25,701 research outputs found

    Multiresolution community detection for megascale networks by information-based replica correlations

    Full text link
    We use a Potts model community detection algorithm to accurately and quantitatively evaluate the hierarchical or multiresolution structure of a graph. Our multiresolution algorithm calculates correlations among multiple copies ("replicas") of the same graph over a range of resolutions. Significant multiresolution structures are identified by strongly correlated replicas. The average normalized mutual information, the variation of information, and other measures in principle give a quantitative estimate of the "best" resolutions and indicate the relative strength of the structures in the graph. Because the method is based on information comparisons, it can in principle be used with any community detection model that can examine multiple resolutions. Our approach may be extended to other optimization problems. As a local measure, our Potts model avoids the "resolution limit" that affects other popular models. With this model, our community detection algorithm has an accuracy that ranks among the best of currently available methods. Using it, we can examine graphs over 40 million nodes and more than one billion edges. We further report that the multiresolution variant of our algorithm can solve systems of at least 200000 nodes and 10 million edges on a single processor with exceptionally high accuracy. For typical cases, we find a super-linear scaling, O(L^{1.3}) for community detection and O(L^{1.3} log N) for the multiresolution algorithm where L is the number of edges and N is the number of nodes in the system.Comment: 19 pages, 14 figures, published version with minor change

    Geometry of the ergodic quotient reveals coherent structures in flows

    Full text link
    Dynamical systems that exhibit diverse behaviors can rarely be completely understood using a single approach. However, by identifying coherent structures in their state spaces, i.e., regions of uniform and simpler behavior, we could hope to study each of the structures separately and then form the understanding of the system as a whole. The method we present in this paper uses trajectory averages of scalar functions on the state space to: (a) identify invariant sets in the state space, (b) form coherent structures by aggregating invariant sets that are similar across multiple spatial scales. First, we construct the ergodic quotient, the object obtained by mapping trajectories to the space of trajectory averages of a function basis on the state space. Second, we endow the ergodic quotient with a metric structure that successfully captures how similar the invariant sets are in the state space. Finally, we parametrize the ergodic quotient using intrinsic diffusion modes on it. By segmenting the ergodic quotient based on the diffusion modes, we extract coherent features in the state space of the dynamical system. The algorithm is validated by analyzing the Arnold-Beltrami-Childress flow, which was the test-bed for alternative approaches: the Ulam's approximation of the transfer operator and the computation of Lagrangian Coherent Structures. Furthermore, we explain how the method extends the Poincar\'e map analysis for periodic flows. As a demonstration, we apply the method to a periodically-driven three-dimensional Hill's vortex flow, discovering unknown coherent structures in its state space. In the end, we discuss differences between the ergodic quotient and alternatives, propose a generalization to analysis of (quasi-)periodic structures, and lay out future research directions.Comment: Submitted to Elsevier Physica D: Nonlinear Phenomen

    Counting hypergraph matchings up to uniqueness threshold

    Get PDF
    We study the problem of approximately counting matchings in hypergraphs of bounded maximum degree and maximum size of hyperedges. With an activity parameter λ\lambda, each matching MM is assigned a weight λ∣M∣\lambda^{|M|}. The counting problem is formulated as computing a partition function that gives the sum of the weights of all matchings in a hypergraph. This problem unifies two extensively studied statistical physics models in approximate counting: the hardcore model (graph independent sets) and the monomer-dimer model (graph matchings). For this model, the critical activity λc=ddk(d−1)d+1\lambda_c= \frac{d^d}{k (d-1)^{d+1}} is the threshold for the uniqueness of Gibbs measures on the infinite (d+1)(d+1)-uniform (k+1)(k+1)-regular hypertree. Consider hypergraphs of maximum degree at most k+1k+1 and maximum size of hyperedges at most d+1d+1. We show that when λ<λc\lambda < \lambda_c, there is an FPTAS for computing the partition function; and when λ=λc\lambda = \lambda_c, there is a PTAS for computing the log-partition function. These algorithms are based on the decay of correlation (strong spatial mixing) property of Gibbs distributions. When λ>2λc\lambda > 2\lambda_c, there is no PRAS for the partition function or the log-partition function unless NP==RP. Towards obtaining a sharp transition of computational complexity of approximate counting, we study the local convergence from a sequence of finite hypergraphs to the infinite lattice with specified symmetry. We show a surprising connection between the local convergence and the reversibility of a natural random walk. This leads us to a barrier for the hardness result: The non-uniqueness of infinite Gibbs measure is not realizable by any finite gadgets

    Puzzles of Quasi-Finite Type, Zeta Functions and Symbolic Dynamics for Multi-Dimensional Maps

    Get PDF
    We introduce "puzzles of quasi-finite type" which are the counterparts of our subshifts of quasi-finite type (Invent. Math. 159 (2005)) in the setting of combinatorial puzzles as defined in complex dynamics. We are able to analyze these dynamics defined by entropy conditions rather completely, obtaining a complete classification with respect to large entropy measures and a description of their measures with maximum entropy and periodic orbits. These results can in particular be applied to entropy-expanding maps like (x,y)-->(1.8-x^2+sy,1.9-y^2+sx) for small s. We prove in particular the meromorphy of the Artin-Mazur zeta function on a large disk. This follows from a similar new result about strongly positively recurrent Markov shifts where the radius of meromorphy is lower bounded by an "entropy at infinity" of the graph.Comment: accepted by Annales de l'Institut Fourier, final revised versio
    • …
    corecore