630 research outputs found

    Full Issue

    Get PDF

    Decision making with both diversity supporting and opposing membership information

    Get PDF
    Online big data provides large amounts of decision information to decision makers, but supporting and opposing information are present simultaneously. Dual hesitant fuzzy sets (DHFSs) are useful models for exactly expressing the membership degree of both supporting and opposing information in decision making. However, the application of DHFSs requires an improved distance measure. This paper aims to improve distance measure models for DHFSs and apply the new distance models to generate a technique for order preference by similarity to an ideal solution (TOPSIS) method for multiple attribute decision making (MADM)

    Full Issue

    Get PDF

    Full Issue

    Get PDF

    Full Issue

    Get PDF

    New Trends in Neutrosophic Theory and Applications Volume II

    Get PDF
    Neutrosophic set has been derived from a new branch of philosophy, namely Neutrosophy. Neutrosophic set is capable of dealing with uncertainty, indeterminacy and inconsistent information. Neutrosophic set approaches are suitable to modeling problems with uncertainty, indeterminacy and inconsistent information in which human knowledge is necessary, and human evaluation is needed. Neutrosophic set theory was proposed in 1998 by Florentin Smarandache, who also developed the concept of single valued neutrosophic set, oriented towards real world scientific and engineering applications. Since then, the single valued neutrosophic set theory has been extensively studied in books and monographs introducing neutrosophic sets and its applications, by many authors around the world. Also, an international journal - Neutrosophic Sets and Systems started its journey in 2013. Single valued neutrosophic sets have found their way into several hybrid systems, such as neutrosophic soft set, rough neutrosophic set, neutrosophic bipolar set, neutrosophic expert set, rough bipolar neutrosophic set, neutrosophic hesitant fuzzy set, etc. Successful applications of single valued neutrosophic sets have been developed in multiple criteria and multiple attribute decision making. This second volume collects original research and application papers from different perspectives covering different areas of neutrosophic studies, such as decision making, graph theory, image processing, probability theory, topology, and some theoretical papers. This volume contains four sections: DECISION MAKING, NEUTROSOPHIC GRAPH THEORY, IMAGE PROCESSING, ALGEBRA AND OTHER PAPERS. First paper (Pu Ji, Peng-fei Cheng, Hongyu Zhang, Jianqiang Wang. Interval valued neutrosophic Bonferroni mean operators and the application in the selection of renewable energy) aims to construct selection approaches for renewable energy considering the interrelationships among criteria. To do that, Bonferroni mean (BM) and geometric BM (GBM) are employed

    Full Issue

    Get PDF

    An Extended TOPSIS Method for the Multiple Attribute Decision Making Problems Based on Interval Neutrosophic Set

    Get PDF
    The interval neutrosophic set (INS) can be easier to express the incomplete, indeterminate and inconsistent information, and TOPSIS is one of the most commonly used and effective method for multiple attribute decision making, however, in general, it can only process the attribute values with crisp numbers. In this paper, we have extended TOPSIS to INS, and with respect to the multiple attribute decision making problems in which the attribute weights are unknown and the attribute values take the form of INSs, we proposed an expanded TOPSIS method. Firstly, the definition of INS and the operational laws are given, and distance between INSs is defined. Then, the attribute weights are determined based on the Maximizing deviation method and an extended TOPSIS method is developed to rank the alternatives. Finally, an illustrative example is given to verify the developed approach and to demonstrate its practicality and effectiveness
    • ā€¦
    corecore