈ E1 and real edges
a6, a7 ∈ E3. The extension Hcore in Figure 9a is isomorphic to the core of the rank-2 graph H in
Figure 9b. Observe that each of the least simple graphs S(Mi), i = 1, 2, 3 in Figure 2 is obtained as an
extension of the scheme graph (K, E) in Figure 2d.

Tree-Extensions

Let s∗ = |V(K)| = 4 denote the number of vertices in the scheme graph. For non-negative
integers a, b and c, we consider a rank-2 graph H such that cs(H) = s∗ + a = 4 + a, ch(H) = b and
the maximum degree of a core vertex is at most c. We define an “(a, b, c)-tree-extension” as a minimal
supergraph of all such rank-2 graphs H. Formally, the (a, b, c)-tree-extension (or a tree-extension) is
defined to be the graph obtained by augmenting the graph K as follows:

(i) For each vertex us ∈ V(K), s ∈ [1, s∗], create a copy Ss of the rooted tree T(c − 2, c − 1, b).
For each s ∈ [1, s∗], let the root of rooted tree Ss be equal to the vertex us and denote by us,i the
copy of the i-th vertex of T(c− 2, c− 1, b) in Ss (see Figure 8a).

(ii) Create a new path (v1,1, v2,1, . . . , va,1) with a vertices, where the edge between vt,1 and vt+1,1

is denoted by et+1 (see Figure 8c). For each t ∈ [1, a], create a copy Tt of the rooted tree
T(c− 2, c− 1, b), let the root of rooted tree Tt be equal to the vertex v1,1 and denote by vt,i the
copy of the i-th vertex of T(c− 2, c− 1, b) in Tt (see Figure 8b).

(iii) For every pair (s, t) with s ∈ [1, s∗] and t ∈ [1, a], join vertices us,1 and vt,1 with an edge us,1vt,1
(see Figure 8c).

Figure 8 illustrates the (3, 2, 4)-tree-extension of the scheme graph. We show how a rank-2 graph
can be constructed as a subgraph of a tree-extension with some example. Figure 9b illustrates a
rank-2 graph H with n(H) = 21, cs(H) = 9, ch(H) = 2 and θ(H) = 1, where the maximum degree
of a non-core vertex is 3. To prepare a tree-extension so that the graph H can be a subgraph of the
tree-extension, we set cs∗ := cs(H), a := t∗ := cs∗ − s∗ = 5, b := ch∗ := ch(H) = 2 and c := dmax := 3.
Figure 9c illustrates a subgraph H′ of the (t∗ = 5, ch∗ = 2, dmax = 3)-tree-extension such that H′ is
isomorphic to the rank-2 graph H.

v1,1 v2,1
=vt*,1e2

a2
a4

a1

a3

a5

T1 T2

=Ss*

=Tt*

S1 S4
S2 S3

u3,1
u4,1u1,1

u2,1
a7

a6 =us*,1

T3

v3,1e3vt,4 vt,7vt,5 vt,9

vt,2

vt,6

vt,3

vt,8

et,4
et,7

et,5
et,9

et,2

et,6

et,3

et,8

vt,1

Tt=T(2,3,2)

us,4 us,7us,5 us,9

us,2

us,6

us,3

us,8

e’s,4
e’s,7

e’s,5
e’s,9

e’s,2

e’s,6

e’s,3

e’s,8

us,1

Ss=T(2,3,2)=T(dmax-2,dmax-1,ch*) (c) (t*=3,ch*=2,dmax=4)-tree-extension
(a) (b)

Figure 8. An illustration of a tree-extension, where the vertices in V(K) are depicted with gray circles:
(a) The structure of the rooted tree Ss rooted at a vertex us,1; (b) the structure of the rooted tree Tt

rooted at a vertex vt,1; (c) the (a, b, c)-tree-extension of the scheme graph in Figure 2d for a = t∗ = 3,
b = ch∗ = 2 and c = dmax = 4.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 11 of 30

u4,2

e’4,2e’1,2e’1,3

u1,2u1,3 e’2,4e’2,5

u2,4

u2,2

u2,5

e’2,2

e1,4
e1,5

v1,4

v1,2

v1,5

e1,2

e3,4

v3,4

v3,2

e3,2

v5,2

e5,2

v1,1
v2,1

=vt*,1e2

a3

u3,1
u4,1

u1,1
u2,1

a7

a6 =us*,1

v3,1
e4

(c) H’

v5,1

v4,1

e5

(b) H

u3,1

u4,1
u1,1

u2,1

a3 a7a6

v1,1

v2,1

v3,1 v5,1

v4,1

a3

a7
a6

(a) Hcore

v1,1 v2,1

u3,1
u4,1u1,1 u2,1

v3,1 v5,1

v4,1

Figure 9. (a) An example of an extension of the scheme graph; (b) an example of a rank-2 graph H with
n(H) = 21, cs(H) = 9, ch(H) = 2 and θ(H) = 1, where the labels of some vertices and edges indicate
the corresponding vertices and edges in the (t∗, ch∗, dmax)-tree-extension for cs∗ = cs(H), ch∗ = ch(H),
s∗ = 4, t∗ = cs∗ − s∗ and dmax = 3; (c) a subgraph H′ of (t∗ = 5, ch∗ = 2, dmax = 3)-tree-extension
isomorphic to the rank-2 graph H in (b).

2.3.2. MILPs for Rank-2 Chemical Graphs

We present an outline of our MILP M(x, g; C2) in Step 4 of the framework. For integers
dmax, n∗, cs∗, ch∗, θ∗ ∈ Z, let H(dmax, n∗, cs∗, ch∗, θ∗) denote the set of rank-2 graphs H such that the
degree of each core vertex is at most 4, the degree of each non-core vertex is at most dmax, n(H) = n∗,
cs(H) = cs∗, ch(H) = ch∗ and θ(H) = θ∗. In this paper, we obtain the following result.

Theorem 2. Let Λ be a set of chemical elements, Γ be a set of adjacency-configurations, where |Λ| ≤ |Γ|,
and k = 2|Λ| + 2|Γ| + 15. Given integers dmax ∈ {3, 4}, n∗ ≥ 3, cs∗ ≥ 3 ch∗ ≥ 0 and θ∗, there is an
MILPM(x, g; C2) that consists of variable vectors x ∈ Rk and g ∈ Rq for some integer q = O(|Γ| · cs∗ ·
(dmax−1)ch∗) and a set C2 of O(|Γ|+ cs∗ · (dmax−1)ch∗) constraints on these variables such that: (x∗, g∗) is
feasible toM(x, g; C2) if and only if g∗ forms a rank-2 chemical graph G∗ = (H, α, β) ∈ G(Λ, Γ) such that
H ∈ H(dmax, n∗, cs∗, ch∗, θ∗) and f (G∗) = x∗.

Note that our MILP requires only O(n∗) variables and constraints when the maximum core height
of a subtree in the non-core of G∗ and |Γ| are constant. We formulate an MILP in Theorem 2 so that
such a graph H is selected as a subgraph of the scheme graph.

We explain the basic idea of our MILP. Define

t∗ , cs∗ − s∗,

c∗ , |E1 ∪ E2| for (K, E = (E1, E2, E3)),

ntree , 1 + 2((dmax−1)ch∗−1)/(dmax − 2) and nin , 1 + 2((dmax−1)ch∗−1−1)/(dmax − 2),

where ntree and nin are the numbers of vertices and non-leaf vertices in the rooted tree T(dmax −
2, dmax − 1, ch∗), respectively. The MILP mainly consists of the following three types of constraints.

1. Constraints for selecting a rank-2 graph H as a subgraph of the (t∗, ch∗, dmax)-tree-extension of
the scheme graph (K, E);

2. Constraints for assigning chemical elements to vertices and multiplicity to edges to determine a
chemical graph G = (H, α, β);

3. Constraints for computing descriptors from the selected rank-2 chemical graph G; and
4. Constraints for reducing the number of rank-2 chemical graphs that are isomorphic to each other

but can be represented by the above constraints.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 12 of 30

In the constraints of 1, we treat each edge in the tree-extension as a directed edge because
describing some condition for H to belong toH(dmax, n∗, cs∗, ch∗, θ∗) becomes slightly easier than the
case of undirected graphs. More formally we prepare the following.

(i) In the scheme graph (K, E), denote the edges in E1 ∪ E2 ∪ E3 by E1 = {a1, a2, . . . , a|E1|}, E2 =

{a|E1|+1, . . . , ac∗} and E3 = {ac∗+1, . . . , am} (where c∗ = |E1 ∪ E2|), and regard each edge ai =

us,1us′ ,1 ∈ E1 ∪ E2 ∪ E3 as a directed edge from one end-vertex us,1 to the other end-vertex us′ ,1
with s < s′. Let a(i) be a binary variable for each edge ai, i ∈ [1, m].

(ii) In each tree Ss (resp., Tt) in the tree-extension, we regard each edge e′s,i, i ≥ 2 in the rooted tree
Ss, s ∈ [1, s∗] (resp., et,i, i ≥ 2 in the rooted tree Tt, t ∈ [1, t∗]) as a directed edge from vertex
us,prt(i) to vertex us,i (resp., from vertex vt,prt(i) to vertex vt,i). Let u(s, i) (resp., v(t, i)) be a binary
variable for vertex us,i, s ∈ [1, s∗] (resp., t ∈ [1, t∗]) and i ∈ [1, ntree];

(iii) In the path Pt∗ consisting of the roots of trees Tt, [t ∈ 1, t∗], we regard each edge et, t ∈ [2, t∗] as
a directed edge from vertex vt−1,1 to vertex vt,1; and

(iv) We regard each edge us,1vt,1 for s ∈ [1, s∗] and t ∈ [1, t∗] as two directed edges, one directed
from vertex us,1 to vertex vt,1 and the other directed oppositely. Let e(s, t) (resp., e(t, s)) be a
binary variable of directed edge (us,1, vt,1) (resp., (vt,1, us,1)).

Based on these, we include constraints with some more additional variables so that a selected
subgraph H is a connected rank-2 graph. See constraints Equations (A10) to (A42) in Appendix A for
the details.

In the constraints of 2, we prepare an integer variable α̃(u) for each vertex u in the tree-extension
that represents the chemical element α(u) ∈ Λ if u is in a selected graph H (or α̃(u) = 0 otherwise) and
an integer variable β̃(e) ∈ [0, 3] (resp., β̂(e) ∈ [0, 3]) for each edge e (resp., e = e(s, t) or e(t, s), s ∈ [1, s∗],
t ∈ [1, t∗]) in the tree-extension that represents the multiplicity β(e) ∈ [1, 3] if e is in a selected graph H
(or β̃(e) or β̂(e) takes 0 otherwise). This determines a chemical graph G = (H, α, β). Also we include
constraints for a selected chemical graph G to satisfy the valence condition (α(u), α(v), β(uv)) ∈ Γ for
each edge uv ∈ E. See constraints Equations (A43) to (A61) in Appendix A for the details.

In the constraints of 3, we introduce a variable for each descriptor and constraints with some
more variables to compute the value of each descriptor in f (G) for a selected chemical graph G.
See constraints Equations (A62) to (A113) in Appendix A for the details.

With constraints 1 to 3, our MILP formulation already represents a rank-2 chemical graph G and
a feature vector x ∈ Rk so that x = f (G) holds. In the constraints of 4, we include some additional
constraints so that the search space required for an MILP solver to solve an instance of our MILP
problem is reduced. For this, we consider a graph-isomorphism of rooted subtrees of each tree
Ss or Ts and define a canonical form among subtrees that are isomorphic to each other. We try to
eliminate a chemical graph G that has a subtree in Ss or Ts that is not a canonical form. See constraints
Equations (A114) to (A119) in Appendix A for the details.

3. Results

We implemented our method of Steps 1 to 5 for inferring rank-2 chemical graphs and conducted
experiments to evaluate the computational efficiency for three chemical properties π: octanol/water
partition coefficient (KOW), melting point (MP), and boiling point (BP). We executed the experiments on
a PC with Intel Core i5 1.6 GHz CPU and 8GB of RAM running under the Mac OS operating system
version 10.14.6. We show 2D drawings of some of the inferred chemical graphs, where ChemDoodle
version 10.2.0 is used for constructing the drawings.

Results on Phase 1.

Step 1. We set a graph class G to be the set of all rank-2 chemical graphs. For each property π ∈ {KOW,
MP, BP}, we select a set Λ of chemical elements and collected a data set Dπ on rank-2 chemical
graphs over Λ provided by HSDB from PubChem. To construct the data set, we eliminated chemical

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 13 of 30

compounds that have at most three carbon atoms or contain a charged element such as N+ or an
element a ∈ Λ in which the valence is different from our setting of valence function val.

Table 1 shows the size and range of data sets that we prepared for each chemical property in
Step 1, where we denote the following:

- π: one of the chemical properties KOW, MP and BP;
- |Dπ |: the size of data set Dπ for property π;
- Λ: the set of chemical elements over data set Dπ (hydrogen atoms are added at the final stage);
- |Γ|: the number of tuples in Γ;
- [n, n]: the minimum and maximum number n(G) of non-hydrogen atoms over data set Dπ ;
- [cs, cs], [ch, ch]: the minimum and maximum core size and core height over chemical compounds

in Dπ , respectively;
- [θ, θ]: the minimum and maximum values of the topological parameter θ(G) over data set Dπ ;

and
- [a, a]: the minimum and maximum values of a(G) in π over data set Dπ .

Table 1. Results of Step 1 in Phase 1.

π |Dπ | Λ |Γ| [n, n] [cs, cs] [ch, ch] [θ, θ] [a, a]

KOW 93 C,N,O 9 [9, 31] [7, 16] [0, 13] [−5, 3] [−3.7, 12.2]
MP 63 C,N,O 7 [9, 31] [7, 17] [0, 4] [−6, 3] [−80, 300]
BP 45 C,N,O,S,P,Cl 9 [9, 25] [7, 15] [0, 7] [−4, 3] [155, 420]

Step 2. We used a feature function f that consists of the descriptors defined in Section 2.1.

Step 3. We used scikit-learn version 0.21.6 with Python 3.7.4 to construct ANNs N where the tool
and activation function are set to be MLPRegressor and ReLU, respectively. We tested several different
architectures of ANNs for each chemical property. To evaluate the performance of the resulting
prediction function ψN with cross-validation, we partition a given data set Dπ into five subsets D(i)

π ,
i ∈ [1, 5] randomly, where Dπ \ D(i)

π is used for a training set and D(i)
π is used for a test set in five

trials i ∈ [1, 5]. For a set {y1, y2, . . . , yN} of observed values and a set {ψ1, ψ2, . . . , ψN} of predicted

values, we define the coefficient of determination to be R2 , 1− ∑j∈[1,N](yj−ψj)
2

∑j∈[1,N](yj−y)2 , where y = 1
N ∑j∈[1,N] yj.

Table 2 shows the results on Steps 2 and 3, where

- k: the number of descriptors for the chemical compounds in data set Dπ for property π;
- Activation: the choice of activation function;
- Architecture: (a, b, 1) consists of an input layer with a nodes, a hidden layer with b nodes, and an

output layer with a single node, where a is equal to the number of descriptors;
- L-time: the average time (sec.) to construct ANNs for each trial;
- test R2 (ave.): the average of coefficient of determination over the five test sets; and
- test R2 (best): the largest value of coefficient of determination over the five test sets.

For each chemical property π, we selected the ANN N that attained the best test R2 score among
the five ANNs to formulate an MILPM(x, y, z; C1) in the second phase.

Table 2. Results of Steps 2 and 3 in Phase 1.

π k Activation Architecture L-Time Test R2 (ave.) (Best)

KOW 37 relu (37,10,1) 3.92 0.866 0.964
MP 33 relu (33,10,1) 21.68 0.805 0.916
BP 43 relu (43,10,1) 11.88 0.802 0.947

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 14 of 30

Results on Phase 2.

We implemented Steps 4 and 5 in Phase 2 as follows.

Step 4. In this step, we solve the MILPM(x, y, g; C1, C2) formulated based on the ANN N obtained
in Phase 1. To solve an MILP in Step 4, we use CPLEX version 12.10. In our experiment, we choose a
target value y∗ ∈ [a, a] and fix or bound some descriptors in our feature vector as follows:

- Fix variable θ that represents the polymer parameter θ(H) to be each integer in {−2, 0, 2};
- Set dmax to be each of 3 and 4;
- Fix n∗ to be some four integers in {15, 19, 20, 25, 30} for θ ∈ {−2, 0} and {15, 19, 20, 22, 25} for

θ = 2;
- Choose three integers from [7, 16] and fix cs∗ to be each of the three integers;
- Fix ch∗ to be each of the four integers in [2, 5].

Based on the above setting, we generated 12 instances for each n∗. We set ε = 0.02 in Step 4.
Tables 3–8 show the results of Step 4 for dmax = 3 and 4, respectively, where we denote

the following:

- y∗π : a target value in [a, a] for a property π;
- n∗: a specified number of vertices in [n, n];
- |F∗|/#I: #I means the number of MILP instances in Step 4 (where #I = 12), and |F∗| means the size

of set F∗ of vectors x∗ generated from all feasible instances among the #I MILP instances in Step 4;
- IP-time: the average time (sec.) to solve one of the #I MILP instances to find a set F∗ of vectors x∗.

Figure 10a–c illustrate some rank-2 chemical graphs G∗ with θ(G∗) = −2 constructed from the
vector g∗ obtained by solving the MILP in Step 4.

Figure 11a–c illustrate some rank-2 chemical graphs G∗ with θ(G∗) = 0 constructed from the
vector g∗ obtained by solving the MILP in Step 4.

Table 3. Results of Steps 4 and 5 with dmax = 3 and θ = −2.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 12/12 9.96 100 2236.0
KOW 5 20 12/12 30.38 12 >1 h
KOW 5 25 12/12 47.57 12 >1 h
KOW 5 30 12/12 69.38 12 >1 h
MP 150 15 12/12 9.52 100 2069.0
MP 150 20 12/12 22.79 12 >1 h
MP 150 25 12/12 47.20 12 >1 h
MP 150 30 12/12 66.90 12 >1 h
BP 250 15 11/12 9.50 100 103.5
BP 250 19 12/12 19.08 12 >1 h
BP 250 22 12/12 25.78 12 >1 h
BP 250 25 12/12 67.64 12 >1 h

Table 4. Results of Steps 4 and 5 with dmax = 4 and θ = −2.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 11/12 31.84 100 413.8
KOW 5 20 12/12 69.65 12 >1 h
KOW 5 25 12/12 144.20 11 >1 h
KOW 5 30 12/12 352.01 12 >1 h
MP 150 15 9/12 20.68 100 947.4
MP 150 20 11/12 73.73 11 >1 h
MP 150 25 9/12 140.09 9 >1 h
MP 150 30 12/12 304.04 12 >1 h
BP 250 15 7/12 28.51 100 232.7
BP 250 19 11/12 82.01 11 >1 h
BP 250 22 12/12 150.55 12 >1 h
BP 250 25 12/12 239.84 12 >1 h

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 15 of 30

Table 5. Results of Steps 4 and 5 with dmax = 3 and θ = 0.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 12/12 11.00 100 121.1
KOW 5 20 12/12 25.64 12 >1 h
KOW 5 25 12/12 38.79 12 >1 h
KOW 5 30 12/12 49.65 12 >1 h
MP 150 15 12/12 8.45 100 373.4
MP 150 20 12/12 18.94 12 >1 h
MP 150 25 12/12 37.13 12 >1 h
MP 150 30 12/12 44.745 4 >1 h
BP 250 15 9/12 8.450 100 74.2
BP 250 19 11/12 16.31 11 >1 h
BP 250 22 12/12 21.71 12 >1 h
BP 250 25 12/12 45.80 12 >1 h

Table 6. Results of Steps 4 and 5 with dmax = 4 and θ = 0.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 9/12 36.33 100 23.2
KOW 5 20 12/12 82.01 12 >1 h
KOW 5 25 12/12 138.96 12 >1 h
KOW 5 30 12/12 292.79 12 >1 h
MP 150 15 9/12 19.89 100 557.6
MP 150 20 11/12 63.62 11 >1 h
MP 150 25 12/12 112.49 12 >1 h
MP 150 30 12/12 171.11 12 >1 h
BP 250 15 3/12 34.60 100 11.2
BP 250 19 6/12 203.65 6 >1 h
BP 250 22 9/12 218.07 9 >1 h
BP 250 25 11/12 783.80 11 >1 h

Table 7. Results of Steps 4 and 5 with dmax = 3 and θ = 2.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 12/12 11.64 100 1386.7
KOW 5 20 12/12 23.84 12 >1 h
KOW 5 25 12/12 33.71 12 >1 h
KOW 5 30 12/12 61.85 12 >1 h
MP 150 15 12/12 9.80 100 1614.3
MP 150 20 12/12 20.15 12 >1 h
MP 150 25 12/12 36.42 12 >1 h
MP 150 30 12/12 40.58 12 >1 h
BP 250 15 11/12 10.25 100 1756.1
BP 250 19 12/12 16.02 12 >1 h
BP 250 22 12/12 23.63 12 >1 h
BP 250 25 12/12 63.84 12 >1 h

Table 8. Results of Steps 4 and 5 with dmax = 4 and θ = 2.

π y∗ n∗ |F∗|/#I IP-Time #G∗ G-Time

KOW 5 15 11/12 28.15 100 20.3
KOW 5 20 12/12 71.90 12 >1 h
KOW 5 25 12/12 112.71 12 >1 h
KOW 5 30 12/12 267.21 12 >1 h
MP 150 15 9/12 22.53 100 2748.1
MP 150 20 11/12 53.44 11 >1 h
MP 150 25 12/12 143.33 12 >1 h
MP 150 30 12/12 220.63 12 >1 h
BP 250 15 6/12 27.33 100 254.2
BP 250 19 9/12 75.50 9 >1 h
BP 250 22 11/12 133.01 11 >1 h
BP 250 25 12/12 228.75 12 >1 h

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 16 of 30

(b)

(c) (d)

(a)

Figure 10. An illustration of inferred rank-2 chemical graphs G∗ with θ = −2: (a) y∗Kow = 5, θ = −2,
n = 30, core size = 16, core height = 3, dmax = 4; (b) y∗Mp = 250, θ = −2, n = 30, core size = 16,
core height= 2, dmax = 3; (c) y∗Bp = 150, θ = −2, n = 25, core size = 17, core height = 4, dmax = 3;
(d) y∗Kow = 5, y∗Mp = 150, y∗Bp = 250, θ = −2, n = 22, core size = 14, core height = 3, dmax = 3.

(b) (c)(a)

Figure 11. An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow = 5, θ = 0, n = 30, core size
= 14, core height = 2, dmax = 3; (b) y∗Mp = 250, θ = 0, n = 30, core size = 16, core height = 2, dmax = 4;
(c) y∗Bp = 150, θ = 0, n = 25, core size = 17, core height = 2, dmax = 3.

Figure 12a–c illustrate some rank-2 chemical graphs G∗ with θ(G∗) = 2 constructed from the
vector g∗ obtained by solving the MILP in Step 4.

(a) (b) (c)

Figure 12. An illustration of inferred rank-2 chemical graphs G∗: (a) y∗Kow = 5, θ = 2, n = 30, core size
= 15, core height = 5, dmax = 4; (b) y∗Mp = 250, θ = 2, n = 30, core size = 17, core height = 2, dmax = 3;
(c) y∗Bp = 150, θ = 2, n = 25, core size = 17, core height = 3, dmax = 3.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 17 of 30

Step 5. In this step, we modified the algorithms proposed by Tamura et al. [25] and Yamashita et al. [26]
to enumerate all rank-2 graphs G∗ ∈ G such that f (G∗) = x∗ for each x∗ ∈ F∗. We stop the execution
when either the total number of graphs inferred over all vectors x∗ ∈ F∗ exceeds 100 or the execution
time exceeds one hour.

Tables 3–8 show the results on Step 5 for dmax = 3 and 4, respectively,

- #G∗: the number of all (or up to 100) rank-2 chemical graphs G∗ that are computed under 1 h time
limit in Step 5, where f (G∗) = x∗ for some x∗ ∈ F∗. (Note that |F∗| such graphs G∗ have been
found in Step 4, and Figures 10–12 illustrate some of such graphs G∗.);

- G-time: the running time (sec.) to execute Step 5, where “>1 h” means that the execution time
exceeds the limit.

We also conducted some additional experiments to demonstrate that our MILP-based method is
flexible to control conditions on the inference of chemical graphs. In Step 3, we constructed an ANN
Nπ for each of the three chemical properties π ∈ {KOW, MP, BP}, and formulated the inverse problem of
each ANN Nπ as an MILPMπ . Since the set of descriptors is common to all three properties KOW, MP,
and BP, it is possible to infer a rank-2 chemical graph G∗ that satisfies a target value y∗π for each of the
three properties at the same time (if one exists). We specify the size of graph so that n := 22, core size
:= 14, core height := 3, θ := −2 and dmax := 3, and set target values with y∗Kow := 5, y∗Mp := 150 and
y∗Bp := 250 in an MILP that consists of the three MILPsMKow,MMp andMBp. The MILP was solved
in 268.11 (sec) and we obtained a rank-2 chemical graph G∗ illustrated in Figure 10d.

4. Discussion

In this paper, we proposed a new method for the inverse QSAR/QSPR to rank-2 chemical graphs
by significantly enhancing the framework due to Azam et al. [18], Zhang et al. [20], and Ito et al. [21],
and implemented it for inferring rank-2 chemical graphs using the algorithms for enumerating
rank-2 chemical graphs due to Tamura et al. [25] and Yamashita et al. [26]. From the results on some
computational experiments, we observe that the proposed method runs efficiently for an instance
with n∗ ≤ 30 non-hydrogen atoms up to Step 4 and an instance with n∗ ≤ 15 non-hydrogen atoms
up to Step 5. Due to this development, the ratio of chemical compounds covered in the PubChem
database increased from 16.26% to 44.5%. It is left as future work to apply our new method for the
inverse QSAR/QSPR to a wider class of graphs. The ratio of the number of chemical graphs with rank
at most 3 (resp., 4) to the number of all chemical graphs in database PubChem is 68.8% (resp., 84.7%).
Among rank-4 chemical compounds, Remdesivir C27H35N6O8P, an antiviral medication, which is being
studied as a possible post-infection treatment for COVID-19, has a chemical graph G with r(G) = 4,
n(G) = 42, cs(G) = 24, and ch(G) = 8. The number of polymer topologies with rank 3 (resp., 4) such
that the maximum degree is at most 4 is 12 (resp., 73). Our MILP formulation can be easily extended to
the case of rank 3 or 4 by replacing the current set of constraints for the scheme graph with a set of
those for a new scheme graph that is designed for rank-3 or -4 polymer topologies.

Author Contributions: Conceptualization, H.N. and T.A.; methodology, H.N.; software, J.Z., C.W., and A.S.;
validation, J.Z., C.W., A.S., and H.N.; formal analysis, H.N.; data resources, H.N. and T.A.; writing—original
draft preparation, H.N.; writing—review and editing, T.A.; project administration, H.N.; funding acquisition, T.A.
All authors have read and agreed to the published version of the manuscript.

Funding: H.N. and T.A. were partially supported by the Japan Society for the Promotion of Science, Japan,
under Grant #18H04113.

Conflicts of Interest: The authors declare no conflict of interest.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 18 of 30

Appendix A. All Constraints in an MILP Formulation for Rank-2 Chemical Graphs

To formulate an MILP that represents a chemical graph G = (H, α, β), we distinguish a tuple
(a, b, k) from a tuple (b, a, k). For a tuple γ = (a, b, k) ∈ Λ × Λ × {1, 2, 3}, let γ denote the tuple
(b, a, k). Let Γ< , {γ | γ ∈ Γ>}. We call a tuple γ = (a, b, k) ∈ Λ×Λ× {1, 2, 3} proper if

k ≤ min{val(a), val(b)} and k ≤ max{val(a), val(b)} − 1,

where the latter is assumed because otherwise G must consist of two atoms of a = b. Assume that each
tuple γ ∈ Γ is proper. Let ε be a fictitious chemical element that represents null, call a tuple (a, b, 0)
with a, b ∈ Λ ∪ {ε} fictitious, and define Γ0 to be the set of all fictitious tuples; i.e., Γ0 = {(a, b, 0) |
a, b ∈ Λ∪ {ε}}. To represent chemical elements e ∈ Λ∪ {ε} ∪ Γ in an MILP, we encode these elements
e into some integers denoted by [e]. Assume that, for each element a ∈ Λ, [a] is a positive integer and
that [ε] = 0.

Appendix A.1. Applicability Domain

We use the range-based method to define an applicability domain for our method. For this,
we find the range (the minimum and maximum) of each descriptor over all relevant chemical
compounds and represent each range as a set of linear constraints in the constraint set C1 of our MILP
formulation. Recall that Dπ stands for a set of chemical graphs used for constructing a prediction
function. However, the number of examples in Dπ may not be large enough to capture a general
feature on the structure of chemical graphs. For this, we also use some data set from the whole set DB
of chemical graphs in a database. Let DB(i)

G denote the set of chemical graphs G ∈ DB∩ G such that
n(G) = i for each integer i ≥ 1. Formally the set of variables and constraints is given as follows.

AD constraints in C1:
constants:
Integers cs∗ ≥ 3 and ch∗ ≥ 1; An integer dmax ∈ {3, 4};
An integer n∗ ∈ [cs∗ + 1, cs∗ · (dmax−1)ch∗];

variables for descriptors in x:
A real variable κ1 ≥ 0: κ1 represents κ1(H);
dg(i) ∈ [0, n∗] (i ∈ [1, 4]): dg(i) represents the number of vertices of degree i in H;
Mass ∈ Z: Mass represents ∑v∈V mass∗(α(v));
ceco(a) ∈ [0, n∗], a ∈ Λ: ceco(a) represents the number of vertices of chemical element
a in the core of H;
cenc(a) ∈ [0, n∗], a ∈ Λ: cenc(a) represents the number of vertices of chemical element
a in the non-core of H;
bco(k) ∈ [0, 2n∗], k ∈ [1, 3]: bco(k) represents the number of k-bonds in the core of H;
bnc(k) ∈ [0, 2n∗], k ∈ [1, 3]: bnc(k) represents the number of k-bonds in the non-core of H;
acco(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=: acco(γ) represents the number of core edges
in H that are assigned tuple γ ∈ Γ<;
acnc(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=: acnc(γ) represents the number of non-core edges in
H that are assigned tuple γ ∈ Γ<;

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 19 of 30

constraints:

n∗ min
G∈Dπ∪DB(n∗)

G

κ1(G)

n(G)
≤ κ1 ≤ n∗ max

G∈Dπ∪DB(n∗)
G

κ1(G)

n(G)
, (A1)

n∗ min
G∈Dπ∪DB(n∗)

G

dgi(G)

n(G)
≤ dg(i) ≤ n∗ max

G∈Dπ∪DB(n∗)
G

dgi(G)

n(G)
, i ∈ [1, 4], (A2)

n∗ min
G∈Dπ∪DB(n∗)

G

ms(G) ≤ Mass ≤ n∗ max
G∈Dπ∪DB(n∗)

G

ms(G), (A3)

n∗ min
G∈Dπ∪DB(n∗)

G

ceco
a (G)

n(G)
≤ ceco(a) ≤ n∗ max

G∈Dπ∪DB(n∗)
G

ceco
a (G)

n(G)
, a ∈ Λ, (A4)

n∗ min
G∈Dπ∪DB(n∗)

G

cenc
a (G)

n(G)
≤ cenc(a) ≤ n∗ max

G∈Dπ∪DB(n∗)
G

cenc
a (G)

n(G)
, a ∈ Λ, (A5)

(n∗+1) min
G∈Dπ∪DB(n∗)

G

bco
k (G)

n(G)+1
≤ bco(k) ≤ (n∗+1) max

G∈Dπ∪DB(n∗)
G

bco
k (G)

n(G)+1
, k ∈ [2, 3], (A6)

(n∗+1) min
G∈Dπ∪DB(n∗)

G

bnc
k (G)

n(G)+1
≤ bnc(k) ≤ (n∗+1) max

G∈Dπ∪DB(n∗)
G

bnc
k (G)

n(G)+1
, k ∈ [2, 3], (A7)

(n∗+1) min
G∈Dπ∪DB(n∗)

G

acco
γ (G)

n(G)+1
≤ acco(γ) ≤ (n∗+1) max

G∈Dπ∪DB(n∗)
G

acco
γ (G)

n(G)+1
, γ ∈ Γ, (A8)

(n∗+1) min
G∈Dπ∪DB(n∗)

G

acnc
γ (G)

n(G)+1
≤ acnc(γ) ≤ (n∗+1) max

G∈Dπ∪DB(n∗)
G

acnc
γ (G)

n(G)+1
, γ ∈ Γ. (A9)

In the following, we derive an MILP M(x, g; C2) that satisfies the condition in Theorem 2.
Let dmax ∈ {3, 4}, n∗ ≥ 3, cs∗ ≥ 3 ch∗ ≥ 0 and θ∗ be given integers. We describe the set C2

with several sets of constraints.

Appendix A.2. Construction of Scheme Graph and Tree-Extension

We infer a subgraph H such that the maximum degree is dmax ∈ {3, 4}, n(H) = n∗, cs(H) = cs∗

and ch(H) = ch∗. For this, we first construct the (t∗, ch∗, dmax)-tree-extension of the scheme graph
(K = (VK = {u1, . . . , us∗}, EK = {a1, a2, . . . , am}), E = (E1, E2, E3)). We use the following notations:
For j ∈ [1, 3] and s ∈ [1, s∗], let E+

j (s) (resp., E−j (s)) denote the set of indices i of edges ai ∈ Ei

such that the tail (resp., head) of ai is us,1. Let E+
j,k(s) , E+

j (s) ∪ E+
k (s), E−j,k(s) , E−j (s) ∪ E−k (s),

Ej(s) , E+
j (s) ∪ E−j (s) and Ej,k(s) , Ej(s) ∪ Ek(s).

As described in Section 2.3.1, some edge a(i) ∈ E1 ∪ E2 may be replaced with a subpath Pi of
(v1,1, v1,2, . . . , vt∗ ,1), which consists of the roots of trees T1, T2, . . . , Tt∗ . We assign color i to the vertices
in such a subpath Pi by setting a variable χ(t) of each vertex vt,1 ∈ V(Pi) to be i. For each edge us,1vt,1,
we prepare a binary variable e(s, t) to denote that edge us,1vt,1 is used (resp., not used) in a selected
graph H when e(s, t) = 1 (resp., e(s, t) = 0). We also include constraints necessary for the variables to
satisfy a degree condition at each of the vertices us,1, s ∈ [1, s∗] and vt,1, t ∈ [1, t∗].

constants:
Integers s∗ = |VK|, c∗ = |E1 ∪ E2|, cs∗ (≥ s∗), n∗ (≥ cs∗) and ch∗ ≥ 0;
d+(s), s ∈ [1, s∗]: a lower bound on the out-degree of vertex us,1 in H;
d−(s), s ∈ [1, s∗]: a lower bound on the in-degree of vertex us,1 in H;
d
+
(s), s ∈ [1, s∗]: an upper bound on the out-degree of vertex us,1 in H;

d
−
(s), s ∈ [1, s∗]: an upper bound on the in-degree of vertex us,1 in H;

variables:
a(i) ∈ {0, 1}, i ∈ E1 ∪ E3: a(i) represents edge ai ∈ E1 ∪ E3 (a(i) = 1, i ∈ E1)
(a(i) = 1⇔ edge ai is used in H);

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 20 of 30

e(s, t), e(t, s) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗]: e(s, t) (resp., e(t, s)) represents
direction (us,1, vt,1) (resp., (vt,1, us,1)), where e(s, t) = 1 (resp., e(t, s) = 1)⇔
edge us,1, vt,1 is used in H and direction (us,1, vt,1) (resp., (vt,1, us,1)) is assigned
to edge us,1, vt,1;
χ(t) ∈ [1, c∗], t ∈ [1, t∗]: χ(t) represents the color assigned to vertex vt,1
(χ(t) = c⇔ vertex vt,1 is assigned color c);
clr(c) ∈ [0, n∗ − s∗], c ∈ [1, c∗]: the number of vertices vt,i with color c;
degco+(s) ∈ [1, 4], s ∈ [1, s∗]: the out-degree of vertex us,1 in the core of H;
degco−(s) ∈ [1, 4], s ∈ [1, s∗]: the in-degree of vertex us,1 in the core of H;
δclr(t, c) ∈ {0, 1}, t ∈ [1, t∗], c ∈ [1, c∗] (δclr(t, c) = 1⇔ χ(t) = c);

constraints:

∑
c∈[1,c∗]

δclr(t, c) = 1, t ∈ [1, t∗], (A10)

∑
c∈[1,c∗]

c · δclr(t, c) = χ(t), t ∈ [1, t∗], (A11)

∑
t∈[1,t∗]

δclr(t, c) = clr(c), c ∈ [1, c∗], (A12)

e(s, t) + e(t, s) ≤ 1, s ∈ [1, s∗], t ∈ [1, t∗], (A13)

∑
s∈[1,s∗]\{head(c)}

e(t, s) ≤ 1− δclr(t, c), c ∈ [1, c∗], t ∈ [1, t∗], (A14)

∑
s∈[1,s∗]\{tail(c)}

e(s, t) ≤ 1− δclr(t, c), c ∈ [1, c∗], t ∈ [1, t∗], (A15)

∑
i∈E−1,3(s)

a(i) + ∑
t∈[1,t∗]

e(t, s) = degco−(s), s ∈ [1, s∗], (A16)

∑
i∈E+

1,3(s)
a(i) + ∑

t∈[1,t∗]
e(s, t) = degco+(s), s ∈ [1, s∗], (A17)

d+(s) ≤ degco+(s) ≤ d
+
(s), s ∈ [1, s∗], (A18)

d−(s) ≤ degco−(s) ≤ d
−
(s), s ∈ [1, s∗]. (A19)

Appendix A.3. Specification for Chemical Graphs with Rank 2

To generate any of the three rank-2 polymer topologies in PT (2, 4), we use the scheme graph
(K = (VK = {u1, u2, u3, u4}, EK), E = (E1, E2, E3)) in Figure 2d, where s∗ = |V(K)| = 4, c∗ =

|E1 ∪ E2| = 5, E1 = {a1 = (u1, u4), a2 = (u2, u3), a3 = (u2, u4)}, E2 = {a4 = (u1, u2), a5 = (u3, u4)}
and E3 = {a6 = (u1, u2), a7 = (u3, u4)}. Recall that each color i ∈ [1, c∗] is assigned to edge ai ∈ E1∪E2.
We impose some more constraints on the degree of each of the vertices us,1, s ∈ [1, s∗] and vt,1, t ∈ [1, t∗]
so that the core of a selected graph H satisfies one of the three least simple graphs in Figure 2a–c.
We also let a variable θ mean the topological parameter θ(H) of a selected subgraph H.

constants:
s∗ = 4, c∗ = 5,
E−1 (1) = ∅, E−2 (1) = ∅, E−3 (1) = ∅, E+

1 (1) = {1}, E+
2 (1) = {4}, E+

3 (1) = {6},
E−1 (2) = ∅, E−2 (2) = {4}, E−3 (2) = {6}, E+

1 (2) = {2, 3}, E+
2 (2) = ∅, E+

3 (2) = ∅,
E−1 (3) = {2}, E−2 (3) = ∅, E−3 (3) = ∅, E+

1 (3) = ∅, E+
2 (3) = {5}, E+

3 (3) = {7},
E−1 (4) = {1, 3}, E−2 (4) = {5}, E−3 (4) = {7}, E+

1 (4) = ∅, E+
2 (4) = ∅, E+

3 (4) = ∅,

d−(1) = 0, d
−
(1) = 0, d+(1) = 2, d

+
(1) = 2,

d−(2) = 1, d
−
(2) = 2, d+(2) = 1, d

+
(2) = 2,

d−(3) = 1, d
−
(3) = 1, d+(3) = 1, d

+
(3) = 2,

d−(4) = 2, d
−
(4) = 3, d+(4) = 0, d

+
(4) = 0,

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 21 of 30

variables:
θ ∈ [−n∗, n∗]: The topology-parameter θ(H) for rank 2;

constraints:

a(2) + clr(2) ≥ 1, (A20)

a(3) + clr(3) + clr(4) ≥ 1, (A21)

clr(4) ≥ clr(5), (A22)

clr(3) ≤ clr(2) + 1, (A23)

clr(3) ≤ clr(1) + 1 + n∗(3− degco−(4)), (A24)

−θ ≤ 1 + clr(2) + n∗(2− degco+(3)), (A25)

−θ ≥ 1 + clr(2)− n∗(2− degco+(3)), (A26)

θ ≤ n∗(4− degco+(2)− degco−(2)), (A27)

θ ≥ −n∗(4− degco+(2)− degco−(2)), (A28)

θ ≤ 1 + clr(3) + n∗(3− degco−(4)), (A29)

θ ≥ 1 + clr(3)− n∗(3− degco−(4)). (A30)

Appendix A.4. Selecting A Subgraph

We prepare a binary variable u(s, i) (resp., v(t, i)) for each vertex us,i in tree Ss (resp., vt,i in tree Tt).
We include constraints so that the path (v1,1, v1,2, . . . , vt∗ ,1) is partitioned into subpaths Pc, c ∈ [1, c∗],
where possibly some Pc is empty, and the resulting subgraph H becomes a connected rank-2 graph
with n(H) = n∗, cs(H) = cs∗, ch(H) = ch∗ and θ(H) = θ∗.

constants:
Integers dmax ∈ {3, 4}, ch∗ ≥ 0;
Prepare the set Cld(i) of the indices of children of a vertex vi
the index prt(i) of the parent of a non-root vertex vi, and
the set Dst(h) of indices i such that the height of a vertex vi is h
in the rooted tree T(2, dmax − 1, ch∗);

variables:
u(s, i) ∈ {0, 1}, s ∈ [1, s∗], i ∈ [1, ntree]: u(s, i) represents vertex us,i
(u(s, i) = 1⇔ vertex us,i is used in H and edge e′s,i (i ≥ 2) is used in H);
v(t, i) ∈ {0, 1}, t ∈ [1, t∗], i ∈ [1, ntree]: v(t, i) represents vertex vt,i
(v(t, i) = 1⇔ vertex vt,i is used in H and edge et,i (i ≥ 2) is used in H);
e(t) ∈ {0, 1}, t ∈ [1, t∗ + 1]: e(t) represents edge et = vt−1,1vt,i,
where e1,1 and et∗+1,1 are fictitious edges (e(t) = 1⇔ edge et is used in H);

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 22 of 30

constraints:

u(s, 1) = 1, s ∈ [1, s∗], (A31)

dmax · u(t, i) ≥ ∑
j∈Cld(i)

u(t, j), t ∈ [1, cs∗], i ∈ [2, nin], (A32)

v(t, 1) = 1, t ∈ [1, t∗], (A33)

dmax · v(t, i) ≥ ∑
j∈Cld(i)

v(t, j), t ∈ [1, cs∗], i ∈ [2, nin], (A34)

∑
s∈[1,s∗],i∈[1,ntree]

u(s, i) + ∑
t∈[1,t∗],i∈[1,ntree]

v(t, i) = n∗, (A35)

∑
s∈[1,s∗],i∈Dst(ch∗)

u(s, i) + ∑
t∈[1,t∗],i∈Dst(ch∗)

v(t, i) ≥ 1, (A36)

e(1) = e(t∗ + 1) = 0, (A37)

e(t + 1) + ∑
s∈[1,s∗]

e(t, s) = 1, t ∈ [1, t∗], (A38)

e(t) + ∑
s∈[1,s∗]

e(s, t) = 1, t ∈ [1, t∗], (A39)

c∗ ≥ χ(1) ≥ χ(2) ≥ · · · ≥ χ(t∗) ≥ 1, (A40)

e(t + 1) ≥ 1 + χ(t + 1)− χ(t), t ∈ [1, t∗ − 1], (A41)

c∗ · (1− e(t + 1)) ≥ χ(t)− χ(t + 1), t ∈ [1, t∗ − 1]. (A42)

Appendix A.5. Assigning Multiplicity

We prepare an integer variable β̃(e) or β̂(e) for each edge e in the (t∗, ch∗, dmax)-tree-extension of
the scheme graph to denote the multiplicity of e in a selected graph H and include necessary constraints
for the variables to satisfy in H.

variables:
β̃(i) ∈ [0, 3], i ∈ E1 ∪ E3: β̃(i) represents the multiplicity of edge ai,
where β̃(i) = 0 if edge ai is not in H;
β̃(p, i) ∈ [0, 3], p ∈ [1, cs∗], i ∈ [2, ntree]: β̃(p, i) with p ≤ s∗ (resp., p > s∗) represents
the multiplicity of edge e′p,i (resp., ep−s∗ ,i);

β̃(t, 1) ∈ [0, 3], t ∈ [1, t∗ + 1]: β̃(t, 1) represents the multiplicity of edge et;
β̂(s, t) ∈ [0, 3], s ∈ [1, s∗], t ∈ [1, t∗]: β̂(s, t) represents the multiplicity of edge us,1vt,1;

constraints:

a(i) = 1, i ∈ E3, (A43)

a(i) ≤ β̃(i) ≤ 3a(i), i ∈ E1 ∪ E3, (A44)

u(s, i) ≤ β̃(s, i) ≤ 3u(s, i), s ∈ [1, s∗], i ∈ [2, ntree], (A45)

v(t, i) ≤ β̃(s∗ + t, i) ≤ 3v(t, i), t ∈ [1, t∗], i ∈ [2, ntree], (A46)

e(t) ≤ β̃(t, 1) ≤ 3e(t), t ∈ [1, t∗ + 1], (A47)

e(s, t) + e(t, s) ≤ β̂(s, t) ≤ 3e(s, t) + 3e(t, s), s ∈ [1, s∗], t ∈ [1, t∗]. (A48)

Appendix A.6. Assigning Chemical Elements and Valence Condition

We include constraints so that each vertex v in a selected graph H satisfies the valence condition;
i.e., ∑uv∈E(H) β(uv) ≤ val(α(u)). With these constraints, a rank-2 chemical graph G = (H, α, β) on a
selected subgraph H will be constructed.

constants:
A set Λ ∪ {ε} of chemical elements, where ε denotes null;

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 23 of 30

A coding [a], a ∈ Λ ∪ {ε} such that [ε] = 0; [a] ≥ 1, a ∈ Λ; and [a] 6= [b] if a 6= b;
Let [Λ] and [Λ ∪ {ε}] denote {[a] | a ∈ Λ} and {[a] | a ∈ Λ ∪ {ε}}, respectively;
A valence function: val : Λ→ [1, 4];

variables:
α̃(p, i) ∈ [Λ ∪ {ε}], p ∈ [1, cs∗], i ∈ [1, ntree]:
α̃(p, i) with p ≤ s∗ (resp., p > s∗) represents α(up,i) (resp., α(vp−s∗ ,i));
δα(p, i, a) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [1, ntree], a ∈ Λ ∪ {ε}:
δα(p, i, a) = 1⇔ α(up,i) = a for p ≤ s∗ and α(vp−s∗ ,i) = a for p > s∗;
δ

β̃
(i, k) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ E1 ∪ E3, k ∈ [0, 3]:

δ
β̃
(i, k) = 1⇔ the multiplicity of edge ai in H is k;

δ
β̃
(p, i, k) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], k ∈ [0, 3]:

δ
β̃
(p, i, k) = 1⇔ the multiplicity of edge e′p,i, p ≤ s∗ (or ep−s∗ ,i, p > s∗) in H is k;

δ
β̃
(t, 1, k) ∈ {0, 1}, t ∈ [1, t∗ + 1], k ∈ [0, 3]:

δ
β̃
(t, 1, k) = 1⇔ the multiplicity of edge et in H is k;

δ
β̂
(s, t, k) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], k ∈ [0, 3]:

δ
β̂
(s, t, k) = 1⇔ the multiplicity of edge us,1vt,1 in H is k;

constraints:

∑
a∈Λ∪{ε}

δα(p, i, a) = 1, p ∈ [1, cs∗], i ∈ [1, ntree], (A49)

∑
a∈Λ∪{ε}

[a] · δα(p, i, a) = α̃(p, i), p ∈ [1, cs∗], i ∈ [1, ntree], (A50)

∑
k∈[0,3]

δ
β̃
(i, k) = 1, i ∈ E1 ∪ E3, (A51)

∑
k∈[1,3]

k · δ
β̃
(i, k) = β̃(i), i ∈ E1 ∪ E3, (A52)

∑
k∈[0,3]

δ
β̃
(p, i, k) = 1, p ∈ [1, cs∗], i ∈ [2, ntree], (A53)

∑
k∈[1,3]

k · δ
β̃
(p, i, k) = β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A54)

∑
k∈[0,3]

δ
β̃
(t, 1, k) = 1, t ∈ [1, t∗ + 1], (A55)

∑
k∈[1,3]

k · δ
β̃
(t, 1, k) = β̃(t, 1), t ∈ [1, t∗ + 1], (A56)

∑
k∈[0,3]

δ
β̂
(s, t, k) = 1, s ∈ [1, s∗], t ∈ [1, t∗], (A57)

∑
k∈[0,3]

kδ
β̂
(s, t, k) = β̂(s, t), s ∈ [1, s∗], t ∈ [1, t∗], (A58)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 24 of 30

∑
i∈E1,3(s)

β̃(i) + ∑
t∈[1,t∗]

β̂(s, t)

+ ∑
j∈Cld(1)

β̃(s, j) ≤ ∑
a∈Λ

val(a) · δα(s, 1, a), s ∈ [1, s∗], (A59)

∑
s∈[1,s∗]

β̂(s, t) + β̃(t, 1) + β̃(t + 1, 1)

+ ∑
j∈Cld(1)

β̃(s∗ + t, j) ≤ ∑
a∈Λ

val(a) · δα(s∗ + t, 1, a), t ∈ [1, t∗], (A60)

β̃(p, i) + ∑
j∈Cld(i)

β̃(p, j) ≤ ∑
a∈Λ

val(a) · δα(p, i, a), p ∈ [1, cs∗], i ∈ [2, ntree]. (A61)

Appendix A.7. Descriptors for Mass, the Numbers of Elements and Bonds

We include constraints to compute descriptors ms(G) ceco
a (G), cenc

a (G) (a ∈ Λ), bk(G) (k ∈ [2, 3]) and
nH(G) according to the definitions in Section 2.1.2.

constants:
A function mass∗ : Λ→ Z; Let mass(a) denote the observed mass of a chemical element a ∈ Λ, and
define mass∗(a) = b10 ·mass(a)c;

variables:
ceco(a) ∈ [0, n∗], a ∈ Λ;
cenc(a) ∈ [0, n∗], a ∈ Λ;
Mass ∈ Z;
bco(k) ∈ [0, 2n∗], k ∈ [1, 3];
bnc(k) ∈ [0, 2n∗], k ∈ [1, 3];
nH ∈ [0, 4n∗]: the number of hydrogen atoms to be included in G;

constraints:

∑
p∈[1,cs∗]

δα(p, 1, a) = ceco(a), a ∈ Λ, (A62)

∑
p∈[1,cs∗],i∈[2,ntree]

δα(p, i, a) = cenc(a), a ∈ Λ, (A63)

∑
a∈Λ

mass∗(a)(ceco(a) + cenc(a)) = Mass, (A64)

∑
i∈E1∪E3

δ
β̃
(i, k) + ∑

s∈[1,s∗],t∈[1,t∗]
δ

β̂
(s, t, k)

+ ∑
t∈[2,t∗]

δ
β̃
(t, 1, k) = bco(k), k ∈ [1, 3], (A65)

∑
p∈[1,cs∗],i∈[2,ntree]

δ
β̃
(p, i, k) = bnc(k), k ∈ [1, 3], (A66)

∑
a∈Λ

val(a)(ceco(a) + cenc(a))

−2(n∗ + 1 + bco(2) + bnc(2) + 2bco(3) + 2bnc(3)) = nH. (A67)

Appendix A.8. Descriptor for the Number of Specified Degree

We include constraints to compute descriptors dgi(G) (i ∈ [1, 4]) according to the definitions in
Section 2.1.2. We also add constraints so that the maximum degree of a non-core vertex in H is at most
3 (resp., equal to 4) when dmax = 3 (resp., dmax = 4).

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 25 of 30

variables:
deg(p, i) ∈ [0, 4], p ∈ [1, cs∗], i ∈ [1, ntree]:
deg(p, i) represents degH(up,i) for p ≤ s∗ or degH(vp−s∗ ,i) for p > s∗;
δdeg(p, i, d) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [1, ntree], d ∈ [0, 4]:
δdeg(p, i, d) = 1⇔ deg(p, i) = d;
dg(d) ∈ [0, n∗], d ∈ [1, 4];

constraints:

∑
i∈E1,3(s)

a(i)

+ ∑
t∈[1,t∗]

(e(s, t) + e(t, s)) + ∑
j∈Cld(1)

u(s, j) = deg(s, 1), s ∈ [1, s∗], (A68)

u(s, i) + ∑
j∈Cld(i)

u(s, j) = deg(s, i), s ∈ [1, s∗], i ∈ [2, ntree], (A69)

2 + ∑
j∈Cld(1)

v(t, j) = deg(s∗ + t, 1), t ∈ [1, t∗], (A70)

v(t, i) + ∑
j∈Cld(i)

v(t, j) = deg(s∗ + t, i), t ∈ [1, t∗], i ∈ [2, ntree], (A71)

∑
d∈[0,4]

δdeg(p, i, d) = 1, p ∈ [1, cs∗], i ∈ [1, ntree], (A72)

∑
d∈[1,4]

d · δdeg(p, i, d) = deg(p, i), p ∈ [1, cs∗], i ∈ [1, ntree], (A73)

∑
p∈[1,cs∗],i∈[1,ntree]

δdeg(p, i, d) = dg(d), d ∈ [1, 4], (A74)

∑
p∈[1,cs∗],i∈[2,ntree]

δdeg(p, i, 4) ≥ 1 (resp., = 0) when dmax = 4 (resp., = 3). (A75)

Appendix A.9. Descriptor for the Number of Adjacency-Configurations

We include constraints to compute descriptors acco
γ (G) and acnc

γ (G) (γ = (a, b, k) ∈ Γ) according to
the definitions in Section 2.1.2.

constants:
A set Γ = Γ< ∪ Γ= ∪ Γ> of proper tuples (a, b, k) ∈ Λ×Λ× [1, 3];
The set Γ0 = {(a, b, 0) | a, b ∈ Λ ∪ {ε}};

variables:
δτ(i, γ) ∈ {0, 1}, i ∈ E1 ∪ E3, γ ∈ Γ ∪ Γ0:
δτ(i, γ) = 1⇔ edge ai is assigned tuple γ; i.e., γ = (α̃(tail(i), 1), α̃(head(i), 1), β̃(i));
δτ(t, 1, γ) ∈ {0, 1}, t ∈ [2, t∗], γ ∈ Γ ∪ Γ0:
δτ(t, 1, γ) = 1⇔ edge et is assigned tuple γ; i.e., γ = (α̃(s∗ + t− 1, 1), α̃(s∗ + t, 1), β̃(t, 1));
δτ(t, i, γ) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], γ ∈ Γ ∪ Γ0:
δτ(t, i, γ) = 1⇔ edge e′p,i, p ≤ s∗ (or ep−s∗ ,i, p > s∗) is assigned tuple γ; i.e.,
γ = (α̃(p, prt(i)), α̃(p, i), β̃(p, i));
δτ̂(s, t, γ) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], γ ∈ Γ ∪ Γ0:
δτ̂(s, t, γ) = 1⇔ edge us,1vt,1 is assigned tuple γ; i.e., γ = (α̃(s, 1), α̃(s∗ + t, 1), β̂(s, t));
acco(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=;
acnc(γ) ∈ [0, n∗], γ ∈ Γ< ∪ Γ=;

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 26 of 30

constraints:

∑
γ∈Γ∪Γ0

δτ(i, γ) = 1, i ∈ E1 ∪ E3, (A76)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ(i, (a, b, k)) = α̃(tail(i), 1), i ∈ E1 ∪ E3, (A77)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ(i, (a, b, k)) = α̃(head(i), 1), i ∈ E1 ∪ E3, (A78)

∑
(a,b,k)∈Γ∪Γ0

k · δτ(i, (a, b, k)) = β̃(i), i ∈ E1 ∪ E3, (A79)

∑
γ∈Γ∪Γ0

δτ(t, 1, γ) = 1, t ∈ [2, t∗], (A80)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ(t, 1, (a, b, k)) = α̃(s∗ + t− 1, 1), t ∈ [2, t∗], (A81)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ(t, 1, (a, b, k)) = α̃(s∗ + t, 1), t ∈ [2, t∗], (A82)

∑
(a,b,k)∈Γ∪Γ0

k · δτ(t, 1, (a, b, k)) = β̃(t, 1), t ∈ [2, t∗], (A83)

∑
γ∈Γ∪Γ0

δτ(p, i, γ) = 1, p ∈ [1, cs∗], i ∈ [2, ntree], (A84)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ(p, i, (a, b, k)) = α̃(p, prt(i)), p ∈ [1, cs∗], i ∈ [2, ntree], (A85)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ(p, i, (a, b, k)) = α̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A86)

∑
(a,b,k)∈Γ∪Γ0

k · δτ(p, i, (a, b, k)) = β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A87)

∑
γ∈Γ∪Γ0

δτ̂(s, t, γ) = 1, s ∈ [1, s∗], t ∈ [1, t∗], (A88)

∑
(a,b,k)∈Γ∪Γ0

[a]δτ̂(s, t, (a, b, k)) = α̃(s, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A89)

∑
(a,b,k)∈Γ∪Γ0

[b]δτ̂(s, t, (a, b, k)) = α̃(s∗ + t, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A90)

∑
(a,b,k)∈Γ∪Γ0

k · δτ̂(s, t, (a, b, k)) = β̂(s, t), s ∈ [1, s∗], t ∈ [1, t∗], (A91)

∑
i∈E1∪E3

(δτ(i, γ) + δτ(i, γ))

+ ∑
s∈[1,s∗],t∈[1,t∗]

(δτ̂(s, t, γ) + δτ̂(s, t, γ))

+ ∑
t∈[2,t∗]

(δτ(t, 1, γ) + δτ(t, 1, γ)) = acco(γ), γ ∈ Γ<, (A92)

∑
i∈E1∪E3

δτ(i, γ) + ∑
s∈[1,s∗],t∈[1,t∗]

δτ̂(s, t, γ)

+ ∑
t∈[2,t∗]

δτ(t, 1, γ) = acco(γ), γ ∈ Γ=, (A93)

∑
p∈[1,cs∗],i∈[2,ntree]

(δτ(p, i, γ) + δτ(p, i, γ)) = acnc(γ), γ ∈ Γ<, (A94)

∑
p∈[1,cs∗],i∈[2,ntree]

δτ(p, i, γ) = acnc(γ), γ ∈ Γ=. (A95)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 27 of 30

Appendix A.10. Descriptor for 1-Path Connectivity

We include constraints to compute descriptor κ1(G) according to the definition.

variables:
A real variable κ1 ≥ 0;
δdd(i, d, d′, µ) ∈ {0, 1}, i ∈ E1 ∪ E3, d, d′ ∈ [0, 4], µ ∈ {0, 1}:
δdd(i, d, d′, µ) = 1⇔ degH(utail(i)) = d and degH(uhead(i)) = d′,
where ai is in H if and only if µ = 1;
δdd(t, 1, d, d′, µ) ∈ {0, 1}, t ∈ [2, t∗], d, d′ ∈ [0, 4]: δdd(t, 1, d, d′, µ) = 1⇔
degH(vt−1,1) = d and degH(vt,1) = d′ where et is in H if and only if µ = 1;
δdd(p, i, d, d′, µ) ∈ {0, 1}, p ∈ [1, cs∗], i ∈ [2, ntree], d, d′ ∈ [0, 4]: δdd(p, i, d, d′, µ) = 1⇔
degH(up,prt(i)) = d and degH(up,i) = d′ for p ≤ s∗

(or degH(vp−s∗ ,prt(i)) = d and degH(vp−s∗ ,i) = d′ for p > s∗),
where edge e′p,i or ep−s∗ ,i is in H if and only if µ = 1;
δd̂d(s, t, d, d′, µ) ∈ {0, 1}, s ∈ [1, s∗], t ∈ [1, t∗], d, d′ ∈ [0, 4], µ ∈ {0, 1}:
δd̂d(s, t, d, d′, 1) = 1⇔ degH(us,1) = d and degH(vt,1) = d′,
where us,1vt,1 is in H if and only if µ = 1;

constraints:

∑
d,d′∈[0,4],µ∈{0,1}

δdd(i, d, d′, µ) = 1, i ∈ E1 ∪ E3, (A96)

∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(i, d, d′, µ) = a(i), i ∈ E1 ∪ E3, (A97)

∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(i, d, d′, µ) = deg(tail(i), 1), i ∈ E1 ∪ E3, (A98)

∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(i, d, d′, µ) = deg(head(i), 1), i ∈ E1 ∪ E3, (A99)

∑
d,d′∈[0,4],µ∈{0,1}

δdd(t, 1, d, d′, µ) = 1, t ∈ [2, t∗], (A100)

∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(t, 1, d, d′, µ) = e(t), t ∈ [2, t∗], (A101)

∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(t, 1, d, d′, µ) = deg(s∗ + t− 1, 1), t ∈ [2, t∗], (A102)

∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(t, 1, d, d′, µ) = deg(s∗ + t, 1), t ∈ [2, t∗], (A103)

∑
d,d′∈[0,4],µ∈{0,1}

δdd(p, i, d, d′, µ) = 1, p ∈ [1, cs∗], i ∈ [2, ntree], (A104)

∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(s, i, d, d′, µ) = u(s, i), s ∈ [1, s∗], i ∈ [2, ntree], (A105)

∑
d,d′∈[0,4],µ∈{0,1}

µ · δdd(s
∗ + t, i, d, d′, µ) = v(t, i), t ∈ [1, t∗], i ∈ [2, ntree], (A106)

∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δdd(p, i, d, d′, µ) = deg(p, prt(i)), p ∈ [1, cs∗], i ∈ [2, ntree], (A107)

∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δdd(t, i, d, d′, µ) = deg(p, i), p ∈ [1, cs∗], i ∈ [2, ntree], (A108)

∑
d,d′∈[1,4],µ∈{0,1}

δd̂d(s, t, d, d′, µ) = 1, s ∈ [1, s∗], t ∈ [1, t∗], (A109)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 28 of 30

∑
d,d′∈[1,4],µ∈{0,1}

µ · δd̂d(s, t, d, d′, µ) = e(s, t) + e(t, s), s ∈ [1, s∗], t ∈ [1, t∗], (A110)

∑
d∈[1,4],d′∈[0,4],µ∈{0,1}

d · δd̂d(s, t, d, d′, µ) = deg(s, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A111)

∑
d∈[0,4],d′∈[1,4],µ∈{0,1}

d′ · δd̂d(s, t, d, d′, µ) = deg(s∗ + t, 1), s ∈ [1, s∗], t ∈ [1, t∗], (A112)

(1− ξ)κ1 ≤ ∑
i∈E1∪E3,d,d′∈[1,4]

δdd(i, d, d′, 1)/
√

dd′

+ ∑
t∈[2,t∗],d,d′∈[1,4]

δdd(t, 1, d, d′, 1)/
√

dd′

+ ∑
p∈[1,cs∗],i∈[2,ntree],

d,d′∈[1,4]

δdd(p, i, d, d′, 1)/
√

dd′

+ ∑
s∈[1,s∗],t∈[1,t∗],

d,d′∈[1,4]

δd̂d(s, t, d, d′, 1)/
√

dd′ ≤ (1 + ξ)κ1, (A113)

where a tolerance ξ is set to be 0.001.

Appendix A.11. Constraints for Left-Heavy Trees

To reduce the number of rank-2 chemical graphs G that are isomorphic to each other, we include
in C2 some additional constraints so that each subtree T′ selected from tree Sp or Tt satisfies the
following property:

for any two siblings u(p, j1) and u(p, j2), j1 < j2 in T′, the number of descendants of u(p, j1) is
not smaller than that of u(p, j2).

For this, we define dsn(p, i) to be the number of descendants of a vertex up,i (or vp−s∗ ,i) in a selected
graph H and η(p, i) , 21|Λ|dsn(p, i) + 20α̃(p, i) + 4deg(p, i) + β̃(p, i), p ∈ [1, cs∗], i ∈ [2, ntree]. We include
constraints that compute the values of dsn recursively.

variables:
dsn(p, i) ∈ [1, ntree], p ∈ [1, cs∗], i ∈ [1, ntree]: the number of descendants of vertex up,i

in tree Sp for p ≤ s∗ and vertex vp−s∗ ,i in tree Tp−s∗ for p > s∗;
constraints:

dsn(s, i) ≥ ∑
j∈Cld(i)

dsn(s, j) + u(s, i), s ∈ [1, s∗], i ∈ [1, ntree], (A114)

dsn(s∗ + t, i) ≥ ∑
j∈Cld(i)

dsn(s∗ + t, j) + v(t, i), t ∈ [s∗ + 1, cs∗], i ∈ [1, ntree], (A115)

∑
p∈[1,cs∗]

dsn(p, 1) ≤ n∗, (A116)

η(p, j1) ≥ η(p, j2), p ∈ [1, cs∗], j1, j2 ∈ Cld(1), j1 < j2, (A117)

η(p, j1) ≥ η(p, j2), p ∈ [1, cs∗], i ∈ [2, nin], j1, j2 ∈ Cld(i),

j1 < j2, for dmax = 3, (A118)

η(p, j1) ≥ η(p, j2) ≥ η(p, j3), p ∈ [1, cs∗], i ∈ [2, nin], j1, j2, j3 ∈ Cld(i),

j1 < j2 < j3, for dmax = 4. (A119)

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Algorithms 2020, 13, 124 29 of 30

References

1. Miyao, T.; Kaneko, H.; Funatsu, K. Inverse QSPR/QSAR analysis for chemical structure generation
(from y to x). J. Chem. Inf. Model. 2016, 56, 286–299. [CrossRef] [PubMed]

2. Skvortsova, M.I.; Baskin, I.I.; Slovokhotova, O.L.; Palyulin, V.A.; Zefirov, N.S. Inverse problem in
QSAR/QSPR studies for the case of topological indices characterizing molecular shape (Kier indices).
J. Chem. Inf. Comput. Sci. 1993, 33, 630–634. [CrossRef]

3. Ikebata, H.; Hongo, K.; Isomura, T.; Maezono, R.; Yoshida, R. Bayesian molecular design with a chemical
language model. J. Comput. Aided Mol. Des. 2017, 31, 379–391. [CrossRef] [PubMed]

4. Rupakheti, C.; Virshup, A.; Yang, W.; Beratan, D.N. Strategy to discover diverse optimal molecules in the
small molecule universe. J. Chem. Inf. Model. 2015, 55, 529–537. [CrossRef] [PubMed]

5. Fujiwara, H.; Wang, J.; Zhao, L.; Nagamochi, H.; Akutsu, T. Enumerating treelike chemical graphs with
given path frequency. J. Chem. Inf. Model. 2008, 48, 1345–1357. [CrossRef] [PubMed]

6. Kerber, A.; Laue, R.; Grüner, T.; Meringer, M. MOLGEN 4.0. Match Commun. Math. Comput. Chem. 1998,
37, 205–208.

7. Li, J.; Nagamochi, H.; Akutsu, T. Enumerating substituted benzene isomers of tree-like chemical graphs.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2016, 15, 633–646. [CrossRef] [PubMed]

8. Reymond, J.L. The chemical space project. Accounts Chem. Res. 2015, 48, 722–730. [CrossRef] [PubMed]
9. Akutsu, T.; Fukagawa, D.; Jansson, J.; Sadakane, K. Inferring a Graph From Path Frequency. Discret. Appl. Math.

2012, 160, 1416–1428. [CrossRef]
10. Nagamochi, H. A detachment algorithm for inferring a graph from path frequency. Algorithmica 2009,

53, 207–224. [CrossRef]
11. Fazekas, S.Z.; Ito, H.; Okuno, Y.; Seki, S.; Taneishi, K. On computational complexity of graph inference from

counting. Nat. Comput. 2013, 12, 589–603. [CrossRef]
12. Bohacek, R.S.; McMartin, C.; Guida, W.C. The art and practice of structure-based drug design: A molecular

modeling perspective. Med. Res. Rev. 1996, 16, 3–50. [CrossRef]
13. Gómez-Bombarelli, R.; Wei, J.N.; Duvenaud, D.; Hernández-Lobato, J.M.; Sánchez-Lengeling, B.;

Sheberla, D.; Aguilera-Iparraguirre, J.; Hirzel, T.D.; Adams, R.P.; Aspuru-Guzik, A. Automatic chemical
design using a data-driven continuous representation of molecules. ACS Cent. Sci. 2018, 4, 268–276.
[CrossRef] [PubMed]

14. Segler, M.H.S.; Kogej, T.; Tyrchan, C.; Waller, M.P. Generating focused molecule libraries for drug discovery
with recurrent neural networks. ACS Cent. Sci. 2017, 4, 120–131. [CrossRef] [PubMed]

15. Yang, X.; Zhang, J.; Yoshizoe, K.; Terayama, K.; Tsuda, K. ChemTS: an efficient python library for de novo
molecular generation. Sci. Technol. Adv. Mater. 2017, 18, 972–976. [CrossRef] [PubMed]

16. Kusner, M.J.; Paige, B.; Hernández-Lobato, J.M. Grammar variational autoencoder. In Proceedings of
the 34th International Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Volume 70,
pp. 1945–1954.

17. Akutsu, T.; Nagamochi, H. A Mixed Integer Linear Programming Formulation to Artificial Neural Networks.
In Proceedings of the 2nd International Conference on Information Science and Systems, Tokyo, Japan,
16–19 March 2019; pp. 215–220.

18. Azam, N.A.; Chiewvanichakorn, R.; Zhang, F.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. A method
for the inverse QSAR/QSPR based on artificial neural networks and mixed integer linear programming.
In Proceedings of the 13th International Joint Conference on Biomedical Engineering Systems and
Technologies, Valletta, Malta, 24–26 February 2020; Volume 3, pp. 101–108.

19. Chiewvanichakorn, R.; Wang, C.; Zhang, Z.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. A method
for the inverse QSAR/QSPR based on artificial neural networks and mixed integer linear programming.
In Proceedings of the ICBBB2020, Kyoto, Japan, 19–22 January 2020.

20. Zhang, F.; Zhu, J.; Chiewvanichakorn, R.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. A new integer linear
programming formulation to the inverse QSAR/QSPR for acyclic chemical compounds using skeleton trees.
In Proceedings of the 33rd International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, Kitakyushu, Japan, 22–25 September 2020.

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1021/acs.jcim.5b00628
http://www.ncbi.nlm.nih.gov/pubmed/26818135
http://dx.doi.org/10.1021/ci00014a017
http://dx.doi.org/10.1007/s10822-016-0008-z
http://www.ncbi.nlm.nih.gov/pubmed/28281211
http://dx.doi.org/10.1021/ci500749q
http://www.ncbi.nlm.nih.gov/pubmed/25594586
http://dx.doi.org/10.1021/ci700385a
http://www.ncbi.nlm.nih.gov/pubmed/18588284
http://dx.doi.org/10.1109/TCBB.2016.2628888
http://www.ncbi.nlm.nih.gov/pubmed/28113952
http://dx.doi.org/10.1021/ar500432k
http://www.ncbi.nlm.nih.gov/pubmed/25687211
http://dx.doi.org/10.1016/j.dam.2012.02.002
http://dx.doi.org/10.1007/s00453-008-9184-0
http://dx.doi.org/10.1007/s11047-012-9349-2
http://dx.doi.org/10.1002/(SICI)1098-1128(199601)16:1<3::AID-MED1>3.0.CO;2-6
http://dx.doi.org/10.1021/acscentsci.7b00572
http://www.ncbi.nlm.nih.gov/pubmed/29532027
http://dx.doi.org/10.1021/acscentsci.7b00512
http://www.ncbi.nlm.nih.gov/pubmed/29392184
http://dx.doi.org/10.1080/14686996.2017.1401424
http://www.ncbi.nlm.nih.gov/pubmed/29435094

Algorithms 2020, 13, 124 30 of 30

21. Ito, R.; Azam, N.A.; Wang, C.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. A novel method for the
inverse QSAR/QSPR to monocyclic chemical compounds based on artificial neural networks and integer
programming, 2020. In Proceedings of the BIOCOMP 2020, Las Vegas, NV, USA, 27–30 July 2020.

22. Suzuki, M.; Nagamochi, H.; Akutsu, T. Efficient enumeration of monocyclic chemical graphs with given
path frequencies. J. Cheminform. 2014, 6, 31. [CrossRef] [PubMed]

23. Tezuka, Y.; Oike, H. Topological polymer chemistry. Prog. Polym. Sci. 2002, 27, 1069–1122. [CrossRef]
24. Netzeva, T.I.; Worth, A.P.; Aldenberg, T.; Benigni, R.; Cronin, M.T.; Gramatica, P.; Jaworska, J.S.; Kahn, S.;

Klopman, G.; Marchant, C.A.; et al. Current status of methods for defining the applicability domain of
(quantitative) structure-activity relationships: The report and recommendations of ECVAM workshop 52.
Altern. Lab. Anim. 2005, 33, 155–173. [CrossRef] [PubMed]

25. Tamura, Y.; Nishiyama, Y.; Wang, C.; Sun, Y.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. Enumerating chemical
graphs with mono-block 2-augmented tree structure from given upper and lower bounds on path frequencies.
arXiv 2020, arXiv:2004.06367.

26. Yamashita, K.; Masui, R.; Zhou, X.; Wang, C.; Shurbevski, A.; Nagamochi, H.; Akutsu, T. Enumerating chemical
graphs with two disjoint cycles satisfying given path frequency specifications. arXiv 2020, arXiv:2004.08381.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

A Self-archived copy in
Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

http://dx.doi.org/10.1186/1758-2946-6-31
http://www.ncbi.nlm.nih.gov/pubmed/24955135
http://dx.doi.org/10.1016/S0079-6700(02)00009-6
http://dx.doi.org/10.1177/026119290503300209
http://www.ncbi.nlm.nih.gov/pubmed/16180989
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Preliminary
	Multigraphs and Graphs
	Modeling of Chemical Compounds

	A Method for Inferring Chemical Graphs
	Representing Rank-2 Chemical Graphs
	Scheme Graphs and Tree-Extensions
	MILPs for Rank-2 Chemical Graphs

	Results
	Discussion
	All Constraints in an MILP Formulation for Rank-2 Chemical Graphs
	Applicability Domain
	Construction of Scheme Graph and Tree-Extension
	Specification for Chemical Graphs with Rank 2
	Selecting A Subgraph
	Assigning Multiplicity
	Assigning Chemical Elements and Valence Condition
	Descriptors for Mass, the Numbers of Elements and Bonds
	Descriptor for the Number of Specified Degree
	Descriptor for the Number of Adjacency-Configurations
	Descriptor for 1-Path Connectivity
	Constraints for Left-Heavy Trees

	References

