8,152 research outputs found

    Invariant set of weight of perceptron trained by perceptron training algorithm

    Get PDF
    In this paper, an invariant set of the weight of the perceptron trained by the perceptron training algorithm is defined and characterized. The dynamic range of the steady state values of the weight of the perceptron can be evaluated via finding the dynamic range of the weight of the perceptron inside the largest invariant set. Also, the necessary and sufficient condition for the forward dynamics of the weight of the perceptron to be injective as well as the condition for the invariant set of the weight of the perceptron to be attractive is derived

    Herding as a Learning System with Edge-of-Chaos Dynamics

    Full text link
    Herding defines a deterministic dynamical system at the edge of chaos. It generates a sequence of model states and parameters by alternating parameter perturbations with state maximizations, where the sequence of states can be interpreted as "samples" from an associated MRF model. Herding differs from maximum likelihood estimation in that the sequence of parameters does not converge to a fixed point and differs from an MCMC posterior sampling approach in that the sequence of states is generated deterministically. Herding may be interpreted as a"perturb and map" method where the parameter perturbations are generated using a deterministic nonlinear dynamical system rather than randomly from a Gumbel distribution. This chapter studies the distinct statistical characteristics of the herding algorithm and shows that the fast convergence rate of the controlled moments may be attributed to edge of chaos dynamics. The herding algorithm can also be generalized to models with latent variables and to a discriminative learning setting. The perceptron cycling theorem ensures that the fast moment matching property is preserved in the more general framework

    Finite size scaling of the bayesian perceptron

    Full text link
    We study numerically the properties of the bayesian perceptron through a gradient descent on the optimal cost function. The theoretical distribution of stabilities is deduced. It predicts that the optimal generalizer lies close to the boundary of the space of (error-free) solutions. The numerical simulations are in good agreement with the theoretical distribution. The extrapolation of the generalization error to infinite input space size agrees with the theoretical results. Finite size corrections are negative and exhibit two different scaling regimes, depending on the training set size. The variance of the generalization error vanishes for N→∞N \rightarrow \infty confirming the property of self-averaging.Comment: RevTeX, 7 pages, 7 figures, submitted to Phys. Rev.
    • 

    corecore