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Abstract: The motivation of this paper is to extend the concept of

Neutrosophic soft matrix (NSM) theory. Some basic definitions of

classical matrix theory in the parlance of neutrosophic soft set the-

ory have been presented with proper examples. Then, a theoretical

studies of some traditional operations of NSM have been developed.

Finally, a decision making theory has been proposed by developing

an appropriate solution algorithm, namely, score function algorithm

and it has been illustrated by suitable examples.

Keywords: Intuitionistic fuzzy soft matrix, Neutrosophic soft set, Neutrosophic soft matrix and different operators, Application in decision making.

1 Introduction

Researchers in economics, sociology, medical science, engineer-

ing, environment science and many other several fields deal daily

with the vague, imprecise and occasionally insufficient informa-

tion of modeling uncertain data. Such uncertainties are usually

handled with the help of the topics like probability, fuzzy sets

[1], intuitionistic fuzzy sets [2], interval mathematics, rough sets

etc. But, Molodtsov [3] has shown that each of the above topics

suffers from inherent difficulties possibly due to inadequacy of

their parametrization tool and there after, he initiated a novel con-

cept ‘soft set theory’ for modeling vagueness and uncertainties.

It is completely free from the parametrization inadequacy syn-

drome of different theories dealing with uncertainty. This makes

the theory very convenient, efficient and easily applicable in prac-

tice. Molodtsov [3] successfully applied several directions for the

applications of soft set theory, such as smoothness of functions,

game theory, operation research, Riemann integration, Perron in-

tegration and probability etc. In 2010, Cagman and Enginoglu [4]

introduced a new soft set based decision making method which

selects a set of optimum elements from the alternatives. Maji et

al. [5, 6] have done further research on soft set theory.

Presence of vagueness demanded ‘fuzzy soft set’ [7] to come

into picture. But satisfactory evaluation of membership values is

not always possible because of the insufficiency in the available

information situation. For that, Maji et al. [8, 9] have introduced

the notion ‘intuitionistic fuzzy soft set’ in 2001. Matrices play

an important role in the broad area of science and engineering.

Classical matrix theory sometimes fails to solve the problems in-

volving uncertainties. Hence, several authors proposed the ma-

trix representation of soft set, fuzzy soft set, intuitionistic fuzzy

soft set and applied these in certain decision making problems,

for instance Cagman and Enginoglu [10], Yong and Chenli [11],

Borah et al. [12], Neog and Sut [13], Broumi et al. [14], Mondal

and Roy [15], Chetia and Das [16], Basu et al. [17], Rajara-

jeswari and Dhanalakshmi [18].

Evaluation of non-membership values is also not always pos-

sible for the same reason as in case of membership values and

so, there exist an indeterministic part upon which hesitation sur-

vives. As a result, Smarandache [19, 20] has introduced the con-

cept of Neutrosophic Set (NS) which is a generalisation of clas-

sical sets, fuzzy set, intuitionistic fuzzy set etc. Later, Maji [21]

has introduced a combined concept Neutrosophic soft set (NSS).
Using this concept, several mathematicians have produced their

research works in different mathematical structures, for instance

Deli [22, 24], Broumi and Smarandache [25]. Later, this con-

cept has been modified by Deli and Broumi [26]. Accordingly,

Bera and Mahapatra [23, 27-31] introduce some view on alge-

braic structure on neutrosophic soft set. The development of de-

cision making algorithms over neutrosophic soft set theory are

seen in the literatures [32-37].

The present study aims to extend the NSM theory by develop-

ing the basic definitions of classical matrix theory and by estab-

lishing some results in NSS theory context. The organisation of

the paper is as following :

Section 2 deals some preliminary necessary definitions which

will be used in rest of this paper. In Section 3, the concept of

NSM has been discussed broadly with suitable examples. Then,

some traditional operators of NSM are proposed along with some

properties in Section 4. In Section 5, a decision making algo-

rithm has been developed and applied in two different situations.

Firstly, it has been adopted in a class room to select the best stu-

dent in an academic year and then in national security system to

emphasize the security management in five mega cities. This al-

gorithm is much more brief and simple rather than others. More-

over, a decision can be made with respect to a lot of parameters

concerning the fact easily by that. That is why, this algorithm is

more generous, we think. Finally, the conclusion of the present

work has been stated in Section 6.
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2 Preliminaries

In this section, we recall some necessary definitions related to

fuzzy set, intuitionistic fuzzy soft matrix, neutrosophic set, neu-

trosophic soft set, NSM for the sake of completeness.

2.1 Definition [28]

A binary operation ∗ : [0, 1] × [0, 1] → [0, 1] is continuous t -

norm if ∗ satisfies the following conditions:

(i) ∗ is commutative and associative.

(ii) ∗ is continuous.

(iii) a ∗ 1 = 1 ∗ a = a, ∀a ∈ [0, 1].
(iv) a ∗ b ≤ c ∗ d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous t-norm are a ∗ b = ab, a ∗ b =
min{a, b}, a ∗ b = max{a+ b− 1, 0}.

2.2 Definition [28]

A binary operation � : [0, 1] × [0, 1] → [0, 1] is continuous t -

conorm (s - norm) if � satisfies the following conditions :

(i) � is commutative and associative.

(ii) � is continuous.

(iii) a � 0 = 0 � a = a, ∀a ∈ [0, 1].
(iv) a � b ≤ c � d if a ≤ c, b ≤ d with a, b, c, d ∈ [0, 1].

A few examples of continuous s-norm are a � b = a + b −
ab, a � b = max{a, b}, a � b = min{a+ b, 1}.

2.3 Definition [16]

Let U be an initial universe, E be the set of parameters and A ⊆
E. Let, (fA, E) be an intuitionistic fuzzy soft set over U . Then

a subset of U × E is uniquely defined by RA = {(u, e) : e ∈
A, u ∈ fA(e)} which is called a relation form of (fA, E). The

membership function and non-membership functions are written

by μRA
: U × E → [0, 1] and νRA

: U × E → [0, 1] where

μRA
(u, e) ∈ [0, 1] and νRA

(u, e) ∈ [0, 1] are the membership

value and non-membership value, respectively of u ∈ U for each

e ∈ E. If (μij , νij) = (μRA
(ui, ej), νRA

(ui, ej)), we can define

a matrix [(μij , νij)]m×n =

⎛
⎜⎜⎜⎝

(μ11, ν11) (μ12, ν12) . . . (μ1n, ν1n)
(μ21, ν21) (μ22, ν22) . . . (μ2n, ν2n)

...
...

. . .
...

(μm1, νm1) (μm2, νm2) . . . (μmn, νmn)

⎞
⎟⎟⎟⎠

which is called an m × n IFSM of the IFSS (fA, E) over U .

Therefore, we can say that a IFSS (fA, E) is uniquely charac-

terised by the matrix [(μij , νij)]m×n and both concepts are inter-

changeable. The set of all m × n IFS matrices over U will be

denoted by IFSMm×n.

2.4 Definition [20]

Let X be a space of points (objects), with a generic element

in X denoted by x. A neutrosophic set A in X is charac-

terized by a truth-membership function TA, an indeterminacy-

membership function IA and a falsity-membership function FA.

TA(x), IA(x) and FA(x) are real standard or non-standard sub-

sets of ]−0, 1+[. That is TA, IA, FA : X →]−0, 1+[. There

is no restriction on the sum of TA(x), IA(x), FA(x) and so,
−0 ≤ supTA(x) + sup IA(x) + supFA(x) ≤ 3+.

2.5 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let

P (U) denote the power set of U . Then for A ⊆ E, a pair (F,A)
is called a soft set over U , where F : A → P (U) is a mapping.

2.6 Definition [21]

Let U be an initial universe set and E be a set of parameters. Let

NS(U) denote the set of all NSs of U . Then for A ⊆ E, a pair

(F,A) is called an NSS over U , where F : A → NS(U) is a

mapping.

This concept has been modified by Deli and Broumi [26] as

given below.

2.7 Definition [26]

Let U be an initial universe set and E be a set of parameters. Let

NS(U) denote the set of all NSs of U . Then, a neutrosophic soft

set N over U is a set defined by a set valued function fN repre-

senting a mapping fN : E → NS(U) where fN is called approx-

imate function of the neutrosophic soft set N . In other words, the

neutrosophic soft set is a parameterized family of some elements

of the set NS(U) and therefore it can be written as a set of or-

dered pairs,

N = {(e, {< x, TfN (e)(x), IfN (e)(x), FfN (e)(x) >: x ∈ U}) :
e ∈ E}

where TfN (e)(x), IfN (e)(x), FfN (e)(x) ∈ [0, 1] are respectively

called truth-membership, indeterminacy-membership, falsity-

membership function of fN (e). Since supremum of each T, I, F
is 1 so the inequality 0 ≤ TfN (e)(x)+IfN (e)(x)+FfN (e)(x) ≤ 3
is obvious.

2.7.1 Example

Let U = {h1, h2, h3} be a set of houses and E =
{e1(beautiful), e2(good location), e3, (green surrounding)} be a

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making
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set of parameters describing the nature of houses. Let,

fN (e1) = {< h1, (0.5, 0.6, 0.3) >,< h2, (0.4, 0.7, 0.6) >,

< h3, (0.6, 0.2, 0.3) >}
fN (e2) = {< h1, (0.6, 0.3, 0.5) >,< h2, (0.7, 0.4, 0.3) >,

< h3, (0.8, 0.1, 0.2) >}
fN (e3) = {< h1, (0.7, 0.4, 0.3) >,< h2, (0.6, 0.7, 0.2) >,

< h3, (0.7, 0.2, 0.5) >}

Then N = {[e1, fN (e1)], [e2, fN (e2)], [e3, fN (e3)]} is an NSS

over (U,E). The tabular representation of the NSS N is given in

Table 1.

fN (e1) fN (e2) fN (e3)
h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)

h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Table 1 : Tabular form of NSS N .

2.8 Definition [26]

1. The complement of a neutrosophic soft set N is denoted by

No and is defined by :

No = {(e, {< x,FfN (e)(x), 1− IfN (e)(x), TfN (e)(x) >: x ∈
U}) : e ∈ E}

2. Let N1 and N2 be two NSSs over the common universe (U,E).
Then N1 is said to be the neutrosophic soft subset of N2 if ∀e ∈
E and x ∈ U

TfN1
(e)(x) ≤ TfN2

(e)(x), IfN1
(e)(x) ≥ IfN2

(e)(x),
FfN1

(e)(x) ≥ FfN2
(e)(x).

We write N1 ⊆ N2 and then N2 is the neutrosophic soft superset

of N1.

3. Let N1 and N2 be two NSSs over the common universe (U,E).
Then their union is denoted by N1 ∪N2 = N3 and is defined by

N3 = {(e, {< x, TfN3
(e)(x), IfN3

(e)(x), FfN3
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN3
(e)(x) = TfN1

(e)(x) � TfN2
(e)(x), IfN3

(e)(x) =
IfN1

(e)(x) ∗ IfN2
(e)(x), FfN3

(e)(x) = FfN1
(e)(x) ∗ FfN2

(e)(x).

4. Let N1 and N2 be two NSSs over the common universe (U,E).
Then their intersection is denoted by N1 ∩ N2 = N4 and is de-

fined by :

N4 = {(e, {< x, TfN4
(e)(x), IfN4

(e)(x), FfN4
(e)(x) >: x ∈

U}) : e ∈ E}

where TfN4
(e)(x) = TfN1

(e)(x) ∗ TfN2
(e)(x), IfN4

(e)(x) =
IfN1

(e)(x) � IfN2
(e)(x), FfN4

(e)(x) = FfN1
(e)(x) � FfN2

(e)(x).

2.9 Definition [26]

1. Let N be a neutrosophic soft set over N(U). Then a subset

of N(U)× E is uniquely defined by : RN = {(fN (x), x) : x ∈
E, fN (x) ∈ N(U)} which is called a relation form of (N,E).
The characteristic function of RN is written as :

ΘRN
: N(U)× E → [0, 1]× [0, 1]× [0, 1] by

ΘRN
(u, x) = (TfN (x)(u), IfN (x)(u), FfN (x)(u))

where TfN (x)(u), IfN (x)(u), FfN (x)(u) are truth-membership,

indeterminacy-membership and falsity-membership of u ∈ U ,

respectively.

2. Let U = {u1, u2, · · · , um}, E = {x1, x2, · · · , xn} and N be

a neutrosophic soft set over N(U). Then,

RN fN (x1) fN (x2) · · · fN (xn)
u1 ΘRN

(u1, x1) ΘRN
(u1, x2) · · · ΘRN

(u1, xn)
u2 ΘRN

(u2, x1) ΘRN
(u2, x2) · · · ΘRN

(u2, xn)
...

...
...

. . .
...

um ΘRN
(um, x1) ΘRN

(um, x2) · · · ΘRN
(um, xn)

If aij = ΘRN
(ui, xj), we can define a matrix

[aij ] =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

such that aij = (TfN (xj)(ui), IfN (xj)(ui), FfN (xj)(ui)) =
(T a

ij , I
a
ij , F

a
ij), which is called an m × n neutrosophic soft ma-

trix (NS-matrix) of the neutrosophic soft set N over N(U).

According to this definition, a neutrosophic soft set N is

uniquely characterised by a matrix [aij ]m×n. Therefore, we shall

identify any neutrosophic soft set with it’s soft NS-matrix and

use these two concepts as interchangeable. The set of all m × n
NS-matrix over N(U) will be denoted by Ñm×n. From now on

we shall delete the subscripts m × n of [aij ]m×n, we use [aij ]

instead of [aij ]m×n, since [aij ] ∈ Ñm×n means that [aij ] is an

m× n NS-matrix for i = 1, 2, · · · ,m and j = 1, 2, · · · , n.

2.10 Definition [26]

Let [aij ], [bij ] ∈ Ñm×n. Then,

1. [aij ] is a zero NS-matrix, denoted by [0̃], if aij =
(0, 1, 1), ∀i, j.

2. [aij ] is a universal NS-matrix, denoted by [1̃], if aij =
(1, 0, 0), ∀i, j.

3. [aij ] is an NS-submatrix of [bij ], denoted by [aij ]⊆̃[bij ], if

T a
ij ≤ T b

ij , I
a
ij ≥ Ibij , F

a
ij ≥ F b

ij , ∀i, j.

4. [aij ] and [bij ] are equal NS- matrices, denoted by [aij ] = [bij ],

if aij = bij , ∀i, j.

5. Complement of [aij ] is denoted by [aij ]
o and is defined as

another NS-matrix [cij ] such that cij = (F a
ij , 1− Iaij , T

a
ij), ∀i, j.
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3 Neutrosophic soft matrix
In this section, we have introduced some definitions and have

included some new operations related to NSM.

3.1 Definition

Let U = {u1, u2, · · · , um} and E = {e1, e2, · · · , en} be the

universal set of objects and the parametric set, respectively. Sup-

pose, N be a neutrosophic soft set over (U,E) given by N = {<
(e, fN (e)) >: e ∈ E} where

fN (e) = {< u, (TfN (e)(u), IfN (e)(u), FfN (e)(u)) >: u ∈ U}.

Thus, fN (e) corresponds a relation on {e} × U i.e., fN (e) =
{(e, ui) : 1 ≤ i ≤ m} for each e ∈ E. It is obviously a sym-

metric relation. Now, consider a relation RE on U × E given

by RE = {(u, e) : e ∈ E, u ∈ fN (e)}. It is called a relation

form of the NSS N over (U,E). The characteristic function of

RE is χRE
: U × E → [0, 1] × [0, 1] × [0, 1] and is defined

as : χRE
(u, e) = (TfN (e)(u), IfN (e)(u), FfN (e)(u)). The tabular

representation of RE is given in Table 2.

e1 e2 · · · en
u1 χRE

(u1, e1) χRE
(u1, e2) · · · χRE

(u1, en)
u2 χRE

(u2, e1) χRE
(u2, e2) · · · χRE

(u2, en)
...

...
...

. . .
...

um χRE
(um, e1) χRE

(um, e2) · · · χRE
(um, en)

Table 2 : Tabular form of RE

If aij = χRE
(ui, ej), then we can define a matrix

[aij ]m×n =

⎛
⎜⎜⎜⎝

a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

. . .
...

am1 am2 · · · amn

⎞
⎟⎟⎟⎠

where aij = (TfN (ej)(ui), IfN (ej)(ui), FfN (ej)(ui)) =
(T a

ij , I
a
ij , F

a
ij).

Thus, we shall identify any neutrosophic soft set with it’s NSM

and use these two concepts as interchangeable. Since we con-

sider the full parametric set E, so each NSS N over (U,E) cor-

responds a unique NSM [aij ]m×n where cardinality of U and E
are m and n, respectively. To get another NSM of the same order

over (U,E), we need to define another NSS over (U,E). The set

of all NSMs of order m×n is denoted by NSMm×n. Whenever

U and E are fixed, we get all NSMs of unique order i.e., to obtain

an NSM of distinct order, at least any of U and E will have to be

changed.

3.1.1 Example

Consider the Example [2.7.1]. The relation form of the NSS N
over the said (U,E) is

e1 e2 e3
h1 (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

h2 (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)

h3 (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Hence, the NSM corresponding to this NSS N over (U,E) is :

[aij ]3×3 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5) (0.7, 0.4, 0.3)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3) (0.6, 0.7, 0.2)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2) (0.7, 0.2, 0.5)

⎞
⎠

Next, let E1 = {e1(cheap), e2(moderate), e3(high), e4(very high)}
be another set of parameters describing the cost of houses in U .

The relation form of an NSS M over (U,E1) is written as :

e1 e2 e3 e4
h1 (.4, .5, .5) (.5, .7, .6) (.2, .5, .8) (.5, .6, .4)

h2 (.6, .4, .7) (.6, .3, .4) (.7, .6, .5) (.8, .4, .3)

h3 (.7, .3, .4) (.5, .2, .5) (.8, .4, .4) (.1, .6, .6)

Here, the NSM corresponding to the NSS M over (U,E1) is

[bij ]3×4 =

⎛
⎝ (.4, .5, .5) (.5, .7, .6) (.2, .5, .8) (.5, .6, .4)

(.6, .4, .7) (.6, .3, .4) (.7, .6, .5) (.8, .4, .3)
(.7, .3, .4) (.5, .2, .5) (.8, .4, .4) (.1, .6, .6)

⎞
⎠

3.2 Definition

Let A = [aij ] ∈ NSMm×n where aij = (T a
ij , I

a
ij , F

a
ij). Then,

1. A is called a square NSM if m = n i.e., if the number of rows

and the number of columns are equal. The NSS corresponding to

this NSM has the same number of objects and parameters.

2. A square NSM A = [aij ]n×n is called upper triangular NSM

if aij = (0, 1, 1), ∀i > j and is called lower triangular NSM if

aij = (0, 1, 1), ∀i < j.

A is called triangular NSM if it is either neutrosophic soft up-

per triangular or neutrosophic soft lower triangular matrix.

3. The transpose of a square NSM A = [aij ]n×n is another

square NSM of same order obtained from [aij ] by interchanging

it’s rows and columns. It is denoted by At. Thus At = [aij ]
t =

[(T a
ij , I

a
ij , F

a
ij)]

t = [(T a
ji, I

a
ji, F

a
ji)]. The NSS corresponding to

At becomes a new NSS over the same universe and the same

parametric set.

4. A square NSM A = [aij ]n×n is said to be a symmet-

ric NSM if At = A i.e., if aij = aji or (T a
ij , I

a
ij , F

a
ij) =

(T a
ji, I

a
ji, F

a
ji), ∀i, j.

3.3 Definition

Let A = [aij ] ∈ NSMm×n, where aij = (T a
ij , I

a
ij , F

a
ij). Then,

the scalar multiple of NSM A by a scalar k is defined by kA =
[kaij ]m×n where 0 ≤ k ≤ 1.
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3.3.1 Example

Let A = [aij ]2×3 =(
(0.4, 0.5, 0.5) (0.5, 0.7, 0.6) (0.5, 0.6, 0.4)
(0.6, 0.4, 0.7) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

)

be an NSM. Then the scalar multiple of this matrix by k = 0.5
is kA = [kaij ]2×3 =(

(0.20, 0.25, 0.25) (0.25, 0.35, 0.30) (0.25, 0.30, 0.20)
(0.30, 0.20, 0.35) (0.35, 0.15, 0.20) (0.40, 0.20, 0.15)

)

3.4 Proposition
Let A = [aij ], B = [bij ] ∈ NSMm×n where aij =

(T a
ij , I

a
ij , F

a
ij). For two scalars s, k ∈ [0, 1],

(i) s(kA) = (sk)A. (ii) s ≤ k ⇒ sA ≤ kA. (iii) A ⊆ B ⇒
sA ⊆ sB.

Proof.

(i) s(kA) = s[kaij ] = s[(kT a
ij , kI

a
ij , kF

a
ij)]

= [(skT a
ij , skI

a
ij , skF

a
ij)] = sk[(T a

ij , I
a
ij , F

a
ij)]

= sk[aij ] = (sk)A.

(ii) Since T a
ij , I

a
ij , F

a
ij ∈ [0, 1], ∀i, j so, sT a

ij ≤ kT a
ij , sI

a
ij ≤

kIaij , sF
a
ij ≤ kF a

ij .

Now, sA = [(sT a
ij , sI

a
ij , sF

a
ij)] ≤ [(kT a

ij , kI
a
ij , kF

a
ij)] = kA.

(iii) A ⊆ B ⇒ [aij ] ⊆ [bij ]

⇒ T a
ij ≤ T b

ij , I
a
ij ≥ Ibij , F

a
ij ≥ F b

ij , ∀i, j
⇒ sT a

ij ≤ sT b
ij , sI

a
ij ≥ sIbij , sF

a
ij ≥ sF b

ij , ∀i, j
⇒ s[aij ] ⊆ s[bij ]

⇒ sA ⊆ sB

3.5 Theorem
Let A = [aij ]m×n be an NSM where aij = (T a

ij , I
a
ij , F

a
ij). Then,

(i) (kA)t = k At for k ∈ [0, 1] being a scalar.

(ii) (At)t = A.

(iii) If A = [aij ]n×n is an upper triangular (lower triangular)

NSM, then At is lower triangular (upper triangular) NSM.

Proof.(i) Here (kA)t, k At ∈ NSMn×m. Now,

(kA)t = [(kT a
ij , kI

a
ij , kF

a
ij)]

t = [(kT a
ji, kI

a
ji, kF

a
ji)]

= k[(T a
ji, I

a
ji, F

a
ji)] = k[(T a

ij , I
a
ij , F

a
ij)]

t = k At.

(ii) Here At ∈ NSMn×m and so (At)t ∈ NSMm×n. Now,

(At)t = ([(T a
ij , I

a
ij , F

a
ij)]

t)t = [(T a
ji, I

a
ji, F

a
ji)]

t

= [(T a
ij , I

a
ij , F

a
ij)] = A.

(iii) Straight forward.

3.6 Definition

Let A = [aij ] ∈ NSMm×n, where m = n and aij =

(T a
ij , I

a
ij , F

a
ij). Then, the trace of NSM A is denoted by tr(A)

and is defined as tr(A) =
∑m

i=1[T
a
ii − (Iaii + F a

ii)].

3.6.1 Example

Let A = [aij ]3×3 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5) (0.7, 0.4, 0.3)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3) (0.6, 0.7, 0.2)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2) (0.7, 0.2, 0.5)

⎞
⎠

be an NSM. Then tr(A) = (0.5−0.6−0.3)+(0.7−0.4−0.3)+
(0.7− 0.2− 0.5) = −0.4

3.7 Proposition

Let A = [aij ] ∈ NSMn×n, where aij = (T a
ij , I

a
ij , F

a
ij). If

k ∈ [0, 1] is a scalar, then tr(kA) = k tr(A).

Proof. tr(kA) =
∑n

i=1[kT
a
ii − (kIaii + kF a

ii)] = k
∑n

i=1[T
a
ii −

(Iaii + F a
ii)] = k tr(A).

3.8 Max-Min Product of NSMs

Two NSMs A and B are said to be conformable for the

product A ⊗ B if the number of columns of the NSM

A be equal to the number of rows of the NSM B and

this product becomes also an NSM. If A = [aij ]m×n

and B = [bjk]n×p, then A ⊗ B = [cik]m×p where

aij = (T a
ij , I

a
ij , F

a
ij), bjk = (T b

jk, I
b
jk, F

b
jk) and cik =

(maxj min(T a
ij , T

b
jk),minj max(Iaij , I

b
jk),minj max(F a

ij , F
b
jk)).

Clearly, B ⊗A can not be defined here.

3.8.1 Example

Let A = [aij ]3×2 =

⎛
⎝ (0.5, 0.6, 0.3) (0.6, 0.3, 0.5)

(0.4, 0.7, 0.6) (0.7, 0.4, 0.3)
(0.6, 0.2, 0.3) (0.8, 0.1, 0.2)

⎞
⎠

and B = [bjk]2×3 =

(
(0.4, 0.5, 0.5) (0.5, 0.7, 0.6) (0.5, 0.6, 0.4)
(0.6, 0.4, 0.7) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

)

be two NSMs. Then, A⊗B = [cik]3×3 =

⎛
⎝ (0.6, 0.4, 0.5) (0.6, 0.3, 0.5) (0.6, 0.4, 0.4)

(0.6, 0.4, 0.6) (0.7, 0.4, 0.4) (0.7, 0.4, 0.3)
(0.6, 0.4, 0.5) (0.7, 0.3, 0.4) (0.8, 0.4, 0.3)

⎞
⎠
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One calculation is provided herewith for convenience of A⊗B.

T c
21 = max

j
{min(T a

21, T
b
11),min(T a

22, T
b
21)}

= max{min(0.4, 0.4),min(0.7, 0.6)} = 0.6

Ic21 = min
j

{max(Ia21, I
b
11),max(Ia22, I

b
21)}

= min{max(0.7, 0.5),max(0.4, 0.4)} = 0.4

F c
21 = min

j
{max(F a

21, F
b
11),max(F a

22, F
b
21)}

= min{max(0.6, 0.5),max(0.3, 0.7)} = 0.6

Thus, c21 = (0.6, 0.4, 0.6) and so on.

3.9 Theorem

Let A = [aij ]m×n, B = [bjk]n×p be two NSMs where

aij=(T a
ij , I

a
ij , F

a
ij). Then, (A⊗B)t = Bt ⊗At

Proof. Let A⊗B = [cik]m×p. Then (A⊗B)t = [cki]p×m, At =

[aji]n×m, Bt = [bkj ]p×n and so the order of (Bt⊗At) is (p×m).
Now,

(A⊗B)t

= [(T c
ki, I

c
ki, F

c
ki)]p×m

= [(max
j

min(T b
kj , T

a
ji), min

j
max(Ibkj , I

a
ji),

min
j

max(F b
kj , F

a
ji))]p×m

= [(T b
kj , I

b
kj , F

b
kj)]p×n ⊗ [(T a

ji, I
a
ji, F

a
ji)]n×m = Bt ⊗At.

4 Operators of NSMs

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) Union A ∪ B = C where T c
ij = T a

ij � T b
ij , I

c
ij = Iaij ∗

Ibij , F
c
ij = F a

ij ∗ F b
ij , ∀i, j.

(ii) Intersection A ∩ B = C where T c
ij = T a

ij ∗ T b
ij , I

c
ij =

Iaij � Ibij , F c
ij = F a

ij � F b
ij , ∀i, j.

(iii)Arithmetic mean A � B = C where T c
ij =

Ta
ij+T b

ij

2 , Icij =
Ia
ij+Ib

ij

2 , F c
ij =

Fa
ij+F b

ij

2 , ∀i, j.

(iv) Weighted arithmetic mean A �w B = C where T c
ij =

w1T
a
ij+w2T

b
ij

w1+w2
, Icij =

w1I
a
ij+w2I

b
ij

w1+w2
, F c

ij =
w1F

a
ij+w2F

b
ij

w1+w2
, ∀i, j and

w1, w2 > 0.

(v) Geometric mean A�B = C where T c
ij =

√
T a
ij · T b

ij , I
c
ij =√

Iaij · Ibij , F c
ij =

√
F a
ij · F b

ij , ∀i, j.

(vi) Weighted geometric mean A�w B = C where

T c
ij =

(w1+w2)

√
(T a

ij)
w1 · (T b

ij)
w2 ,

Icij =
(w1+w2)

√
(Iaij)

w1 · (Ibij)w2 ,

F c
ij =

(w1+w2)

√
(F a

ij)
w1 · (F b

ij)
w2 , ∀i, j and w1, w2 > 0.

(vii) Harmonic mean A � B = C where T c
ij =

2Ta
ijT

b
ij

Ta
ij+T b

ij

, Icij =

2Ia
ijI

b
ij

Ia
ij+Ib

ij

, F c
ij =

2Fa
ijF

b
ij

Fa
ij+F b

ij

, ∀i, j.

(viii) Weighted harmonic mean A �w B = C where T c
ij =

w1+w2
w1
Ta
ij

+
w2
Tb
ij

, Icij =
w1+w2
w1
Ia
ij

+
w2
Ib
ij

, F c
ij =

w1+w2
w1
Fa
ij

+
w2
Fb
ij

, ∀i, j and w1, w2 > 0.

4.1 Proposition

Let A = [aij ], B = [bij ] ∈ NSMm×n, where aij =

(T a
ij , I

a
ij , F

a
ij). Then,

(i) (A ∪B)t = At ∪Bt, (A ∩B)t = At ∩Bt.

(ii) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

(iii) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

(iv) (A�B)t = At �Bt, (A�w B)t = At �w Bt.

Proof. (i) Here A ∪B, (A ∪B)t, At, Bt, At ∪Bt ∈ NSMm×n.

Now,

(A ∪B)t = [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)]

t

= [(T a
ji � T b

ji, I
a
ji ∗ Ibji, F a

ji ∗ F b
ji)]

= [(T a
ji, I

a
ji, F

a
ji)] ∪ [(T b

ji, I
b
ji, F

b
ji)]

= [(T a
ij , I

a
ij , F

a
ij)]

t ∪ [(T b
ij , I

b
ij , F

b
ij)]

t

= At ∪Bt.

Next A ∩B, (A ∩B)t, At ∩Bt ∈ NSMm×n. Now,

(A ∩B)t = [(T a
ij ∗ F b

ij , I
a
ij � (1− Ibij), F

a
ij � T b

ij)]
t

= [(T a
ji ∗ F b

ji, I
a
ji � (1− Ibji), F

a
ji � T b

ji)]

= [(T a
ji, I

a
ji, F

a
ji)] ∩ [(T b

ji, I
b
ji, F

b
ji)]

= [(T a
ij , I

a
ij , F

a
ij)]

t ∩ [(T b
ij , I

b
ij , F

b
ij)]

t

= At ∩Bt.

Remaining others can be proved in the similar manner.

4.2 Proposition

Let A = [aij ], B = [bij ] are upper triangular (lower triangular)

NSMs of same order. Then (i) A∪B, A∩B (ii) A�B, A�wB
(iii) A � B, A �w B all are upper triangular (lower triangular)

NSMs.

Proof. Straight forward.

4.3 Theorem

Let A = [aij ], B = [bij ] be two symmetric NSMs of same order.

Then,

(i) A∪At, A∪B,A∩B,A�B,A�w B,A�B,A�w B,A�
B,A�w B are so.
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(ii) A⊗B is symmetric iff A⊗B = B ⊗A.

(iii) A⊗At, At ⊗A both are symmetric.

Proof. Here At = A and Bt = B as both are symmetric NSMs.

Clearly A ∪ At, A ∪ B,A ∩ B,A � B,A �w B,A � B,A �w

B,A�B,A�w B,A⊗B,B ⊗A,A⊗At, At ⊗A all are well

defined as both the NSMs are same order and square. Now,

(i) These are left to the reader.

(ii) (A⊗B)t = Bt ⊗At = B ⊗A = A⊗B.

(iii) (A ⊗ At)t = (At)t ⊗ At = A ⊗ At and (At ⊗ A)t =
At ⊗ (At)t = At ⊗A.

4.4 Proposition

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) (A ∪B)o = Ao ∩Bo, (A ∩B)o = Ao ∪Bo.

(ii) (A�B)o = Ao �Bo, (A�w B)o = Ao �w Bo.

Proof. (i) Here (A ∪B)o, Ao ∩Bo ∈ NSMm×n. Now,

(A ∪B)o = [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)]

o

= [(F a
ij ∗ F b

ij , 1− (Iaij ∗ Ibij), T a
ij � T b

ij)]

= [(F a
ij ∗ F b

ij , (1− Iaij) � (1− Ibij), T
a
ij � T b

ij)]

= [(F a
ij , 1− Iaij , T

a
ij)] ∩ [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o ∩ [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao ∩Bo.

Next, (A ∩B)o, Ao ∪Bo ∈ NSMm×n. Now,

(A ∩B)o = [(T a
ij ∗ T b

ij , I
a
ij � Ibij , F a

ij � F b
ij)]

o

= [(F a
ij � F b

ij , 1− (Iaij � Ibij), T a
ij ∗ T b

ij)]

= [(F a
ij � F b

ij , (1− Iaij) ∗ (1− Ibij), T
a
ij ∗ T b

ij)]

= [(F a
ij , 1− Iaij , T

a
ij)] ∪ [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o ∪ [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao ∪Bo.

Note : Here, (1 − Iaij) � (1 − Ibij) = 1 − (Iaij ∗ Ibij) and (1 −
Iaij) ∗ (1 − Ibij) = 1 − (Iaij � Ibij) hold for dual pairs of non-

parameterized t-norms and s-norms e.g., a ∗ b = min{a, b} and

a � b = max{a, b}, a ∗ b = max{a + b − 1, 0} and a � b =
min{a+ b, 1} etc.

(ii) Here (A�B)o, Ao �Bo ∈ NSMm×n.

(A�B)o = [(
T a
ij + T b

ij

2
,
Iaij + Ibij

2
,
F a
ij + F b

ij

2
)]o

= [(
F a
ij + F b

ij

2
, 1− Iaij + Ibij

2
,
T a
ij + T b

ij

2
)]

= [(
F a
ij + F b

ij

2
,
(1− Iaij) + (1− Ibij)

2
,
T a
ij + T b

ij

2
)]

= [(F a
ij , 1− Iaij , T

a
ij)]� [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o � [(T b
ij , I

b
ij , F

b
ij)]

o

= Ao �Bo.

Next, for w1, w2 > 0, we have,

(A�w B)o

= [(
w1T

a
ij + w2T

b
ij

w1 + w2
,
w1I

a
ij + w2I

b
ij

w1 + w2
,
w1F

a
ij + w2F

b
ij

w1 + w2
)]o

= [(
w1F

a
ij + w2F

b
ij

w1 + w2
, 1− w1I

a
ij + w2I

b
ij

w1 + w2
,
w1T

a
ij + w2T

b
ij

w1 + w2
)]

= [(
w1F

a
ij + w2F

b
ij

w1 + w2
,
w1(1− Iaij) + w2(1− Ibij)

w1 + w2
,

w1T
a
ij + w2T

b
ij

w1 + w2
)]

= [(F a
ij , 1− Iaij , T

a
ij)]�w [(F b

ij , 1− Ibij , T
b
ij)]

= [(T a
ij , I

a
ij , F

a
ij)]

o �w [(T b
ij , I

b
ij , F

b
ij)]

o = Ao �w Bo.

4.5 Proposition (Commutative law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)] ∈ NSMm×n.

Then,

(i) A∪B = B∪A, A∩B = B∩A (ii) A�B = B�A, A�w

B = B �w A (iii) A�B = B � A, A�w B = B �w A (iv)

A�B = B �A, A�w B = B �w A.

Proof. Obvious

4.6 Proposition (Associative law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n. Then,

(i) (A∪B)∪C = A∪ (B ∪C) (ii) (A∩B)∩C = A∩ (B ∩C)
(iii) (A�B)�C �= A�(B�C) (iv) (A�B)�C �= A�(B�C)
(v) (A�B)� C �= A� (B � C).

Proof. (i) Clearly (A∪B)∪C,A∪ (B∪C) ∈ NSMm×n. Now,

(A ∪B) ∪ C

= [(T a
ij � T b

ij , I
a
ij ∗ Ibij , F a

ij ∗ F b
ij)] ∪ [(T c

ij , I
c
ij , F

c
ij)]

= [((T a
ij � T b

ij) � T c
ij , (I

a
ij ∗ Ibij) ∗ Icij , (F a

ij ∗ F b
ij) ∗ F c

ij)]

= [(T a
ij � (T b

ij � T c
ij), I

a
ij ∗ (Ibij ∗ Icij), F a

ij ∗ (F b
ij ∗ F c

ij))]

= A ∪ (B ∪ C)

Similarly, the other results can be verified.

4.7 Proposition (Distributive law)
Let A = [(T a

ij , I
a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n. Then,

(i) A ∩ (B � C) = (A ∩ B) � (A ∩ C), (A � B) ∩ C =
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(A ∩ C)� (B ∩ C).
(ii) A ∪ (B � C) = (A ∪ B) � (A ∪ C), (A � B) ∪ C =
(A ∪ C)� (B ∪ C).

Proof. (i) Here A∩ (B �C), (A∩B)� (A∩C) ∈ NSMm×n.

Now,

A ∩ (B � C)

= [(T a
ij , I

a
ij , F

a
ij)] ∩ [(

T b
ij + T c

ij

2
,
Ibij + Icij

2
,
F b
ij + F c

ij

2
)]

= [(T a
ij ∗

T b
ij + T c

ij

2
, Iaij �

Ibij + Icij
2

, F a
ij �

F b
ij + F c

ij

2
)]

= [(
T a
ij ∗ T b

ij + T a
ij ∗ T c

ij

2
,
Iaij � Ibij + Iaij � Icij

2
,

F a
ij � F b

ij + F a
ij � F c

ij

2
)]

= [(T a
ij ∗ T b

ij , I
a
ij � Ibij , F a

ij � F b
ij)]

�[(T a
ij ∗ T c

ij , I
a
ij � Icij , F a

ij � F c
ij)]

= (A ∩B)� (A ∩ C)

Next (A�B) ∩ C, (A ∩ C)� (B ∩ C) ∈ NSMm×n. Now,

(A�B) ∩ C

= [(
T a
ij + T b

ij

2
,
Iaij + Ibij

2
,
F a
ij + F b

ij

2
)] ∩ [(T c

ij , I
c
ij , F

c
ij)]

= [(
T a
ij + T b

ij

2
∗ T c

ij ,
Iaij + Ibij

2
� Icij ,

F a
ij + F b

ij

2
� F c

ij)]

= [(
T a
ij ∗ T c

ij + T b
ij ∗ T c

ij

2
,
Iaij � Icij + Ibij � Icij

2
,

F a
ij � F c

ij + F b
ij � F c

ij

2
)]

= [(T a
ij ∗ T c

ij , I
a
ij � Icij , F a

ij � F c
ij)]

�[(T b
ij ∗ T c

ij , I
b
ij � Icij , F b

ij � F c
ij)]

= (A ∩ C)� (B ∩ C)

In a similar way, the remaining can be established.

4.8 Proposition (Distributive law)

Let A = [(T a
ij , I

a
ij , F

a
ij)], B = [(T b

ij , I
b
ij , F

b
ij)], C =

[(T c
ij , I

c
ij , F

c
ij)] ∈ NSMm×n.

If a ∗ b = min{a, b} and a � b = max{a, b}, then

(i) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), (A ∪ B) ∩ C =
(A ∩ C) ∪ (B ∩ C).

(ii) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C), (A ∩ B) ∪ C =
(A ∪ C) ∩ (B ∪ C).

(iii)A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =
(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

(iv) A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =

(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

(v) A � (B ∪ C) = (A � B) ∪ (A � C), (A ∪ B) � C =
(A� C) ∪ (B � C).
A � (B ∩ C) = (A � B) ∩ (A � C), (A ∩ B) � C =
(A� C) ∩ (B � C).

Proof. We shall here prove (i), (iv) and (v) only. The others can

be proved in the similar fashion.

(i) Here A ∩ (B ∪ C), (A ∩B) ∪ (A ∩ C) ∈ NSMm×n. Now,

A ∩ (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)] ∩ [(max{T b

ij , T
c
ij},min{Ibij , Icij},

min{F b
ij , F

c
ij})]

= [(min{T a
ij ,max{T b

ij , T
c
ij}},max{Iaij ,min{Ibij , Icij}},

max{F a
ij ,min{F b

ij , F
c
ij}})]

= [(max{min{T a
ij , T

b
ij},min{T a

ij , T
c
ij}}, min{max{Iaij , Ibij},

max{Iaij , Icij}},min{max{F a
ij , F

b
ij},max{F a

ij , F
c
ij}})]

= [(min{T a
ij , T

b
ij},max{Iaij , Ibij},max{F a

ij , F
b
ij})]

∪[(min{T a
ij , T

c
ij},max{Iaij , Icij},max{F a

ij , F
c
ij})]

= (A ∩B) ∪ (A ∩ C)

Next (A ∪B) ∩ C, (A ∩ C) ∪ (B ∩ C) ∈ NSMm×n. Now,

(A ∪B) ∩ C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

∩[(T c
ij , I

c
ij , F

c
ij)]

= [(min{max{T a
ij , T

b
ij}, T c

ij},max{min{Iaij , Ibij}, Icij},
max{min{F a

ij , F
b
ij}, F c

ij})]
= [(max{min{T a

ij , T
c
ij},min{T b

ij , T
c
ij}}, min{max{Iaij , Icij},

max{Ibij , Icij}},min{max{F a
ij , F

c
ij},max{F b

ij , F
c
ij}})]

= [(min{T a
ij , T

c
ij},max{Iaij , Icij},max{F a

ij , F
c
ij})]

∪[(min{T b
ij , T

c
ij},max{Ibij , Icij},max{F b

ij , F
c
ij})]

= (A ∩ C) ∪ (B ∩ C)

(iv) Here A� (B ∪C), (A�B)∪ (A�C) ∈ NSMm×n. Now,

A� (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)]� [(max{T b

ij , T
c
ij},min{Ibij , Icij},

min{F b
ij , F

c
ij})]

= [(
√
T a
ij ·max{T b

ij , T
c
ij},

√
Iaij ·min{Ibij , Icij},√

F a
ij ·min{F b

ij , F
c
ij})]

= [(max{
√

T a
ij · T b

ij ,
√

T a
ij · T c

ij}, min{
√
Iaij · Ibij ,√

Iaij · Icij},min{
√
F a
ij · F b

ij ,
√

F a
ij · F c

ij})]
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= [(
√

T a
ij · T b

ij ,
√

Iaij · Ibij ,
√

F a
ij · F b

ij)]

∪[(
√
T a
ij · T c

ij ,
√

Iaij · Icij ,
√

F a
ij · F c

ij)]

= (A�B) ∪ (A� C)

Next (A ∪B)� C, (A� C) ∪ (B � C) ∈ NSMm×n. Now,

(A ∪B)� C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

�[(T c
ij , I

c
ij , F

c
ij)]

= [(
√

max{T a
ij , T

b
ij} · T c

ij ,
√

min{Iaij , Ibij} · Icij ,√
min{F a

ij , F
b
ij} · F c

ij , )]

= [(max{
√
T a
ij · T c

ij ,
√

T b
ij · T c

ij}, min{
√
Iaij · Icij ,√

Ibij · Icij},min{
√

F a
ij · F c

ij ,
√

F b
ij · F c

ij})]

= [(
√
T a
ij · T c

ij ,
√

Iaij · Icij ,
√

F a
ij · F c

ij)]

∪[(
√
T b
ij · T c

ij ,
√

Ibij · Icij ,
√

F b
ij · F c

ij)]

= (A� C) ∪ (B � C)

(v) Here A� (B ∪C), (A�B) ∪ (A�C) ∈ NSMm×n. Now,

A� (B ∪ C)

= [(T a
ij , I

a
ij , F

a
ij)]�

[(max{T b
ij , T

c
ij},min{Ibij , Icij},min{F b

ij , F
c
ij})]

= [(
2 · T a

ij ·max{T b
ij , T

c
ij}

T a
ij +max{T b

ij , T
c
ij}

,
2 · Iaij ·min{Ibij , Icij}
Iaij +min{Ibij , Icij}

,

2 · F a
ij ·min{F b

ij , F
c
ij}

F a
ij +min{F b

ij , F
c
ij}

)]

= [(max{ 2T a
ijT

b
ij

T a
ij + T b

ij

,
2T a

ijT
c
ij

T a
ij + T c

ij

}, min{ 2IaijI
b
ij

Iaij + Ibij
,

2IaijI
c
ij

Iaij + Icij
},min{ 2F a

ijF
b
ij

F a
ij + F b

ij

,
2F a

ijF
c
ij

F a
ij + F c

ij

})]

= [(
2T a

ijT
b
ij

T a
ij + T b

ij

,
2IaijI

b
ij

Iaij + Ibij
,
2F a

ijF
b
ij

F a
ij + F b

ij

)]

∪[( 2T a
ijT

c
ij

T a
ij + T c

ij

,
2IaijI

c
ij

Iaij + Icij
,
2F a

ijF
c
ij

F a
ij + F c

ij

)]

= (A�B) ∪ (A� C)

Next (A ∪B)� C, (A� C) ∪ (B � C) ∈ NSMm×n. Now,

(A ∪B)� C

= [(max{T a
ij , T

b
ij},min{Iaij , Ibij},min{F a

ij , F
b
ij})]

�[(T c
ij , I

c
ij , F

c
ij)]

= [(
2 ·max{T a

ij , T
b
ij} · T c

ij

max{T b
ij , T

c
ij}+ T c

ij

,
2 ·min{Iaij , Ibij} · Icij
min{Ibij , Icij}+ Icij

,

2 ·min{F a
ij , F

b
ij} · F c

ij

min{F b
ij , F

c
ij}+ F c

ij

)]

= [(max{ 2T a
ijT

c
ij

T a
ij + T c

ij

,
2T b

ijT
c
ij

T b
ij + T c

ij

}, min{ 2IaijI
c
ij

Iaij + Icij
,

2IbijI
c
ij

Ibij + Icij
},min{ 2F a

ijF
c
ij

F a
ij + F c

ij

,
2F b

ijF
c
ij

F b
ij + F c

ij

})]

= [(
2T a

ijT
c
ij

T a
ij + T c

ij

,
2IaijI

c
ij

Iaij + Icij
,
2F a

ijF
c
ij

F a
ij + F c

ij

)]

∪[( 2T b
ijT

c
ij

T b
ij + T c

ij

,
2IbijI

c
ij

Ibij + Icij
,
2F b

ijF
c
ij

F b
ij + F c

ij

)]

= (A� C) ∪ (B � C)

4.9 Proposition (Idempotent law)

Let A = [(T a
ij , I

a
ij , F

a
ij)] ∈ NSMm×n. Then,

(i) A�w A = A (ii) A�w A = A (iii) A�w A = A.

Proof. For all i, j and w1, w2 > 0 we have,

(i) A �w A = [(
w1T

a
ij+w2T

a
ij

w1+w2
,
w1I

a
ij+w2I

a
ij

w1+w2
,
w1F

a
ij+w2F

a
ij

w1+w2
, )] =

[(T a
ij , I

a
ij , F

a
ij)] = A.

(ii) A�w A = [( (w1+w2)

√
(T a

ij)
w1 · (T a

ij)
w2 ,

(w1+w2)

√
(Iaij)

w1 · (Iaij)w2 , (w1+w2)

√
(F a

ij)
w1 · (F a

ij)
w2)]

= [( (w1+w2)

√
(T a

ij)
w1+w2 , (w1+w2)

√
(Iaij)

w1+w2 ,

(w1+w2)

√
(F a

ij)
w1+w2)] = [(T a

ij , I
a
ij , F

a
ij)] = A.

(iii) A �w A = [( w1+w2
w1
Ta
ij

+
w2
Ta
ij

, w1+w2
w1
Ia
ij

+
w2
Ia
ij

, w1+w2
w1
Fa
ij

+
w2
Fa
ij

)] =

[(T a
ij , I

a
ij , F

a
ij)] = A.

5 Neutrosophic soft matrix theory in de-
cision making (score function algo-
rithm)

5.1 Definition

1. Let A = [aij ]m×n be an NSM where aij = (T a
ij , I

a
ij , F

a
ij).

Then the value of the matrix A is denoted by V (A) and is defined

as : V (A) = [vaij ]m×n where vaij = T a
ij − Iaij − F a

ij , ∀i, j.

2. The score of two NSMs A and B is defined as S(A,B) =
[sij ]m×n where sij = vaij + vbij . So, S(A,B) = V (A) + V (B).

3. The total score for each object in U is Σn
j=1sij .
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5.2 Properties of Score Function

Value matrices are classical real matrices which follow all prop-

erties of classical real matrices. The score function is basically

a real matrix in classical sense derived from two or more value

matrices. So score functions obey all properties of real matrices.

5.3 Methodology

Suppose, N number of decision makers wish to select an ob-

ject jointly from m number of objects i.e., universal set U with

respect to n number of features i.e., parametric set E. Each deci-

sion maker forms an NSS over (U,E) and corresponding to each

NSS, each get an NSM of order m × n. It needs to compute the

value matrix corresponding to each matrix. Then the score matrix

and finally, the total score of each object will be calculated.

5.3.1 Algorithm

Step 1 : Construct the NSMs from the given NSSs.

Step 2 : Calculate the value matrices of corresponding NSMs.

Step 3 : Compute the score matrix from value matrices and the

total score for each object in U .

Step 4 : Find the object of maximum score and it is the optimal

solution.

Step 5 : If score is maximum for more than one object, then find

Σn
j=1(sij)

k, k ≥ 2 successively. Choose the object of maximum

score and hereby the optimal solution.

5.3.2 Case study 1 (application in class room)

Three students {s1, s2, s3} from class - x in a school have been

shortened to win the best student award in an academic session.

A team of three teachers {T1, T2, T3} has been formed by the

Head Master of that school for this purpose. Final selection is

based on the set of parameters {e1, e2, e3, e4, e5} indicating the

quality of student, participation in school cultural programme,

class room interactions, maintenance of discipline in class room,

daily attendance, respectively. Teachers have given their valuable

opinions by the following NSSs separately i.e., first NSS given by

first teacher and so on.

M = {fM (e1), fM (e2), fM (e3), fM (e4), fM (e5)} where

fM (e1) = {< s1, (0.7, 0.2, 0.6) >,< s2, (0.6, 0.3, 0.5) >,

< s3, (0.8, 0.3, 0.5) >}
fM (e2) = {< s1, (0.4, 0.6, 0.7) >,< s2, (0.7, 0.6, 0.3) >,

< s3, (0.5, 0.5, 0.4) >}
fM (e3) = {< s1, (0.5, 0.5, 0.3) >,< s2, (0.7, 0.4, 0.4) >,

< s3, (0.6, 0.4, 0.6) >}
fM (e4) = {< s1, (0.6, 0.6, 0.5) >,< s2, (0.5, 0.8, 0.6) >,

< s3, (0.4, 0.7, 0.4) >}

N = {fN (e1), fN (e2), fN (e3), fN (e4), fN (e5)} where

fN (e1) = {< s1, (0.6, 0.4, 0.5) >,< s2, (0.7, 0.4, 0.2) >,

< s3, (0.9, 0.4, 0.2) >}
fN (e2) = {< s1, (0.5, 0.5, 0.6) >,< s2, (0.8, 0.5, 0.1) >,

< s3, (0.6, 0.7, 0.5) >}
fN (e3) = {< s1, (0.7, 0.3, 0.4) >,< s2, (0.8, 0.5, 0.3) >,

< s3, (0.5, 0.6, 0.7) >}
fN (e4) = {< s1, (0.7, 0.5, 0.3) >,< s2, (0.6, 0.7, 0.5) >,

< s3, (0.5, 0.5, 0.5) >}
fN (e5) = {< s1, (0.6, 0.4, 0.6) >,< s2, (0.6, 0.3, 0.7) >,

< s3, (0.8, 0.3, 0.3) >}}

P = {fP (e1), fP (e2), fP (e3), fP (e4), fP (e5)} where

fP (e1) = {< s1, (0.8, 0.3, 0.3) >,< s2, (0.8, 0.5, 0.3) >,

< s3, (1.0, 0.4, 0.2) >}
fP (e2) = {< s1, (0.6, 0.4, 0.5) >,< s2, (0.7, 0.6, 0.2) >,

< s3, (0.8, 0.5, 0.4) >}
fP (e3) = {< s1, (0.8, 0.4, 0.1) >,< s2, (0.7, 0.5, 0.5) >,

< s3, (0.6, 0.7, 0.3) >}
fP (e4) = {< s1, (0.6, 0.6, 0.2) >,< s2, (0.8, 0.6, 0.4) >,

< s3, (0.7, 0.3, 0.6) >}
fP (e5) = {< s1, (0.8, 0.4, 0.2) >,< s2, (0.6, 0.4, 0.3) >,

< s3, (0.7, 0.5, 0.4) >}}

The above three NSSs are represented by the NSMs A, B and C,

respectively, as following :

⎛
⎝ (.7, .2, .6) (.4, .6, .7) (.5, .5, .3) (.6, .6, .5) (.8, .3, .4)

(.6, .3, .5) (.7, .6, .3) (.7, .4, .4) (.5, .8, .6) (.7, .2, .6)
(.8, .3, .5) (.5, .5, .4) (.6, .4, .6) (.4, .7, .4) (.9, .1, .2)

⎞
⎠

⎛
⎝ (.6, .4, .5) (.5, .5, .6) (.7, .3, .4) (.7, .5, .3) (.6, .4, .6)

(.7, .4, .2) (.8, .5, .1) (.8, .5, .3) (.6, .7, .5) (.6, .3, .7)
(.9, .4, .2) (.6, .7, .5) (.5, .6, .7) (.5, .5, .5) (.8, .3, .3)

⎞
⎠

⎛
⎝ (.8, .3, .3) (.6, .4, .5) (.8, .4, .1) (.6, .6, .2) (.8, .4, .2)

(.8, .5, .4) (.7, .6, .2) (.7, .5, .5) (.8, .6, .4) (.6, .4, .3)
(1, .4, .2) (.8, .5, .4) (.6, .7, .3) (.7, .3, .6) (.7, .5, .4)

⎞
⎠

Then the corresponding value matrices are :

V (A) =

⎛
⎝ −.1 −.9 −.3 −.5 0.1

−.2 −.2 −.1 −.9 −.1
0.0 −.4 −.4 −.7 0.6

⎞
⎠

V (B) =

⎛
⎝ −.3 −.6 0.0 −.1 −.4

0.1 0.2 0.0 −.6 −.4
0.3 −.6 −.8 −.5 0.2

⎞
⎠

V (C) =

⎛
⎝ 0.2 −.3 0.3 −.2 0.2

−.1 −.1 −.3 −.2 −.1
0.4 −.1 −.4 −.2 −.2

⎞
⎠
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The score matrix is :

S(A,B,C) =

⎛
⎝ −0.2 −1.8 00.0 −0.8 −0.1

−0.2 −0.1 −0.4 −1.7 −0.6
00.7 −1.1 −1.6 −1.4 00.6

⎞
⎠

and the total score =

⎛
⎝ −2.9

−3.0
−2.8

⎞
⎠

Hence, the student s3 will be selected for the best student award

from class-x in that academic session.

5.3.3 Case study 2 (application in security management)

An important discussion on internal security management has

been arranged by the order of Home Minister. Two officers

have mate in that discussion to analyse and arrange the secu-

rity management in five mega-cities e.g., Delhi(D), Mumbai(M),

Kolkata(K), Chennai(C), Bengaluru(B). The priority of manage-

ment is given to the cities based on the set of parameters {a, b, c}
indicating their geographical position(e.g., having international

boarder line, having sea coast etc ), population density, past his-

tory of terrorist attack, respectively. Following NSSs refer the

opinions of two officers individually regarding that matter.

N1 = {fN1
(a), fN1

(b), fN1
(c)} where

fN1
(a) = {< D, (0.9, 0.4, 0.5) >,< M, (0.8, 0.5, 0.4) >,

< K, (0.7, 0.6, 0.6) >,< C, (0.6, 0.4, 0.7) >,

< B, (0.5, 0.3, 0.8) >}
fN1(b) = {< D, (0.8, 0.5, 0.5) >,< M, (0.9, 0.3, 0.3) >,

< K, (0.7, 0.6, 0.5) >,< C, (0.6, 0.7, 0.8) >,

< B, (0.6, 0.8, 0.5) >}
fN1(c) = {< D, (0.7, 0.5, 0.4) >,< M, (0.9, 0.3, 0.2) >,

< K, (0.5, 0.6, 0.7) >,< C, (0.7, 0.4, 0.6) >,

< B, (0.6, 0.3, 0.4) >}

N2 = {fN2
(a), fN2

(b), fN2
(c)} where

fN2
(a) = {< D, (1.0, 0.5, 0.4) >,< M, (0.9, 0.4, 0.5) >,

< K, (0.7, 0.7, 0.5) >,< C, (0.6, 0.5, 0.3) >,

< B, (0.6, 0.7, 0.4) >}
fN2

(b) = {< D, (0.9, 0.4, 0.5) >,< M, (0.9, 0.2, 0.3) >,

< K, (0.8, 0.5, 0.4) >,< C, (0.7, 0.7, 0.6) >,

< B, (0.6, 0.8, 0.7) >}
fN2

(c) = {< D, (0.8, 0.3, 0.2) >,< M, (0.9, 0.2, 0.1) >,

< K, (0.4, 0.5, 0.6) >,< C, (0.5, 0.6, 0.6) >,

< B, (0.7, 0.4, 0.3) >}

These two NSSs are represented by the NSMs A and B, respec-

tively, as following :

A =

⎛
⎜⎜⎜⎜⎝

(0.9, 0.4, 0.5) (0.8, 0.5, 0.5) (0.7, 0.5, 0.4)
(0.8, 0.5, 0.4) (0.9, 0.3, 0.3) (0.9, 0.3, 0.2)
(0.7, 0.6, 0.6) (0.7, 0.6, 0.5) (0.5, 0.6, 0.7)
(0.6, 0.4, 0.7) (0.6, 0.7, 0.8) (0.7, 0.4, 0.6)
(0.5, 0.3, 0.8) (0.6, 0.8, 0.5) (0.6, 0.3, 0.4)

⎞
⎟⎟⎟⎟⎠

B =

⎛
⎜⎜⎜⎜⎝

(1.0, 0.5, 0.4) (0.9, 0.4, 0.5) (0.8, 0.3, 0.2)
(0.9, 0.4, 0.5) (0.9, 0.2, 0.3) (0.9, 0.2, 0.1)
(0.7, 0.7, 0.5) (0.8, 0.5, 0.4) (0.4, 0.5, 0.6)
(0.6, 0.5, 0.3) (0.7, 0.7, 0.6) (0.5, 0.6, 0.6)
(0.6, 0.7, 0.4) (0.6, 0.8, 0.7) (0.7, 0.4, 0.3)

⎞
⎟⎟⎟⎟⎠

Then the corresponding value matrices are :

V (A) =

⎛
⎜⎜⎜⎜⎝

0.0 −.2 −.2
−.1 0.3 0.4
−.5 −.4 −.8
−.5 −.9 −.3
−.6 −.7 −.1

⎞
⎟⎟⎟⎟⎠

V (B) =

⎛
⎜⎜⎜⎜⎝

0.1 0.0 0.3
0.0 0.4 0.6
−.5 −.1 −.7
−.2 −.6 −.7
−.5 −.9 0.0

⎞
⎟⎟⎟⎟⎠

The score matrix and the total score for selection are :

S(A,B) =

⎛
⎜⎜⎜⎜⎝

00.1 −0.2 00.1
−0.1 00.7 01.0
−1.0 −.5 −1.5
−0.7 −1.5 −1.0
−1.1 −1.6 −0.1

⎞
⎟⎟⎟⎟⎠

Total score =

⎛
⎜⎜⎜⎜⎝

00.0
01.6
−3.0
−3.2
−2.8

⎞
⎟⎟⎟⎟⎠

Hence, the priority of security management should be given in

descending order to Mumbai, Delhi, Bangaluru, Kolkata and

Chennai.

6 Conclusion
In this paper, some definitions regarding neutrosophic soft ma-

trices have been brought and some new operators have been in-

cluded, illustrated by suitable examples. Moreover, application

of neutrosophic soft matrix theory in decision making problems

have been made. We expect, this paper will promote the future

study on different algorithms in several other decision making

problems.
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BCK/BCI
1 2 3 4,∗

1

2

3

4

∗

i, j, k, l, m, n ∈ {1, 2, 3, 4}
(T (i, j), I(k, l), F (m, n))

BCK/BCI

BCK

D MV
BCI

BCK

(t, i, f)
[0, 1]

BCK/BCI
(T (i, j), I(k, l), F (m,n))
BCK/BCI i, j, k, l, m, n ∈ {1, 2, 3, 4}

BCK/BCI
(T (i, j), I(k, l), F (m, n))

BCK/BCI i, j, k, l, m, n ∈ {1, 2, 3, 4}

BCI X := (X, ∗, 0)

((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

(x ∗ (x ∗ y)) ∗ y = 0,

x ∗ x = 0,

x ∗ y = y ∗ x = 0 ⇒ x = y

x, y, z ∈ X. BCI X 0 ∗x = 0
x ∈ X, X BCK

S BCK/BCI X
X x ∗ y ∈ S x, y ∈ S

BCK BCI
BK(X) BI(X) B(X) :=

BK(X) ∪ BI(X)

BCK/BCI

X
(X, ρ) X ρ X

n      (X, μ)  (X, ∗, 0) ∈ 
B(X)   

• (X, ∗, 0) 1 1
(X, ∗, 0)

(∀x ∈ X) (μ(0) ≥ μ(x)) ,

(∀x, y ∈ X) (μ(x) ≥ min{μ(x ∗ y), μ(y)}) ,
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University of New Mexico 
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• (X, ∗, 0) 2 2
(X, ∗, 0)

(∀x ∈ X) (μ(0) ≤ μ(x)) ,

(∀x, y ∈ X) (μ(x) ≤ min{μ(x ∗ y), μ(y)}) ,

• (X, ∗, 0) 3 3
(X, ∗, 0)

(∀x, y ∈ X) (μ(x) ≥ max{μ(x ∗ y), μ(y)}) ,

• (X, ∗, 0) 4 4
(X, ∗, 0)

(∀x, y ∈ X) (μ(x) ≤ max{μ(x ∗ y), μ(y)}) .

X X

A := {〈x;AT (x), AI(x), AF (x)〉 | x ∈ X}

AT : X → [0, 1] AI :
X → [0, 1] AF :
X → [0, 1]

A X
TA

IA FA x
X TA(x), IA(x), FA(x) ∈ [0, 1]

(X, ∗, 0) ∈ B(X) P∗([0, 1])
[0, 1]

n          
  X      

I := {〈x, I[T ](x), I[I](x), I[F ](x)〉 | x ∈ X}

I[T ] : X → P∗([0, 1])

I[I] : X → P∗([0, 1])

I[F ] : X → P∗([0, 1])

I :=
(I[T ], I[I], I[F ])

I := {〈x, I[T ](x), I[I](x), I[F ](x)〉 | x ∈ X}.

I := (I[T ], I[I], I[F ])
X

I[T ]inf : X → [0, 1], x �→ inf{I[T ](x)}
I[I]inf : X → [0, 1], x �→ inf{I[I](x)}
I[F ]inf : X → [0, 1], x �→ inf{I[F ](x)}

I[T ]sup : X → [0, 1], x �→ sup{I[T ](x)}
I[I]sup : X → [0, 1], x �→ sup{I[I](x)}
I[F ]sup : X → [0, 1], x �→ sup{I[F ](x)}.

n    i, j, k, l, m, n ∈ { 1, 2, 3, 4}    
   I := (I[T ], I[I], I[F ])  X    (T 

(i, j), I (k, l), F (m, n))     X   
   

(X, I[T ]inf) i (X, ∗, 0)
(X, I[T ]sup) j (X, ∗, 0)

(X, I[I]inf) k (X, ∗, 0) (X, I[I]sup)
l (X, ∗, 0)

(X, I[F ]inf) m (X, ∗, 0)
(X, I[F ]sup) n (X, ∗, 0)

BCK X = {0, 1, 2, 3}
∗

∗
∗ 0 1 2 3
0 0 0 0 0
1 1 0 0 1
2 2 2 0 2
3 3 3 3 0

I := (I[T ], I[I], I[F ])
(X, ∗, 0) I[T ], I[I] I[F ]

I[T ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.4, 0.6) x = 0
(0.3, 0.6] x = 1
[0.2, 0.7) x = 2
[0.1, 0.8] x = 3

I[I] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.5, 0.6) x = 0
(0.4, 0.6) x = 1
[0.2, 0.9] x = 2
[0.5, 0.7) x = 3
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I[F ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.4, 0.5) x = 0
(0.3, 0.5) x = 1
[0.1, 0.7] x = 2
(0.2, 0.8] x = 3

I := (I[T ], I[I], I[F ]) (T (1, 4),
I(1, 4), F (1, 4)) (X, ∗, 0)

I := (I[T ], I[I], I[F ])
(X, ∗, 0) I[T ], I[I] I[F ]

I[T ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.1, 0.4) x = 0
(0.2, 0.7) x = 1
[0.3, 0.8] x = 2
[0.4, 0.6) x = 3

I[I] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

(0.2, 0.5) x = 0
[0.5, 0.6] x = 1
(0.6, 0.7] x = 2
[0.3, 0.8] x = 3

I[F ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.3, 0.4) x = 0
(0.4, 0.7) x = 1
(0.6, 0.8) x = 2
[0.4, 0.6] x = 3

I := (I[T ], I[I], I[F ])
(T (4, 4), I(4, 4), F (4, 4))

(X, ∗, 0)

BCI X = {0, a, b, c}
∗

∗
∗ 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

I := (I[T ], I[I], I[F ])
(X, ∗, 0) I[T ], I[I] I[F ]

I[T ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.33, 0.91) x = 0
(0.72, 0.91) x = a
[0.72, 0.82) x = b
(0.55, 0.82] x = c

I[I] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

[0.22, 0.65) x = 0
[0.52, 0.55] x = a
(0.62, 0.65) x = b
[0.62, 0.55) x = c

I[F ] : X → P∗([0, 1]) x �→

⎧⎪⎪⎨
⎪⎪⎩

(0.25, 0.63) x = 0
[0.45, 0.63] x = a
(0.35, 0.53] x = b
[0.45, 0.53) x = c

I := (I[T ], I[I], I[F ])
(T (4, 1), I(4, 1), F (4, 1))

(X, ∗, 0) (T (2, 1), I(2, 1), F (2, 1))
(X, ∗, 0)

I[T ]inf(a) = 0.72 > 0.55 = min{I[T ]inf(a ∗ b), I[T ]inf(b)},

I[I]inf(b) = 0.62 > 0.52 = min{I[I]inf(b ∗ c), I[I]inf(c)},

I[F ]inf(c) = 0.45 > 0.35 = min{I[F ]inf(c ∗ a), I[F ]inf(c)}.

(T (4, 3), I(4, 3), F (4, 3))
(X, ∗, 0)

I[T ]sup(c) = 0.82 < 0.91 = max{I[T ]inf(c ∗ b), I[T ]inf(b)}

I[F ]sup(b) = 0.35 < 0.62 = max{I[F ]inf(b ∗ a), I[F ]inf(a)}.

I := (I[T ], I[I], I[F ]) (T (2, 3),
I(2, 3), F (2, 3)) (X, ∗, 0)

I := (I[T ], I[I], I[F ])
X

U(I[T ]ψ;αI) := {x ∈ X | I[T ]ψ(x) ≥ αI},
L(I[T ]ψ;αS) := {x ∈ X | I[T ]ψ(x) ≤ αS},

U(I[I]ψ;βI) := {x ∈ X | I[I]ψ(x) ≥ βI},
L(I[I]ψ;βS) := {x ∈ X | I[I]ψ(x) ≤ βS},

U(I[F ]ψ; γI) := {x ∈ X | I[F ]ψ(x) ≥ γI},
L(I[F ]ψ; γS) := {x ∈ X | I[F ]ψ(x) ≤ γS},

ψ ∈ {inf, sup} αI αS βI βS γI γS

[0, 1]

I := (I[T ],
I[I], I[F ]) (X, ∗, 0)
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I := (I[T ], I[I], I[F ]) (T (1, 4), I(1, 4),
F (1, 4)) (X, ∗, 0)

U(I[T ]inf ;αI) L(I[T ]sup;αS) U(I[I]inf ;βI)
L(I[I]sup;βS) U(I[F ]inf ; γI) L(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (4, 1), I(4, 1),
F (4, 1)) (X, ∗, 0)

L(I[T ]inf ;αI) U(I[T ]sup;αS) L(I[I]inf ;βI)
U(I[I]sup;βS) L(I[F ]inf ; γI) U(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (1, 1), I(1, 1),
F (1, 1)) (X, ∗, 0)

U(I[T ]inf ;αI) U(I[T ]sup;αS) U(I[I]inf ;βI)
U(I[I]sup;βS) U(I[F ]inf ; γI) U(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (4, 4), I(4, 4),
F (4, 4)) (X, ∗, 0)

L(I[T ]inf ;αI) L(I[T ]sup;αS) L(I[I]inf ;βI)
L(I[I]sup;βS) L(I[F ]inf ; γI) L(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (1, 4),
I(1, 4), F (1, 4)) (X, ∗, 0)
(X, I[T ]inf) (X, I[I]inf) (X, I[F ]inf) 1
X (X, I[T ]sup) (X, I[I]sup) (X, I[F ]sup) 4

X αI αS ∈ [0, 1] U(I[T ]inf ;αI)
L(I[T ]sup;αS) 0 ∈ U(I[T ]inf ;αI)

0 ∈ L(I[T ]sup;αS) x, y ∈ X x ∗ y ∈
U(I[T ]inf ;αI) y ∈ U(I[T ]inf ;αI) I[T ]inf(x ∗ y) ≥
αI I[T ]inf(y) ≥ αI

I[T ]inf(x) ≥ min{I[T ]inf(x ∗ y), I[T ]inf(y)} ≥ αI ,

x ∈ U(I[T ]inf ;αI) x ∗ y ∈ L(I[T ]sup;αS) y ∈
L(I[T ]sup;αS) I[T ]sup(x∗y) ≤ αS I[T ]sup(y) ≤ αS

I[T ]sup(x) ≤ max{I[T ]sup(x ∗ y), I[T ]sup(y)} ≤ αS ,

x ∈ L(I[T ]sup;αS) U(I[T ]inf ;αI)
L(I[T ]sup;αS) (X, ∗, 0) αI αS ∈ [0, 1]

U(I[I]inf ;βI) L(I[I]sup;βS)
U(I[F ]inf ; γI) L(I[F ]sup; γS)

(X, ∗, 0) βI βS γI γS ∈ [0, 1]

I := (I[T ],
I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (3, 4), I(3, 4), F (3, 4))
(X, ∗, 0) (T (i, 2),

I(i, 2), F (i, 2)) (X, ∗, 0)
i ∈ {1, 3} U(I[T ]inf ;αI) L(I[T ]sup;αS)

U(I[I]inf ;βI) L(I[I]sup;βS) U(I[F ]inf ; γI)
L(I[F ]sup; γS) (X, ∗, 0)

αI αS βI βS γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (4, 3), I(4, 3), F (4, 3))
(X, ∗, 0) (T (2, j),

I(2, j), F (2, j)) (X, ∗, 0)
j ∈ {1, 3} L(I[T ]inf ;αI) U(I[T ]sup;αS)

L(I[I]inf ;βI) U(I[I]sup;βS) L(I[F ]inf ; γI)
U(I[F ]sup; γS) (X, ∗, 0)

αI αS βI βS γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (3, 1), I(3, 1), F (3, 1))
(X, ∗, 0) (T (i, 3),

I(i, 3), F (i, 3)) (X, ∗, 0)
i ∈ {1, 3} U(I[T ]inf ;αI) U(I[T ]sup;αS)

U(I[I]inf ;βI) U(I[I]sup;βS) U(I[F ]inf ; γI)
U(I[F ]sup; γS) (X, ∗, 0)

αI αS βI βS γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (2, 4), I(2, 4), F (2, 4))
(X, ∗, 0) (T (i, 2), I(i, 2),

F (i, 2)) (X, ∗, 0) i ∈
{2, 4} L(I[T ]inf ;αI) L(I[T ]sup;αS) L(I[I]inf ;βI)
L(I[I]sup;βS) L(I[F ]inf ; γI) L(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1]

3 2
1 4

I := (I[T ],
I[I], I[F ]) (X, ∗, 0)

U(I[T ]inf ;αI) L(I[T ]sup;αS) U(I[I]inf ;βI)
L(I[I]sup;βS) U(I[F ]inf ; γI) L(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1] I := (I[T ], I[I], I[F ]) (T (1, 4),
I(1, 4), F (1, 4)) (X, ∗, 0)

U(I[T ]inf ;αI) U(I[T ]sup;αS) U(I[I]inf ;βI)
U(I[I]sup;βS) U(I[F ]inf ; γI) U(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1] I := (I[T ], I[I], I[F ]) (T (1, 1),
I(1, 1), F (1, 1)) (X, ∗, 0)

L(I[T ]inf ; αI) U(I[T ]sup;αS) L(I[I]inf ;βI)
U(I[I]sup;βS) L(I[F ]inf ; γI) U(I[F ]sup; γS)

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1] I := (I[T ], I[I], I[F ]) (T (4, 1),
I(4, 1), F (4, 1)) (X, ∗, 0)

L(I[T ]inf ;αI) L(I[T ]sup;αS) L(I[I]inf ;βI)
L(I[I]sup;βS) L(I[F ]inf ; γI) L(I[F ]sup; γS)
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(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1] I := (I[T ], I[I], I[F ]) (T (4, 4),
I(4, 4), F (4, 4)) (X, ∗, 0)

U(I[T ]inf ;αI) L(I[T ]sup;αS)
U(I[I]inf ;βI) L(I[I]sup;βS) U(I[F ]inf ; γI)
L(I[F ]sup; γS) (X, ∗, 0) αI

αS βI βS γI γS ∈ [0, 1] (X, I[T ]inf) 1
(X, ∗, 0) x, y ∈ X

I[T ]inf(x) < min{I[T ]inf(x ∗ y), I[T ]inf(y)}.

αI = min{I[T ]inf(x∗y), I[T ]inf(y)} x∗y, y ∈
U(I[T ]inf ;αI) x /∈ U(I[T ]inf ;αI)

(X, I[T ]inf) 1 (X, ∗, 0)
(X, I[T ]sup) 4 (X, ∗, 0)

I[T ]sup(a) > max{I[T ]sup(a ∗ b), I[T ]sup(b)}

a, b ∈ X a ∗ b, b ∈ L(I[T ]sup;αS) a /∈
L(I[T ]sup;αS)

αS := max{I[T ]sup(a ∗ b), I[T ]sup(b)}.

(X, I[T ]sup) 4
(X, ∗, 0) (X, I[I]inf)

1 (X, ∗, 0) (X, I[I]sup) 4
(X, ∗, 0) (X, I[F ]inf) 1 (X, ∗, 0)
(X, I[F ]sup) 4 (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, 4), I(1, 4), F (1, 4))
(X, ∗, 0)

I := (I[T ], I[I],
I[F ]) (X, ∗, 0) (T (2, 3), I(2, 3), F (2, 3))

(X, ∗, 0) U(I[T ]inf ;αI)c

L(I[T ]sup;αS)c U(I[I]inf ;βI)c L(I[I]sup;βS)c

U(I[F ]inf ; γI)c L(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (2, 3), I(2, 3),
F (2, 3)) (X, ∗, 0)

(X, I[T ]inf) (X, I[I]inf) (X, I[F ]inf) 2
(X, ∗, 0)

(X, I[T ]sup) (X, I[I]sup) (X, I[F ]sup) 3
(X, ∗, 0)

αI αS βI βS γI γS ∈ [0, 1]
U(I[T ]inf ;αI)c L(I[T ]sup;αS)c U(I[I]inf ;βI)c

L(I[I]sup;βS)c U(I[F ]inf ; γI)c L(I[F ]sup; γS)c

x, y, z, a, b, d ∈ X
x ∈ U(I[T ]inf ;αI)c a ∈ L(I[T ]sup;αS)c

y ∈ U(I[I]inf ;βI)c b ∈ L(I[I]sup;βS)c z ∈ U(I[F ]inf ; γI)c

d ∈ L(I[F ]sup; γS)c

I[T ]inf(0) ≤ I[T ]inf(x) < αI I[T ]sup(0) ≥
I[T ]sup(a) > αS

I[I]inf(0) ≤ I[I]inf(y) < βI I[I]sup(0) ≥ I[I]sup(b) >
βS

I[F ]inf(0) ≤ I[F ]inf(z) < γI I[F ]sup(0) ≥
I[F ]sup(d) > γS

0 ∈ U(I[T ]inf ;αI)c ∩ L(I[T ]sup;αS)c 0 ∈
U(I[I]inf ;βI)c ∩ L(I[I]sup;βS)c 0 ∈ U(I[F ]inf ; γI)c ∩
L(I[F ]sup; γS)c x, y ∈ X x ∗ y ∈
U(I[T ]inf ;αI)c y ∈ U(I[T ]inf ;αI)c I[T ]inf(x∗y) <
αI I[T ]inf(y) < αI

I[T ]inf(x) ≤ min{I[T ]inf(x ∗ y), I[T ]inf(y)} < αI ,

x ∈ U(I[T ]inf ;αI)c U(I[T ]inf ;αI)c

(X, ∗, 0)

• x ∗ y ∈ L(I[T ]sup;αS)c y ∈ L(I[T ]sup;αS)c,
x ∈ L(I[T ]sup;αS)c,

• x ∗ y ∈ U(I[I]inf ;βI)c y ∈ U(I[I]inf ; βI)c,
x ∈ U(I[I]inf ;βI)c,

• x ∗ y ∈ L(I[I]sup;βS)c y ∈ L(I[I]sup;βS)c,
x ∈ L(I[I]sup;βS)c,

• x ∗ y ∈ U(I[F ]inf ; γI)c y ∈ U(I[F ]inf ; γI)c,
x ∈ U(I[F ]inf ; γI)c,

• x ∗ y ∈ L(I[F ]sup; γS)c y ∈ L(I[F ]sup; γS)c,
x ∈ L(I[F ]sup; γS)c.

L(I[T ]sup;αS)c U(I[I]inf ;βI)c L(I[I]sup;βS)c

U(I[F ]inf ; γI)c L(I[F ]sup; γS)c (X, ∗, 0)

BCI X = {0, 1, a, b, c}
∗

∗
∗ 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

I := (I[T ], I[I], I[F ])
(X, ∗, 0) I[T ], I[I] I[F ]

I[T ] : X → P̃([0, 1]), x �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0.25, 0.85) x = 0
(0.45, 0.83] x = 1
[0.55, 0.73] x = a
(0.65, 0.73] x = b
[0.65, 0.75) x = c
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I[I] : X → P̃([0, 1]), x �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0.3, 0.75) x = 0
(0.3, 0.70] x = 1
[0.6, 0.63] x = a
(0.5, 0.63] x = b
[0.6, 0.68) x = c

I[F ] : X → P̃([0, 1]), x �→

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[0.44, 0.9) x = 0
(0.55, 0.9] x = 1
[0.55, 0.7] x = a
(0.66, 0.8] x = b
[0.66, 0.7) x = c

U(I[T ]inf ;αI)c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ αI ∈ [0, 0.25]
{0} αI ∈ (0.25, 0.45]
{0, 1} αI ∈ (0.45, 0.55]
{0, 1, a} αI ∈ (0.55, 0.65]
X αI ∈ (0.65, 1.0]

L(I[T ]sup;αS)c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ αS ∈ [0.85, 1.0]
{0} αS ∈ [0.83, 0.85)
{0, 1} αS ∈ [0.75, 0.83)
{0, 1, c} αS ∈ [0.73, 0.75)
X αS ∈ [0, 0.73)

U(I[I]inf ;βI)c =

⎧⎪⎪⎨
⎪⎪⎩

∅ βI ∈ [0, 0.3]
{0, 1} βI ∈ (0.3, 0.5]
{0, 1, b} βI ∈ (0.5, 0.6]
X βI ∈ (0.6, 1.0]

L(I[I]sup;βS)c =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∅ βS ∈ [0.75, 1.0]
{0} βS ∈ [0.70, 0.75)
{0, 1} βS ∈ [0.68, 0.70)
{0, 1, c} βS ∈ [0.63, 0.68)
X βS ∈ [0, 0.63)

U(I[F ]inf ; γI)c =

⎧⎪⎪⎨
⎪⎪⎩

∅ γI ∈ [0, 0.44]
{0} γI ∈ (0.44, 0.55]
{0, 1, a} γI ∈ (0.55, 0.66]
X γI ∈ (0.66, 1.0]

L(I[F ]sup; γS)c =

⎧⎪⎪⎨
⎪⎪⎩

∅ γS ∈ [0.9, 1.0]
{0, 1} γS ∈ [0.8, 0.9)
{0, 1, b} γS ∈ [0.7, 0.8)
X γS ∈ [0, 0.7)

U(I[T ]inf ;αI)c L(I[T ]sup;αS)c

U(I[I]inf ;βI)c L(I[I]sup;βS)c U(I[F ]inf ; γI)c

L(I[F ]sup; γS)c (X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1] I := (I[T ], I[I], I[F ]) (T (2, 3),
I(2, 3), F (2, 3)) (X, ∗, 0)

I[T ]inf(c) = 0.65 > 0.55 = min{I[T ]inf(c ∗ a), I[T ]inf(a)},

I[T ]sup(a) = 0.73 < 0.75 = max{I[T ]sup(a ∗ c), I[T ]sup(c)},

I[I]inf(c) = 0.6 > 0.5 = min{I[I]inf(c ∗ a), I[I]inf(a)},

I[I]sup(a) = 0.63 < 0.68 = max{I[I]sup(a ∗ c), I[I]sup(c)},

I[F ]inf(c) = 0.66 > 0.55 = min{I[F ]inf(c ∗ a), I[F ]inf(a)},

I[F ]sup(a) = 0.7 < 0.8 = max{I[F ]sup(a ∗ c), I[F ]sup(c)}.

I := (I[T ],
I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (2, 2), I(2, 2),
F (2, 2)) (X, ∗, 0)
U(I[T ]inf ;αI)c U(I[T ]sup;αS)c U(I[I]inf ;βI)c

U(I[I]sup;βS)c U(I[F ]inf ; γI)c U(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (3, 2), I(3, 2),
F (3, 2)) (X, ∗, 0)
L(I[T ]inf ;αI)c U(I[T ]sup;αS)c L(I[I]inf ;βI)c

U(I[I]sup;βS)c L(I[F ]inf ; γI)c U(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS γI

γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (3, 3), I(3, 3),
F (3, 3)) (X, ∗, 0)
L(I[T ]inf ;αI)c L(I[T ]sup;αS)c L(I[I]inf ;βI)c

L(I[I]sup;βS)c L(I[F ]inf ; γI)c L(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ],
I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, 2), I(1, 2),
F (1, 2)) (X, ∗, 0)
U(I[T ]inf ;αI) U(I[T ]sup;αS)c U(I[I]inf ;βI)
U(I[I]sup;βS)c U(I[F ]inf ; γI) U(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]
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I := (I[T ], I[I], I[F ]) (T (1, 3), I(1, 3),
F (1, 3)) (X, ∗, 0)
U(I[T ]inf ;αI) L(I[T ]sup;αS)c U(I[I]inf ;βI)
L(I[I]sup;βS)c U(I[F ]inf ; γI) L(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (2, 1), I(2, 1),
F (2, 1)) (X, ∗, 0)
U(I[T ]inf ;αI)c U(I[T ]sup;αS) U(I[I]inf ;βI)c

U(I[I]sup;βS) U(I[F ]inf ; γI)c U(I[F ]sup; γS)
(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (3, 1), I(3, 1),
F (3, 1)) (X, ∗, 0)
L(I[T ]inf ;αI)c U(I[T ]sup;αS) L(I[I]inf ;βI)c

U(I[I]sup;βS) L(I[F ]inf ; γI)c U(I[F ]sup; γS)
(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (2, 4), I(2, 4),
F (2, 4)) (X, ∗, 0)
U(I[T ]inf ;αI)c L(I[T ]sup;αS) U(I[I]inf ;βI)c

L(I[I]sup;βS) U(I[F ]inf ; γI)c L(I[F ]sup; γS)
(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (3, 4), I(3, 4),
F (3, 4)) (X, ∗, 0)
L(I[T ]inf ;αI)c L(I[T ]sup;αS) L(I[I]inf ;βI)c

L(I[I]sup;βS) L(I[F ]inf ; γI)c L(I[F ]sup; γS)
(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (4, 2), I(4, 2),
F (4, 2)) (X, ∗, 0)
L(I[T ]inf ;αI) U(I[T ]sup;αS)c L(I[I]inf ;βI)
U(I[I]sup;βS)c L(I[F ]inf ; γI) U(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI βS

γI γS ∈ [0, 1]

I := (I[T ], I[I], I[F ]) (T (4, 3), I(4, 3),
F (4, 3)) (X, ∗, 0)
L(I[T ]inf ;αI) L(I[T ]sup;αS)c L(I[I]inf ;βI)
L(I[I]sup;βS)c L(I[F ]inf ; γI) L(I[F ]sup; γS)c

(X, ∗, 0) αI αS βI

βS γI γS ∈ [0, 1]

(T (1, 4), I(1, 4), F (1, 4))

I := (I[T ], I[I], I[F ]) (X, ∗, 0)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ I[T ]inf(y)
I[T ]sup(x) ≤ I[T ]sup(y)
I[I]inf(x) ≥ I[I]inf(y)
I[I]sup(x) ≤ I[I]sup(y)
I[F ]inf(x) ≥ I[F ]inf(y)
I[F ]sup(x) ≤ I[F ]sup(y)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (1, 4), I(1, 4), F (1, 4))
(X, ∗, 0) (X, I[T ]inf)

(X, I[I]inf) (X, I[F ]inf) 1 (X, ∗, 0)
(X, I[T ]sup) (X, I[I]sup) (X, I[F ]sup) 4

(X, ∗, 0) x, y ∈ X x ≤ y x ∗ y = 0

I[T ]inf(x) ≥ min{I[T ]inf(x ∗ y), I[T ]inf(y)}
= min{I[T ]inf(0), I[T ]inf(y)} = I[T ]inf(y),

I[T ]sup(x) ≤ max{I[T ]sup(x ∗ y), I[T ]sup(y)}
= max{I[T ]sup(0), I[T ]sup(y)} = I[T ]sup(y),

I[I]inf(x) ≥ min{I[I]inf(x ∗ y), I[I]inf(y)}
= min{I[I]inf(0), I[I]inf(y)} = I[I]inf(y),

I[I]sup(x) ≤ max{I[I]sup(x ∗ y), I[I]sup(y)}
= max{I[I]sup(0), I[I]sup(y)} = I[I]sup(y),

I[F ]inf(x) ≥ min{I[F ]inf(x ∗ y), I[F ]inf(y)}
= min{I[F ]inf(0), I[F ]inf(y)} = I[F ]inf(y),

I[F ]sup(x) ≤ max{I[F ]sup(x ∗ y), I[F ]sup(y)}
= max{I[F ]sup(0), I[F ]sup(y)} = I[F ]sup(y).

I :=
(I[T ], I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, 1), I(1, 1), F (1, 1))
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(X, ∗, 0)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ I[T ]inf(y)
I[T ]sup(x) ≥ I[T ]sup(y)
I[I]inf(x) ≥ I[I]inf(y)
I[I]sup(x) ≥ I[I]sup(y)
I[F ]inf(x) ≥ I[F ]inf(y)
I[F ]sup(x) ≥ I[F ]sup(y)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (4, 1), I(4, 1), F (4, 1))
(X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ I[T ]inf(y)
I[T ]sup(x) ≥ I[T ]sup(y)
I[I]inf(x) ≤ I[I]inf(y)
I[I]sup(x) ≥ I[I]sup(y)
I[F ]inf(x) ≤ I[F ]inf(y)
I[F ]sup(x) ≥ I[F ]sup(y)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (4, 4), I(4, 4), F (4, 4))
(X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ I[T ]inf(y)
I[T ]sup(x) ≤ I[T ]sup(y)
I[I]inf(x) ≤ I[I]inf(y)
I[I]sup(x) ≤ I[I]sup(y)
I[F ]inf(x) ≤ I[F ]inf(y)
I[F ]sup(x) ≤ I[F ]sup(y)

x, y ∈ X x ≤ y

(i, j) ∈
{(2, 2), (2, 3), (3, 2), (3, 3)} (T (i, j), I(i, j), F (i, j))

I := (I[T ], I[I], I[F ]) (X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) = I[F ]sup(0)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (2, 3),
I(2, 3), F (2, 3)) (X, ∗, 0)
(X, I[T ]inf) (X, I[I]inf) (X, I[F ]inf) 2
(X, ∗, 0) (X, I[T ]sup) (X, I[I]sup) (X, I[F ]sup)

3 (X, ∗, 0) x, y ∈ X x ≤ y
x ∗ y = 0

I[T ]inf(x) ≤ min{I[T ]inf(x ∗ y), I[T ]inf(y)}
= min{I[T ]inf(0), I[T ]inf(y)} = I[T ]inf(0),

I[T ]sup(x) ≥ max{I[T ]sup(x ∗ y), I[T ]sup(y)}
= max{I[T ]sup(0), I[T ]sup(y)} = I[T ]inf(0),

I[I]inf(x) ≤ min{I[I]inf(x ∗ y), I[I]inf(y)}
= min{I[I]inf(0), I[I]inf(y)} = I[I]inf(0),

I[I]sup(x) ≥ max{I[I]sup(x ∗ y), I[I]sup(y)}
= max{I[I]sup(0), I[I]sup(y)} = I[I]inf(0),

I[F ]inf(x) ≤ min{I[F ]inf(x ∗ y), I[F ]inf(y)}
= min{I[F ]inf(0), I[F ]inf(y)} = I[F ]inf(0),

I[F ]sup(x) ≥ max{I[F ]sup(x ∗ y), I[F ]sup(y)}
= max{I[F ]sup(0), I[F ]sup(y)} = I[F ]inf(0).

I[T ]inf(x) = I[T ]inf(0) I[T ]sup(x) =
I[T ]sup(0) I[I]inf(x) = I[I]inf(0) I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) = I[F ]inf(0) I[F ]sup(x) = I[F ]sup(0)
x, y ∈ X x ≤ y

(i, j) ∈ {(2, 2), (3, 2), (3, 3)}

I :=
(I[T ], I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, j), I(1, j), F (1, j))
(X, ∗, 0) j ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ I[T ]inf(y)
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) ≥ I[I]inf(y)
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) ≥ I[F ]inf(y)
I[F ]sup(x) = I[F ]sup(0)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (i, 1), I(i, 1), F (i, 1))
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(X, ∗, 0) i ∈ {2, 3}
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) ≥ I[T ]sup(y)
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) ≥ I[I]sup(y)
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) ≥ I[F ]sup(y)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (i, 4), I(i, 4), F (i, 4))
(X, ∗, 0) i ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) ≤ I[T ]sup(y)
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) ≤ I[I]sup(y)
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) ≤ I[F ]sup(y)

x, y ∈ X x ≤ y

I := (I[T ], I[I], I[F ]) (T (4, j), I(4, j), F (4, j))
(X, ∗, 0) j ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ I[T ]inf(y)
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) ≤ I[I]inf(y)
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) ≤ I[F ]inf(y)
I[F ]sup(x) = I[F ]sup(0)

x, y ∈ X x ≤ y

(T (1, 4), I(1, 4), F (1, 4))
I := (I[T ], I[I], I[F ]) (X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ min{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) ≤ max{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) ≥ min{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) ≤ max{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) ≥ min{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) ≤ max{I[F ]sup(y), I[F ]sup(z)}
x, y, z ∈ X x ∗ y ≤ z

x, y, z ∈ X x∗y ≤ z (x∗y)∗z = 0

I[T ]inf(x) ≥ min{I[T ]inf(x ∗ y), I[T ]inf(y)}
≥ min{min{I[T ]inf((x ∗ y) ∗ z), I[T ]inf(z)},

I[T ]inf(y)}
= min{min{I[T ]inf(0), I[T ]inf(z)}, I[T ]inf(y)}
= min{I[T ]inf(y), I[T ]inf(z)},

I[T ]sup(x) ≤ max{I[T ]sup(x ∗ y), I[T ]sup(y)}
≤ max{max{I[T ]sup((x ∗ y) ∗ z), I[T ]sup(z)},

I[T ]sup(y)}
= max{max{I[T ]sup(0), I[T ]sup(z)}, I[T ]sup(y)}
= max{I[T ]sup(y), I[T ]sup(z)},

I[I]inf(x) ≥ min{I[I]inf(x ∗ y), I[I]inf(y)}
≥ min{min{I[I]inf((x ∗ y) ∗ z), I[I]inf(z)},

I[I]inf(y)}
= min{min{I[I]inf(0), I[I]inf(z)}, I[I]inf(y)}
= min{I[I]inf(y), I[I]inf(z)},

I[I]sup(x) ≤ max{I[I]sup(x ∗ y), I[I]sup(y)}
≤ max{max{I[I]sup((x ∗ y) ∗ z), I[I]sup(z)},

I[I]sup(y)}
= max{max{I[I]sup(0), I[I]sup(z)}, I[I]sup(y)}
= max{I[I]sup(y), I[I]sup(z)},

I[F ]inf(x) ≥ min{I[F ]inf(x ∗ y), I[F ]inf(y)}
≥ min{min{I[F ]inf((x ∗ y) ∗ z), I[F ]inf(z)},

I[F ]inf(y)}
= min{min{I[F ]inf(0), I[F ]inf(z)}, I[F ]inf(y)}
= min{I[F ]inf(y), I[F ]inf(z)},

I[F ]sup(x) ≤ max{I[F ]sup(x ∗ y), I[F ]sup(y)}
≤ max{max{I[F ]sup((x ∗ y) ∗ z), I[F ]sup(z)},

I[F ]sup(y)}
= max{max{I[F ]sup(0), I[F ]sup(z)}, I[F ]sup(y)}
= max{I[F ]sup(y), I[F ]sup(z)}.

I :=
(I[T ], I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, 1), I(1, 1), F (1, 1))
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(X, ∗, 0)
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ min{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) ≥ max{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) ≥ min{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) ≥ max{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) ≥ min{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) ≥ max{I[F ]sup(y), I[F ]sup(z)}

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (4, 1), I(4, 1), F (4, 1))
(X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ min{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) ≥ max{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) ≤ min{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) ≥ max{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) ≤ min{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) ≥ max{I[F ]sup(y), I[F ]sup(z)}

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (4, 4), I(4, 4), F (4, 4))
(X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ min{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) ≤ max{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) ≤ min{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) ≤ max{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) ≤ min{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) ≤ max{I[F ]sup(y), I[F ]sup(z)}

x, y, z ∈ X x ∗ y ≤ z

(i, j) ∈
{(2, 2), (2, 3), (3, 2), (3, 3)} (T (i, j), I(i, j), F (i, j))

I := (I[T ], I[I], I[F ]) (X, ∗, 0)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) = I[F ]sup(0)

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (2, 3),
I(2, 3), F (2, 3)) (X, ∗, 0)
(X, I[T ]inf) (X, I[I]inf) (X, I[F ]inf) 2

(X, ∗, 0) (X, I[T ]sup) (X, I[I]sup) (X, I[F ]sup) 3
(X, ∗, 0) x, y, z ∈ X x ∗ y ≤ z

(x ∗ y) ∗ z = 0

I[T ]inf(x) ≤ min{I[T ]inf(x ∗ y), I[T ]inf(y)}
≤ min{min{I[T ]inf((x ∗ y) ∗ z), I[T ]inf(z)},

I[T ]inf(y)}
= min{min{I[T ]inf(0), I[T ]inf(z)}, I[T ]inf(y)}
= I[T ]inf(0),

I[T ]sup(x) ≥ max{I[T ]sup(x ∗ y), I[T ]sup(y)}
≥ max{max{I[T ]sup((x ∗ y) ∗ z), I[T ]sup(z)},

I[T ]sup(y)}
= max{max{I[T ]sup(0), I[T ]sup(z)}, I[T ]sup(y)}
= I[T ]sup(0),

I[I]inf(x) ≤ min{I[I]inf(x ∗ y), I[I]inf(y)}
≤ min{min{I[I]inf((x ∗ y) ∗ z), I[I]inf(z)},

I[I]inf(y)}
= min{min{I[I]inf(0), I[I]inf(z)}, I[I]inf(y)}
= I[I]inf(0),

I[I]sup(x) ≥ max{I[I]sup(x ∗ y), I[I]sup(y)}
≥ max{max{I[I]sup((x ∗ y) ∗ z), I[I]sup(z)},

I[I]sup(y)}
= max{max{I[I]sup(0), I[I]sup(z)}, I[I]sup(y)}
= I[I]sup(0),

I[F ]inf(x) ≤ min{I[F ]inf(x ∗ y), I[F ]inf(y)}
≤ min{min{I[F ]inf((x ∗ y) ∗ z), I[F ]inf(z)},

I[F ]inf(y)}
= min{min{I[F ]inf(0), I[F ]inf(z)}, I[F ]inf(y)}
= I[F ]inf(0),

I[F ]sup(x) ≥ max{I[F ]sup(x ∗ y), I[F ]sup(y)}
≥ max{max{I[F ]sup((x ∗ y) ∗ z), I[F ]sup(z)},

I[F ]sup(y)}
= max{max{I[F ]sup(0), I[F ]sup(z)}, I[F ]sup(y)}
= I[F ]sup(0).

I[T ]inf(0) ≤ I[T ]inf(x) I[T ]sup(0) ≥ I[T ]sup(x)
I[I]inf(0) ≤ I[I]inf(x) I[I]sup(0) ≥ I[I]sup(x) I[F ]inf(0) ≤
I[F ]inf(x) I[F ]sup(0) ≥ I[F ]sup(x)
I[T ]inf(0) = I[T ]inf(x) I[T ]sup(0) = I[T ]sup(x)
I[I]inf(0) = I[I]inf(x) I[I]sup(0) = I[I]sup(x) I[F ]inf(0) =
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I[F ]inf(x) I[F ]sup(0) = I[F ]sup(x)
(i, j) ∈ {(2, 2), (3, 2), (3, 3)}

I :=
(I[T ], I[I], I[F ]) (X, ∗, 0)

I := (I[T ], I[I], I[F ]) (T (1, j), I(1, j), F (1, j))
(X, ∗, 0) j ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≥ min{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) ≥ min{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) ≥ min{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) = I[F ]sup(0)

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (i, 1), I(i, 1), F (i, 1))
(X, ∗, 0) i ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) ≥ min{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) ≥ min{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) ≥ min{I[F ]sup(y), I[F ]sup(z)}

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (i, 4), I(i, 4), F (i, 4))
(X, ∗, 0) i ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) = I[T ]inf(0)
I[T ]sup(x) ≤ max{I[T ]sup(y), I[T ]sup(z)}
I[I]inf(x) = I[I]inf(0)
I[I]sup(x) ≤ max{I[I]sup(y), I[I]sup(z)}
I[F ]inf(x) = I[F ]inf(0)
I[F ]sup(x) ≤ max{I[F ]sup(y), I[F ]sup(z)}

x, y, z ∈ X x ∗ y ≤ z

I := (I[T ], I[I], I[F ]) (T (4, j), I(4, j), F (4, j))
(X, ∗, 0) j ∈ {2, 3}

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

I[T ]inf(x) ≤ max{I[T ]inf(y), I[T ]inf(z)}
I[T ]sup(x) = I[T ]sup(0)
I[I]inf(x) ≤ max{I[I]inf(y), I[I]inf(z)}
I[I]sup(x) = I[I]sup(0)
I[F ]inf(x) ≤ max{I[F ]inf(y), I[F ]inf(z)}
I[F ]sup(x) = I[F ]sup(0)

x, y, z ∈ X x ∗ y ≤ z

BCI

BCK/BCI

BCK

BCK/BCI
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Abstract: In this paper we introduce the concept of a new class of

an ordered neutrosophic bitopological spaces. Besides giving some

interesting properties of these spaces. We also prove analogues of

Uryshon’s lemma and Tietze extension theorem in an ordered neu-

trosophic bitopological spaces.

Keywords:Ordered neutrosophic bitopological space; lower(resp.upper) pairwise neutrosophic Gδ-α-locally T1-ordered space; pairwise neutrosophic Gδ-α-

locally T1-ordered space; pairwise neutrosophic Gδ-α-locally T2-ordered space; weakly pairwise neutrosophic Gδ-α-locally T2-ordered space; almost pairwise

neutrosophic Gδ-α-locally T2-ordered space and strongly pairwise neutrosophic Gδ-α-locally normally ordered space.

1 Introduction and Preliminaries
The concept of fuzzy sets was introduced by Zadeh [17]. Fuzzy sets have applications in many fields such as information theory

[15] and control theory [16]. The theory of fuzzy topological spaces was introduced and developed by Chang [7]. Atanassov

[2] introduced and studied intuitionistic fuzzy sets. On the other hand, Coker [8] introduced the notions of an intuitionistic fuzzy

topological space and some other related concepts. The concept of an intuitionistic fuzzy α-closed set was introduced by B. Krsteshka

and E. Ekici [5]. G. Balasubramanian [3] was introduced the concept of fuzzy Gδ set. Ganster and Reilly used locally closed sets [10]

to define LC-continuity and LC-irresoluteness. The concept of an ordered fuzzy topological space was introduced and developed by

A. K. Katsaras [11]. Later G. Balasubmanian [4] introduced and studied the concepts of an ordered L-fuzzy bitopological spaces. F.

Smarandache [[13], [14]
introduced the concepts of neutrosophy and neutrosophic set.

The concepts of neutrosophic crisp set and neutrosophic crisp

topological space were introduced by A. A. Salama and S. A.

Alblowi [12].

In this paper, we introduce the concepts of pairwise neutro-

sophic Gδ-α-locally T1-ordered space, pairwise neutrosophic

Gδ-α-locally T2-ordered space, weakly pairwise neutrosophic

Gδ-α-locally T2-ordered space, almost pairwise neutrosophic

Gδ-α-locally T2-ordered space and strongly pairwise neutro-

sophic Gδ-α-locally normally ordered space. Some interesting

propositions are discussed. Urysohn’s lemma and Tietze exten-

sion theorem of an strongly pairwise neutrosophic Gδ-α-locally

normally ordered space are studied and established.

Definition 1.1. [7] Let X be a nonempty set and A ⊂ X . The

characteristic function of A is denoted and defined by χA(x) ={
1 if x ∈ A
0 if x �∈ A

Definition 1.2. [13, 14] Let T,I,F be real standard or non standard

subsets of ]0−, 1+[, with supT = tsup, infT = tinf
supI = isup, infI = iinf

supF = fsup, infF = finf
n− sup = tsup + isup + fsup
n−inf = tinf+iinf+finf . T,I,F are neutrosophic components.

Definition 1.3. [13, 14] Let X be a nonempty fixed set. A

neutrosophic set [briefly NS] A is an object having the form

A = {〈x, μ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} where μ

A
(x), σ

A
(x)

and γ
A
(x) which represents the degree of membership function

(namely μ
A
(x)), the degree of indeterminacy (namely σ

A
(x))

and the degree of nonmembership (namely γ
A
(x)) respectively

of each element x ∈ X to the set A.

Remark 1.1. [13, 14]

(1) A neutrosophic set A = {〈x, μ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈

X} can be identified to an ordered triple 〈μ
A
, σ

A
, γ

A
〉 in

]0−, 1+[ on X.

(2) For the sake of simplicity, we shall use the symbol

A = 〈μ
A
, σ

A
, γ

A
〉 for the neutrosophic set A =

{〈x, μ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}.

Definition 1.4. [12] Let X be a nonempty set and the neutro-

sophic sets A and B in the form
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A = {〈x, μ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}, B =

{〈x, μ
B
(x), σ

B
(x), γ

B
(x)〉 : x ∈ X}. Then

(a) A ⊆ B iff μ
A
(x) ≤ μ

B
(x), σ

A
(x) ≤ σ

B
(x) and γ

A
(x) ≥

γ
B
(x) for all x ∈ X;

(b) A = B iff A ⊆ B and B ⊆ A;

(c) Ā = {〈x, γA
(x), σ

A
(x), μ

A
(x)〉 : x ∈ X}; [Complement

of A]

(d) A ∩ B = {〈x, μ
A
(x) ∧ μ

B
(x), σ

A
(x) ∧ σ

B
(x), γ

A
(x) ∨

γ
B
(x)〉 : x ∈ X};

(e) A ∪ B = {〈x, μ
A
(x) ∨ μ

B
(x), σ

A
(x) ∨ σ

B
(x), γ

A
(x) ∧

γ
B
(x)〉 : x ∈ X};

(f) [ ]A = {〈x, μ
A
(x), σ

A
(x), 1− μ

A
(x)〉 : x ∈ X};

(g) 〈〉A = {〈x, 1− γ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X}.

Definition 1.5. [12] Let {Ai : i ∈ J} be an arbitrary family of

neutrosophic sets in X. Then

(a)
⋂
Ai = {〈x,∧μ

Ai
(x),∧σ

Ai
(x),∨γ

Ai
(x)〉 : x ∈ X};

(b)
⋃
Ai = {〈x,∨μ

Ai
(x),∨σ

Ai
(x),∧γ

Ai
(x)〉 : x ∈ X}.

Since our main purpose is to construct the tools for developing

neutrosophic topological spaces, we must introduce the neutro-

sophic sets 0
N

and 1
N

in X as follows:

Definition 1.6. [12] 0
N

= {〈x, 0, 0, 1〉 : x ∈ X} and 1
N

=
{〈x, 1, 1, 0〉 : x ∈ X}.

Definition 1.7. [9] A neutrosophic topology (NT) on a nonempty

set X is a family T of neutrosophic sets in X satisfying the fol-

lowing axioms:

(i) 0N
, 1

N
∈ T ,

(ii) G1 ∩G2 ∈ T for any G1, G2 ∈ T ,

(iii) ∪Gi ∈ T for arbitrary family {Gi | i ∈ Λ} ⊆ T .

In this case the ordered pair (X,T ) or simply X is called a neu-

trosophic topological space (NTS) and each neutrosophic set in

T is called a neutrosophic open set (NOS). The complement A
of a NOS A in X is called a neutrosophic closed set (NCS) in X .

Definition 1.8. [9] Let A be a neutrosophic set in a neutrosophic

topological space X . Then

Nint(A) =
⋃{G | G is a neutrosophic open set in X and

G ⊆ A} is called the neutrosophic interior of A;

Ncl(A) =
⋂{G | G is a neutrosophic closed set in X and

G ⊇ A} is called the neutrosophic closure of A.

Corollary 1.1. [9] Let A,B,C be neutrosophic sets in X. Then

the basic properties of inclusion and complementation:

(a) A ⊆ B and C ⊆ D⇒A∪C ⊆ B∪D and A∩C ⊆ B∩D,

(b) A ⊆ B and A ⊆ C ⇒ A ⊆ B ∩ C,

(c) A ⊆ C and B ⊆ C ⇒ A ∪B ⊆ C,

(d) A ⊆ B and B ⊆ C ⇒ A ⊆ C,

(e) A ∪B = A ∩B,

(f) A ∩B = A ∪B,

(g) A ⊆ B ⇒ B ⊆ A,

(h) (A) = A,

(i) 1
N
= 0

N
,

(j) 0
N
= 1

N
.

Now we shall define the image and preimage of neutrosophic

sets. Let X and Y be two nonempty sets and f : X → Y be a

function.

Definition 1.9. [9]

(a) If B = {〈y, μ
B
(y), σ

B
(y), γ

B
(y)〉 : y ∈ Y } is a neutro-

sophic set in Y, then the preimage of B under f, denoted by

f−1(B), is the neutrosophic set in X defined by

f−1(B) = {〈x, f−1(μ
B
)(x), f−1(σ

B
)(x), f−1(γ

B
)(x)〉 :

x ∈ X}.

(b) If A = {〈x, μ
A
(x), σ

A
(x), γ

A
(x)〉 : x ∈ X} is a neutro-

sophic set in X,then the image of A under f, denoted by

f(A), is the neutrosophic set in Y defined by

f(A) = {〈y, f(μ
A
)(y), f(σ

A
)(y), (1 − f(1 − γ

A
))(y)〉 :

y ∈ Y }. where

f(μ
A
)(y) =

{
supx∈f−1(y) μA

(x), if f−1(y) �= ∅,
0, otherwise,

f(σ
A
)(y) =

{
supx∈f−1(y) σA

(x), if f−1(y) �= ∅,
0, otherwise,

(1− f(1− γ
A
))(y) =

{
infx∈f−1(y) γA

(x), if f−1(y) �= ∅,
1, otherwise,

For the sake of simplicity, let us use the symbol f−(γA
) for

1− f(1− γ
A
).

Corollary 1.2. [9] Let A , Ai(i ∈ J) be neutrosophic sets in

X, B, Bi(i ∈ K) be neutrosophic sets in Y and f : X → Y a

function. Then

(a) A1 ⊆ A2 ⇒ f(A1) ⊆ f(A2),

(b) B1 ⊆ B2 ⇒ f−1(B1) ⊆ f−1(B2),

(c) A ⊆ f−1(f(A)) { If f is injective,then A = f−1(f(A)) } ,

(d) f(f−1(B)) ⊆ B { If f is surjective,then f(f−1(B)) = B },

(e) f−1(
⋃

Bj) =
⋃

f−1(Bj),
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(f) f−1(
⋂
Bj) =

⋂
f−1(Bj),

(g) f(
⋃
Ai) =

⋃
f(Ai),

(h) f(
⋂
Ai) ⊆ ⋂

f(Ai) { If f is injective,then f(
⋂

Ai) =⋂
f(Ai)},

(i) f−1(1
N
) = 1

N
,

(j) f−1(0
N
) = 0

N
,

(k) f(1
N
) = 1

N
, if f is surjective,

(l) f(0
N
) = 0

N
,

(m) f(A) ⊆ f(A), if f is surjective,

(n) f−1(B) = f−1(B).

Definition 1.10. [1] A neutrosophic set A in a neutrosophic

topological space (X,T ) is called a neutrosophic α-open set

(NαOS) if A ⊆ Nint(Ncl(Nint(A))).

2 Ordered neutrosophic Gδ-α-locally bitopologi-
cal Spaces

In this section, the concepts of a neutrosophic Gδ set, neutro-

sophic α-closed set, neutrosophic Gδ-α-locally closed set, up-

per pairwise neutrosophic Gδ-α-locally T1-ordered space, lower

pairwise neutrosophic Gδ-α-locally T1-ordered space, pairwise

neutrosophic Gδ-α-locally T1-ordered space, pairwise neutro-

sophic Gδ-α-locally T2-ordered space, weakly pairwise neu-

trosophic Gδ-α-locally T2-ordered space, almost pairwise neu-

trosophic Gδ-α-locally T2-ordered space and strongly pairwise

neutrosophic Gδ-α-locally normally ordered space are intro-

duced. Some basic properties and characterizations are dis-

cussed. Urysohn’s lemma and Tietze extension theorem of an

strongly pairwise neutrosophic Gδ-α-locally normally ordered

space are studied and established.

Definition 2.1. Let (X,T ) be a neutrosophic topological space.

Let A = 〈x, μ
A
, σ

A
, γ

A
〉 be a neutrosophic set of a neutrosophic

topological space X. Then A is said to be a neutrosophic Gδ

set (briefly NGδS) if A =
⋂∞

i=1 Ai, where each Ai ∈ T and

Ai = 〈x, μ
Ai
, σ

Ai
, γ

Ai
〉.

The complement of neutrosophic Gδ set is said to be a neutro-

sophic Fσ set(briefly NFσS).

Definition 2.2. Let (X,T ) be a neutrosophic topological space.

Let A = 〈x, μ
A
, σ

A
, γ

A
〉 be a neutrosophic set on a neutrosophic

topological space (X,T ). Then A is said be a neutrosophic Gδ-

α-locally closed set (in short,NGδ-α-lcs) if A = B ∩ C, where

B is a neutrosophic Gδ set and C is an neutrosophic α-closed set.

The complement of a neutrosophic Gδ-α-locally closed set is

said to be a neutrosophic Gδ-α-locally open set (in short,NGδ-

α-los).

Definition 2.3. Let (X,T ) be a neutrosophic topological space.

Let A = 〈x, μ
A
, σ

A
, γ

A
〉 be a neutrosophic set in a neutrosophic

topological space (X,T ). The neutrosophic Gδ-α-locally clo-

sure of A is denoted and defined by

NGδ-α-lcl(A)=
⋂{B:B = 〈x, μ

B
, σ

B
, γ

B
〉 is a neutrosophic

Gδ-α-locally closed

set in X and A ⊆ B}.

Definition 2.4. Let (X,T ) be a neutrosophic topological space.

Let A = 〈x, μ
A
, σ

A
, γ

A
〉 be a neutrosophic set in a neutrosophic

topological space (X,T ). The neutrosophic Gδ-α-locally inte-

rior of A is denoted and defined by

NGδ-α-lint(A)=
⋃{B:B = 〈x, μ

B
, σ

B
, γ

B
〉 is a neutro-

sophic Gδ-α-locally open

set in X and B ⊆ A}.

Definition 2.5. Let X be a nonempty set and x ∈ X a fixed

element in X . If r, t ∈ I0 = (0, 1] and s ∈ I1 = [0, 1) are

fixed real numbers such that 0 < r + t + s < 3, then xr,t,s =
〈x, r, t, s〉 is called a neutrosophic point (briefly NP) in X , where

r denotes the degree of membership of xr,t,s, t denotes the degree

of indeterminacy and s denotes the degree of nonmembership of

xr,t,s and x ∈ X the support of xr,t,s.

The neutrosophic point xr,t,s is contained in the neutrosophic

A(xr,t,s ∈ A) if and only if r < μA(x), t < σA(x), s > γA(x).

Definition 2.6. A neutrosophic set A = 〈x, μ
A
, σ

A
, γ

A
〉 in a

neutrosophic topological space (X,T ) is said to be a neutro-

sophic neighbourhood of a neotrosophic point xr,t,s, x ∈ X , if

there exists a neutrosophic open set B = 〈x, μ
B
, σ

B
, γ

B
〉 with

xr,t,s ⊆ B ⊆ A.

Definition 2.7. A neutrosophic set A = 〈x, μ
A
, σ

A
, γ

A
〉 in

a neutrosophic topological space (X,T ) is said to be a neu-

trosophic Gδ-α-locally neighbourhood of a neutrosophic point

xr,t,s, x ∈ X , if there exists a neutrosophic Gδ-α-locally open

set B = 〈x, μ
B
, σ

B
, γ

B
〉 with xr,t,s ⊆ B ⊆ A.

Notation 2.1. In what follows, we denote neutrosophic neigh-

bourhood A of a in X by neutrosphic neighbourhood A of a neu-

trsophic point ar,t,s for a ∈ X .

Definition 2.8. A neutrosophic set A = 〈x, μ
A
, σ

A
, γ

A
〉 in a par-

tially ordered set (X,≤) is said to be an

(i) increasing neutrosophic set if x ≤ y implies A(x) ⊆
A(y).That is,

μA(x) ≤ μA(y), σA(x) ≤ σA(y) and γA(x) ≥ γA(y).

(ii) decreasing neutrosophic set if x ≤ y implies A(x) ⊇
A(y).That is,

μA(x) ≥ μA(y) ,σA(x) ≥ σA(y)and γA(x) ≤ γA(y).

Definition 2.9. An ordered neutrosophic bitopological space is a

neutrosophic bitopological space (X, τ1, τ2,≤) (where τ1 and τ2
are neutrosophic topologies on X ) equipped with a partial order

≤.
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Definition 2.10. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be an upper pairwise neutrosophic T1-

ordered space if a, b ∈ X such that a � b, there exists a decreas-

ing τ1 neutrosophic neighbourhood (or) an decreasing τ2 neutro-

sophic neighbourhood A of b such that A = 〈x, μ
A
, σ

A
, γ

A
〉 is

not a neutrosophic neighbourhood of a.

Definition 2.11. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a lower pairwise neutrosophic T1-

ordered space if a, b ∈ X such that a � b, there exists an increas-

ing τ1 neutrosophic neighbourhood (or) an increasing τ2 neutro-

sophic neighbourhood A of a such that A = 〈x, μ
A
, σ

A
, γ

A
〉 is

not a neutrosophic neighbourhood of b.

Example 2.1. Let X = {1, 2} with a partial order rela-

tion ≤. Let τ1 = {0N , 1N , A} and τ2 = {0N , 1N , B}
where A = 〈(0.3, 0.3, 0.5), (0.7, 0.7, 0.4)〉 and B =
〈(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)〉 be any two topologies on X .

Then (X, τ1, τ2,≤) is an ordered neutrosophic bitopological

space. Let 1(0.25,0.3,0.5) and 2(0.25,0.25,0.35) be any two neu-

trosophic points on X . For 1(0.25,0.3,0.5) � 2(0.25,0.25,0.35),
there exists an increasing τ1 neutrosphic neighbourhood A of

1(0.25,0.3,0.5) such that A is not neutrosophic neighbourhood of

2(0.25,0.25,0.35). Therefore (X, τ1, τ2,≤) is a lower pairwise neu-

trosophic T1-ordered space.

Definition 2.12. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a pairwise neutrosophic T1-ordered

space if and only if it is both upper and lower pairwise neutro-

sophic T1-ordered space.

Definition 2.13. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be an upper pairwise neutrosophic Gδ-

α-locally T1-ordered space if a, b ∈ X such that a � b, there

exists a decreasing τ1 neutrosophic Gδ-α-locally neighbourhood

(or) a decreasing τ2 neutrosophic Gδ-α-locally neighbourhood

A = 〈x, μ
A
, σ

A
, γ

A
〉 of b such that A is not a neutrosophic Gδ-

α-locally neighbourhood of a.

Definition 2.14. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a lower pairwise neutrosophic Gδ-

α-locally T1-ordered space if a, b ∈ X such that a � b, there ex-

ists an increasing τ1 neutrosophic Gδ-α-locally neighbourhood

(or) an increasing τ2 neutrosophic Gδ-α-locally neighbourhood

A = 〈x, μ
A
, σ

A
, γ

A
〉 of a such that A is not a neutrosophic Gδ-

α-locally neighbourhood of b.

Definition 2.15. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a pairwise neutrosophic Gδ-α-locally

T1-ordered space if and only if it is both upper and lower pairwise

neutrosophic Gδ-α-locally T1-ordered space.

Proposition 2.1. For an ordered neutrosophic bitopological

space (X, τ1, τ2,≤) the following are equivalent

(i) X is a lower (resp. upper) pairwise neutrosophic Gδ-α-

locally T1-ordered space.

(ii) For each a, b ∈ X such that a � b, there exists an increas-

ing (resp. decreasing) τ1 neutrosophic Gδ-α-locally open

set(or) an increasing (resp.decreasing) τ2 neutrosophic Gδ-

α-locally open set A = 〈x, μ
A
, σ

A
, γ

A
〉 such that A(a) > 0

(resp. A(b) > 0) and A is not a neutrosophic Gδ-α-locally

neighbourhood of b (resp.a).

Proof:
(i)⇒(ii) Let X be a lower pairwise neutrosophic Gδ-α-locally

T1-ordered space. Let a, b ∈ X such that a � b. There ex-

ists an increasing τ1 neutrosophic Gδ-α-locally neighbourhood

(or) an increasing τ2 neutrosophic Gδ-α-locally neighbourhood

A of a such that A is not a neutrosophic Gδ-α-locally neigh-

bourhood of b. It follows that there exists a τi neutrosophic

Gδ-α-locally open set (i = 1(or)2), Ai = 〈x, μ
Ai
, σ

Ai
, γ

Ai
〉

with Ai ⊆ A and Ai(a) = A(a) > 0. As A is an increas-

ing neutrosophic set, A(a) > A(b) and since A is not a neu-

trosophic Gδ-α-locally neighbourhood of b, Ai(b) < A(b) im-

plies Ai(a) = A(a) > A(b) ≥ Ai(b). This shows that Ai is an

increasing neutrosophic set and Ai is not a neutrosophic Gδ-α-

locally neighbourhood of b, since A is not a neutrosophic Gδ-α-

locally neighbourhood of b.
(ii)⇒(i) Since A1 is an increasing τ1 neutrosophic Gδ-α-

locally open set (or) increasing τ2 neutrosophic Gδ-α-locally

open set. Now, A1 is a neutrosophic Gδ-α-locally neighbour-

hood of a with A1(a) > 0. By (ii), A1 is not a neutrosophic

Gδ-α-locally neighbourhood of b. This implies, X is a lower

pairwise neutrosophic Gδ-α-locally T1-ordered space.

Remark 2.1. Similar proof holds for upper pairwise neutro-

sophic Gδ-α-locally T1-ordered space.

Proposition 2.2. If (X, τ1, τ2,≤) is a lower (resp. upper) pair-

wise neutrosophic Gδ-α-locally T1-ordered space and τ1 ⊆
τ∗1 , τ2 ⊆ τ∗2 , then (X, τ1

∗, τ2∗,≤) is a lower (resp.

upper) pairwise neutrosophic Gδ-α-locally T1-ordered space.

Proof:
Let (X, τ1, τ2,≤) be a lower pairwise neutrosophic Gδ-α-

locally T1-ordered space. Then if a, b ∈ X such that a � b, there

exists an increasing τ1 neutrosophic Gδ-α-locally neighbourhood

(or) an increasing τ2 neutrosophic Gδ-α-locally neighbourhood

A = 〈x, μ
A
, σ

A
, γ

A
〉 of a such that A is not a neutrosophic Gδ-α-

locally neighbourhood of b. Since τ1 ⊆ τ∗1 and τ2 ⊆ τ∗2 . There-

fore, if a, b ∈ X such that a � b, there exists an increasing τ1
∗

neutrosophic Gδ-α-locally neighbourhood (or) an increasing τ2
∗

neutrosophic Gδ-α-locally neighbourhood A = 〈x, μ
A
, σ

A
, γ

A
〉

of a such that A is not a neutrosophic Gδ-α-locally neighbour-

hood of b. Thus (X, τ1
∗, τ2∗,≤) is a lower pairwise neutrosophic

Gδ-α-locally T1-ordered space.

Remark 2.2. Similar proof holds for upper pairwise neutro-

sophic Gδ-α-locally T1-ordered space.

Definition 2.16. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a pairwise neutrosophic T2-ordered

space if for a, b ∈ X with a � b, there exist a neutrosophic open

sets A = 〈x, μ
A
, σ

A
, γ

A
〉 and B = 〈x, μ

B
, σ

B
, γ

B
〉 such that

R. Narmada Devi, R. Dhavaseelan, S. Jafari, On Separation Axioms in an Ordered Neutrosophic Bitopological Space

Neutrosophic Sets and Systems, 18/2017 30



A is an increasing τi neutrosophic neighbourhood of a, B is a

decreasing τj neutrosophic neighbourhood of b (i, j = 1, 2 and

i �= j) and A ∩B = 0N .

Definition 2.17. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a pairwise neutrosophic Gδ-α-locally

T2-ordered space if for a, b ∈ X with a � b, there exist a

neutrosophic Gδ-α-locally open sets A = 〈x, μ
A
, σ

A
, γ

A
〉 and

B = 〈x, μ
B
, σ

B
, γ

B
〉 such that A is an increasing τi neutrosophic

Gδ-α-locally neighbourhood of a, B is a decreasing τj neutro-

sophic Gδ-α-locally neighbourhood of b (i, j = 1, 2 and i �= j)

and A ∩B = 0N .

Definition 2.18. Let (X,≤) be a partially ordered set. Let G =
{(x, y) ∈ X ×X |
x ≤ y, y = f(x)} . Then G is called a graph of the partially

ordered ≤.

Definition 2.19. Let X be any nonempty set. Let A ⊆
X . Then we define a neutrosophic set χ∗

A is of the form

〈x, χA(x), χA(x), 1− χA(x)〉.
Definition 2.20. Let A = 〈x, μ

A
, σ

A
, γ

A
〉 be a neutrosophic

set in an ordered neutrosophic bitopological space (X, τ1, τ2,≤).
Then for i = 1(or)2, we define

Iτi -Gδ-α-li(A) = increasing τi neutrosophic Gδ-α-locally in-

terior of A
= the greatest increasing τi neutrosophic Gδ-α-

locally open

set contained in A
Dτi -Gδ-α-li(A) = decreasing τi neutrosophic Gδ-α-locally

interior of A
= the greatest decreasing τi neutrosophic Gδ-α-

locally open

set contained in A
Iτi -Gδ-α-lc(A) = increasing τi neutrosophic Gδ-α-locally

closure of A
= the smallest increasing τi neutrosophic Gδ-α-

locally closed

set containing in A
Dτi -Gδ-α-lc(A) = decreasing τi neutrosophic Gδ-α-locally

closure of A
= the smallest decreasing τi neutrosophic Gδ-α-

locally closed

set containing in A.

Notation 2.2. (i) The complement of a neutrosophic set χG
∗,

where G is the graph of the partial order of X is denoted by

χ∗
G

.

(ii) Iτi -Gδ-α-lc(A) is denoted by Ii(A) and Dτj -Gδ-α-lc(A)
is denoted by Dj(A), where A = 〈x, μ

A
, σ

A
, γ

A
〉 is a neu-

trosophic set in an ordered neutrosophic bitopological space

(X, τ1, τ2,≤), for i, j = 1, 2 and i �= j.

(iii) Iτi -Gδ-α-li(A) is denoted by Ii
◦(A) and Dτj -Gδ-α-li(A)

is denoted by Dj
◦(A), where A = 〈x, μ

A
, σ

A
, γ

A
〉 is a neu-

trosophic set in an ordered neutrosophic bitopological space

(X, τ1, τ2,≤), for i, j = 1, 2 and i �= j.

Definition 2.21. Let A and B be any two neutrosophic sets of a

nonempty set X . Then a neutrosophic set A×B on X ×X is of

the form A×B = 〈(x, y), μA×B , σA×B , γA×B〉 where

μA×B((x, y)) = μA(x) ∧ μB(y), σA×B((x, y)) = σA(x) ∧
σB(y) and γA×B((x, y)) = γA(x) ∨ γB(y), for every (x, y) ∈
X ×X

Proposition 2.3. For an ordered neutrosophic bitopological

space (X, τ1, τ2,≤) the following are equivalent

(i) X is a pairwise neutrosophic Gδ-α-locally T2-ordered

space.

(ii) For each pair a, b ∈ X such that a � b, there exist a τi neu-

trosophic Gδ-α-locally open set A = 〈x, μ
A
, σ

A
, γ

A
〉 and τj

neutrosophic Gδ-α-locally open set B = 〈x, μ
B
, σ

B
, γ

B
〉

such that A(a) > 0, B(b) > 0 and A(x) > 0, B(y) > 0
together imply that x � y.

(iii) The neutrosophic set χ∗
G, where G is the graph of the par-

tial order of X is a τ∗-neutrosophic Gδ-α-locally closed set,

where τ∗ is either τ1 × τ2 or τ2 × τ1 in X ×X .

Proof:
(i)⇒(ii) Let X be a pairwise neutrosophic Gδ-α-locally T2-

ordered space.

Assume that suppose A(x) > 0, B(y) > 0 and x ≤ y. Since A
is an increasing τi neutrosophic Gδ-α-locally open set and B is a

decreasing τj neutrosophic Gδ-α-locally open set, A(x) ≤ A(y)
and B(y) ≤ B(x). Therefore 0 < A(x)∩B(y) ≤ A(y)∩B(x),
which is a contradiction to the fact that A ∩ B = 0N . Therefore

x � y.

(ii)⇒(i) Let a, b ∈ X with a � b, there exists a neutrosophic

sets A and B satisfying the properties in (ii). Since Ii
◦(A) is an

increasing τi neutrosophic Gδ-α-locally open set and Dj
◦(B)is

decreasing τj neutrosophic Gδ-α-locally open set, we have

Ii
◦(A) ∩ Dj

◦(B)=0N . Suppose z ∈ X is such that Ii
◦(A)(z)

∩ Dj
◦(B)(z) >0. Then Ii

◦(A) > 0 and Dj
◦(B)(z) > 0. If

x ≤ z ≤ y, then x ≤ z implies that Dj
◦(B)(x) ≥ Dj

◦(B)(z)
>0 and z ≤ y implies that Ii

◦(A)(y) ≥ Ii
◦(A)(z) >0 then

Dj
◦(B)(x) >0 and Ii

◦(A)(y) >0. Hence by (ii), x � y but

then x ≤ y. This is a contradiction. This implies that X is pair-

wise neutrosophic Gδ-α-locally T2-ordered space.

(i)⇒ (iii) We want to show that χ∗
G is a τ∗ neutrosophic Gδ-

α-locally closed set. That is to show that χ∗
G

is τ∗ neutrosophic

Gδ-α-locally open set. It is sufficient to prove that χ∗
G

is a neu-

trosophic Gδ-α-locally neighbourhood of a point (x, y) ∈ X×X
such that χ∗

G
(x, y) > 0. Suppose (x, y) ∈ X × X is such

that χ∗
G
(x, y) > 0. We have χ∗

G(x, y) < 1. This means

χ∗
G(x, y) = 0. Thus (x, y) �∈ G and hence x � y. Therefore

by assumption (i), there exist neutrosophic Gδ-α-locally open

sets A and B such that A is an increasing τi neutrosophic Gδ-α-

locally neighbourhood of a , B is an decreasing τj neutrosophic

Gδ-α-locally neighbourhood of b (i, j = 1, 2 and i �= j) and

A ∩ B = 0N . Clearly A × B is an IFτ∗ Gδ-α-locally neigh-

bourhood of (x, y). It is easy to verify that A × B ⊆ χG. Thus

we find that χG is an τ∗ NGδ-α-locally open set. Hence (iii) is

R. Narmada Devi, R. Dhavaseelan, S. Jafari, On Separation Axioms in an Ordered Neutrosophic Bitopological Space

Neutrosophic Sets and Systems, 18/201731



established.

(iii)⇒(i) Suppose x � y. Then (x, y) �∈ G,where G is a graph

of the partial order. Given that χ∗
G is τ∗ neutrosophic Gδ-α-

locally closed set. That is χ∗
G

is an τ∗ neutrosophic Gδ-α-locally

open set. Now (x, y) �∈ G implies that χ∗
G
(x, y) > 0. There-

fore χ∗
G

is an τ∗ neutrosophic Gδ-α-locally neighbourhood of

(x, y) ∈ X × X . Hence we can find that τ∗ neutrosophic Gδ-

α-locally open set A × B such that A × B ⊆ χ∗
G

and A is τi
neutrosophic Gδ-α-locally open set such that A(x) > 0 and B
is an τj neutrosophic Gδ-α-locally open set such that B(y) > 0.

We now claim that Ii
◦(A) ∩ Dj

◦(B)=0N . For if z ∈ X is such

that (Ii
◦(A) ∩ Dj

◦(B))(z)> 0, then Ii
◦(A)(z) ∩ Dj

◦(B)(z)
> 0. This means Ii

◦(A)(z)> 0 and Dj
◦(B)(z)> 0. And if

a ≤ z ≤ b, then z ≤ b implies that Ii
◦(A)(b)≥ Ii

◦(A)(z)> 0
and a ≤ z implies that Dj

◦(B)(a)≥ Dj
◦(B)(z)> 0. Then

Dj
◦(B)(a)> 0 and Ii

◦(A)(b)> 0 implies that a � b but then

a ≤ b. This is a contradiction. Hence (i) is established.

Definition 2.22. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a weakly pairwise neutrosophic T2-

ordered space if given b < a (that is b ≤ a and b �= a), there

exist an τi neutrosophic open set A = 〈x, μ
A
, σ

A
, γ

A
〉 such that

A(a) > 0 and τj neutrosophic open set B = 〈x, μ
B
, σ

B
, γ

B
〉

such that B(b) > 0 (i, j = 1, 2 and i �= j) such that if x, y ∈ X ,

A(x) > 0, B(y) > 0 together imply that y < x.

Definition 2.23. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a weakly pairwise neutrosophic Gδ-

α-locally T2-ordered space if given b < a (that is b ≤ a and

b �= a), there exist an τi neutrosophic Gδ-α-locally open set

A = 〈x, μ
A
, σ

A
, γ

A
〉 such that A(a) > 0 and τj neutrosophic

Gδ-α-locally open set B = 〈x, μ
B
, σ

B
, γ

B
〉 such that B(b) > 0

(i, j = 1, 2 and i �= j) such that if x, y ∈ X , A(x) > 0, B(y) > 0
together imply that y < x.

Definition 2.24. The symbol x ‖ y means that x ≤ y and y ≤ x.

Definition 2.25. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be an almost pairwise neutrosophic T2-

ordered space if given a ‖ b, there exist a τi neutrosophic open

set A = 〈x, μ
A
, σ

A
, γ

A
〉 such that A(a) > 0 and τj neutrosophic

open set B = 〈x, μ
B
, σ

B
, γ

B
〉 such that B(b) > 0 (i,j=1,2 and

i �= j) such that if x, y ∈ X , A(x) > 0 and B(y) > 0 together

imply that x ‖ y.

Definition 2.26. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be an almost pairwise neutrosophic Gδ-

α-locally T2-ordered space if given a ‖ b, there exist a τi neu-

trosophic Gδ-α-locally open set A = 〈x, μ
A
, σ

A
, γ

A
〉 such that

A(a) > 0 and τj neutrosophic Gδ-α-locally open set B =
〈x, μ

B
, σ

B
, γ

B
〉 such that B(b) > 0 (i, j = 1, 2 and i �= j) such

that if x, y ∈ X , A(x) > 0 and B(y) > 0 together imply that

x ‖ y.

Proposition 2.4. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is a pairwise neutrosophic Gδ-α-locally T2-

ordered space if and only if it is a weakly pairwise neutrosophic

Gδ-α-locally T2-ordered and almost pairwise neutrosophic Gδ-

α-locally T2-ordered space.

Proof:
Let (X, τ1, τ2,≤) be a pairwise neutrosophic Gδ-α-locally T2-

ordered space. Then by Proposition 3.3 and Definition 3.20, it is

a weakly pairwise neutrosophic Gδ-α-locally T2-ordered space.

Let a ‖ b . Then a � b and b � a.Since a � b and X is a

pairwise neutrosophic Gδ-α-locally T2-ordered space. We have

τi neutrosophic Gδ-α-locally open set A = 〈x, μ
A
, σ

A
, γ

A
〉 and

τj neutrosophic Gδ-α-locally open set B = 〈x, μ
B
, σ

B
, γ

B
〉 such

that A(a) > 0, B(b) > 0 and A(x) > 0 , B(y) > 0 together im-

ply that x � y. Also since b � a,there exist τi neutrosophic

Gδ-α-locally open set A∗=〈x, μA∗ , γA∗〉 and τj neutrosophic

Gδ-α-locally open set B∗=〈x, μB∗ , γB∗〉 such that A∗(a) > 0,

B∗(b) > 0 and A∗(x) > 0 , B∗(y) > 0 together imply that

y � x. Thus Ii
◦(A∩A∗) is an τi neutrosophic Gδ-α-locally open

set such that Ii
◦(A∩A∗)(a) > 0 and Ij

◦(B∩B∗) is a τj neutro-

sophic Gδ-α-locally open set such that Ij
◦(B∩B∗)(b) > 0.Also

Ii
◦(A∩A∗)(x) > 0 and Ij

◦(B∩B∗)(y) > 0 togetherimply that

x ‖ y. Hence X is an almost pairwise neutrosophic Gδ-α-locally

T2-ordered space.

Conservely, let X be a weakly pairwise neutrosophic Gδ-α-

locally T2-ordered and almost pairwise neutrosophic Gδ-α-

locally T2-ordered space. We want to show that X is a pairwise

neutrosophic Gδ-α-locally T2-ordered space. Let a � b. Then

either b < a (or) b � a. If b < a then X being weakly pair-

wise neutrosophic Gδ-α-locally T2-ordered space, there exist τi
neutrosophic Gδ-α-locally open set A and τj neutrosophic Gδ-

α-locally open set B such that A(a) > 0,B(b) > 0 and such

that A(x) > 0,B(y) > 0 together imply that y < x. Thus

x � y. If b � a, then a ‖ b and the result follows easily since

X is an almost pairwise neutrosophic Gδ-α-locally T2-ordered

space. Hence X is a pairwise neutrosophic Gδ-α-locally T2-

ordered space.

Definition 2.27. Let A = 〈x, μ
A
, σ

A
, γ

A
〉 and B =

〈x, μ
B
, σ

B
, γ

B
〉 be neutrosophic sets in an ordered neutrosophic

bitopological space (X, τ1, τ2,≤). Then A is said to be a τi neu-

trosophic neighbourhood of B if B ⊆ A and there exists τi neu-

trosophic open set C=〈x, μ
C
, σ

C
, γ

C
〉 such that B ⊆ C ⊆ A,(i =

1(or)2).

Definition 2.28. Let A = 〈x, μ
A
, σ

A
, γ

A
〉 and B =

〈x, μ
B
, σ

B
, γ

B
〉 be neutrosophic sets in an ordered neutrosophic

bitopological space (X, τ1, τ2,≤). Then A is said to be a

τi neutrosophic Gδ-α-locally neighbourhood of B if B ⊆ A
and there exists τi neutrosophic Gδ-α-locally open set C =
〈x, μ

C
, σ

C
, γ

C
〉 such that B ⊆ C ⊆ A,

(i = 1(or)2).

Definition 2.29. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is said to be a strongly pairwise neutrosophic

Gδ-α-locally normally ordered space if for every pair A =
〈x, μ

A
, σ

A
, γ

A
〉 is a decreasing τi neutrosophic Gδ-α-locally

closed set and B = 〈x, μ
B
, σ

B
, γ

B
〉 is an decreasing τj

neutrosophic Gδ-α-locally open set such that A ⊆ B then
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there exist decreasing τj neutrosophic Gδ-α-locally open set

A1=〈x, μA1 , γA1〉 such that A ⊆ A1 ⊆ Di(A1) ⊆ B,(i, j = 1, 2
and i �= j).

Proposition 2.5. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) the following are equivalent

(i) (X, τ1, τ2,≤) is a strongly pairwise neutrosophic Gδ-α-

locally normally ordered space.

(ii) For each increasing τi neutrosophic Gδ-α-locally open set

A=〈x, μ
A
, σ

A
, γ

A
〉 and decreasing τj neutrosophic Gδ-α-

locally open set B=〈x, μ
B
, σ

B
, γ

B
〉 with A ⊆ B there ex-

ists an decreasing τj neutrosophic Gδ-α-locally open set A1

such that A ⊆ A1 ⊆ NGδ-α-lclτi(A1) ⊆ B,(i, j = 1, 2
and i �= j).

Proof: The Proof is simple.

Notation 2.3. (i) The collection of all neutrosophic set in

nonempty set X is denoted by ζX .

(ii) Let X be any nonempty set and A ∈ ζX . Then for x ∈ X ,

〈μA(x), σA(x), γA(x)〉 is denoted by A∼.

Definition 2.30. A neutrosophic real line RI(I) is the set of all

monotone decreasing neutrosophic A ∈ ζR satisfying ∪{A(t) :
t ∈ R} = 1∼ and ∩{A(t) : t ∈ R} = 0∼ after the iden-

tification of neutrosophic sets A,B ∈ RI(I) if and only if

A(t−) = B(t−) and A(t+) = B(t+) for all t ∈ R where

A(t−) = ∩{A(s) : s < t} and A(t+) = ∪{A(s) : s > t}.

The neutrosophic unit interval II(I) is a subset of RI(I) such

that [A] ∈ II(I) if the membership , indeterminancy and non-

membership of A are defined by

μA(t) =

{
1, t<0;

0, t>1.
σA(t) =

{
1, t<0;

0, t>1.
and γA(t) =

{
0, t<0;

1, t>1.

respectively. The natural neutrosophic topology on RI(I) is gen-

erated from the subbasis {LI
t, R

I
t : t ∈ R} where LI

t, R
I

t :
RI(I) → II(I) are given by LI

t[A] = A(t−) and RI

t[A] =
A(t+), respectively.

Definition 2.31. Let (X, τ1, τ2,≤) be an ordered neutrosophic

bitopological space. A function f : X → RI(I) is said to be a

τi lower
∗(resp.upper∗) neutrosophic Gδ-α-locally continuous

function if f−1(RI
t) (resp.f

−1(LI
t)) is an increasing (or)an de-

creasing τi(resp.τj) neutrosophic Gδ-α-locally open set, for each

t ∈ R (i, j = 1, 2 and i �= j).

Proposition 2.6. Let (X, τ1, τ2,≤) be an ordered neutrosophic

bitopological space. Let A = 〈x, μ
A
, σ

A
, γ

A
〉 be a neutrosophic

set in X and let f : X → RI(I) be such that

f(x)(t) =

⎧⎨
⎩

1∼ if t < 0
A∼ if 0 ≤ t ≤ 1
0∼ if t > 1

for all x ∈ X and t ∈ R. Then f is a τi lower
∗(resp.τjupper∗)

neutrosophic Gδ-α-locally continuous function if and only if A
is an increasing (or) a decreasing τi (resp. τj) neutrosophic Gδ-

α-locally open (resp. closed) set (i, j = 1, 2 and i �= j).

Proof:

f−1(RI
t) =

⎧⎨
⎩

1∼ if t < 0
A∼ if 0 ≤ t ≤ 1
0∼ if t > 1

implies that f is τi lower
∗ neutrosophic Gδ-α-locally continu-

ous function if and only if A is an increasing (or) a decreasing τi
neutrosophic Gδ-α-locally open set in X .

f−1(LI
t) =

⎧⎨
⎩

1∼ if t < 0
A∼ if 0 ≤ t ≤ 1
0∼ if t > 1

implies that f is τj upper∗ neutrosophic Gδ-α-locally continu-

ous function if and only if A is an increasing (or) a decreasing

τj neutrosophic Gδ-α-locally closed set in X (i, j = 1, 2 and

i �= j).

Uryshon’s lemma

Proposition 2.7. An ordered neutrosophic bitopological space

(X, τ1, τ2,≤) is a strongly pairwise neutrosophic Gδ-α-locally

normally ordered space if and only if for every A =
〈x, μ

A
, σ

A
, γ

A
〉 is decreasing τi neutrosophic closed set and

B = 〈x, μ
B
, σ

B
, γ

B
〉 is an increasing τj neutrosophic closed

set with A ⊆ B, there exists increasing neutrosophic function

f : X → II(I) such that A ⊆ f−1(L1) ⊆ f−1(R0) ⊆ B
and f is a τi upper

∗ neutrosophic Gδ-α-locally continuous func-

tion and τj lower∗ neutrosophic Gδ-α-locally continuous func-

tion (i, j = 1, 2 and i �= j).

Proof:
Suppose that there exists a function f satisfying the given con-

ditions. Let C = 〈x, μ
C
, σ

C
, γ

C
〉

= f−1(LI
t) and D = 〈x, μ

D
, σ

D
, γ

D
〉=f−1(RI

t) for some 0 ≤
t ≤ 1. Then C ∈ τi and D ∈ τj and such that A ⊆ C ⊆ D ⊆ B.

It is easy to verify that D is a decreasing τj neutrosophic Gδ-

α-locally open set and C is an increasing τi neutrosophic Gδ-α-

locally closed set. Then there exists decreasing τj neutrosophic

Gδ-α-locally open set C1 such that C ⊆ C1 ⊆ Di(C1) ⊆ D,

(i, j = 1, 2 and i �= j). This proves that X is a strongly pairwise

neutrosophic Gδ-α-locally normally ordered space.

Conversely, let X be a strongly pairwise neutrosophic Gδ-α-

locally normally ordered space. Let A be a decreasing τi neu-

trosophic Gδ-α-locally closed set and B be an increasing τj neu-

trosophic Gδ-α-locally closed set. By the Proposition 3.6, we

can construct a collection {Ct | t ∈ I} ⊆ τj , where C =
〈x, μCt

, γCt
〉, t ∈ I such that A ⊆ Ct ⊆ B, NGδ-α-lclτi(Cs) ⊆

Ct whenever s < t, A ⊆ C0 C1 = B and Ct = 0N for

t < 0,Ct = 1N for t > 1. We define a function f : X → II(I)
by f(x)(t) = C1−t(x). Clearly f is well defined. Since A ⊆
C1−t ⊆ B, for t ∈ I. We have A ⊆ f−1(LI

1) ⊆ f−1(RI
0) ⊆ B.

Furthermore f−1(RI
t) =

⋃
s<1−t Cs is a τj neutrosophic Gδ-α-

locally open set and f−1(LI
t) =

⋂
s>1−t Cs =

⋂
s>1−t NGδ-α-

lclτi(Cs) is an τi neutrosophic Gδ-α-locally closed set. Thus f is
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a τj lower
∗ neutrosophic Gδ-α-locally continuous function and

τi upper
∗ neutrosophic Gδ-α-locally continuous function and is

an increasing neutrosophic function.

Tietze extension theorem

Proposition 2.8. Let (X, τ1, τ2,≤) be an ordered neutrosophic

bitopological space the following statements are equivalent.

(i) (X, τ1, τ2,≤) is a strongly pairwise neutrosophic Gδ-α-

locally normally ordered space.

(ii) If g, h : X → RI(I),g is an τi upper
∗ neutrosophic Gδ-α-

locally continuous function, h is a τj lower∗ neutrosophic

Gδ-α-locally continuous function and g ⊆ h, then there ex-

ists f : X → II(I) such that g ⊆ f ⊆ h and f is a τi
upper∗ neutrosophic Gδ-α-locally continuous function and

τj lower∗ neutrosophic Gδ-α-locally continuous function

(i, j = 1, 2 and i �= j).

Proof:
(ii)⇒(i) Let A=〈x, μ

A
, σ

A
, γ

A
〉 and B=〈x, μ

B
, σ

B
, γ

B
〉 be a

neutrosophic Gδ-α-locally open sets such that A ⊆ B. Define

g, h : X → RI(I) by

g(x)(t) =

⎧⎨
⎩

1∼ if t < 0
A∼ if 0 ≤ t ≤ 1
0∼ if t > 1

and h(x)(t) =

⎧⎨
⎩

1∼ if t < 0
B∼ if 0 ≤ t ≤ 1
0∼ if t > 1

for each x ∈ X . By Proposition 3.6, g is an τi upper
∗ neutro-

sophic Gδ-α-locally continuous function and h is an τj lower∗

neutrosophic Gδ-α-locally continuous function. Clearly, g ⊆ h
holds,so that there exists f : X → RI(I) such that g ⊆ f ⊆ h.

Suppose t ∈ (0, 1). Then A = g−1(RI
t) ⊆ f−1(RI

t) ⊆
f−1(LI

t) ⊆ h−1(LI
t) = B. By Proposition 3.7, X is a strongly

pairwise neutrosophic Gδ-α-locally normal ordered space.

(i)⇒(ii) Define two mappings A,B : Q → I by A(r) = Ar =

h−1(RI
r) and B(r) = Br = g−1(LI

r), for all r ∈ Q (Q is

the set of all rationals). Clearly, A and B are monotone in-

creasing families of a decreasing τi neutrosophic Gδ-α-locally

closed sets and decreasing τj neutrosophic Gδ-α-locally open

sets of X . Moreover Ar ⊂ Br′ if r < r′. By Proposition 3.5,

there exists an decreasing τj neutrosophic Gδ-α-locally open set

C = 〈x, μ
C
, σ

C
, γ

C
〉 such that Ar ⊆ NGδ-α-lintτi(Cr), NGδ-

α-lclτi(Cr) ⊆ NGδ-α-lintτi(Cr′), NGδ-α-lclτi(Cr) ⊆ Br′

whenever r < r′ (r, r′ ∈ Q). Letting Vt =
⋂

r<t Cr for

t ∈ R, we define a monotone decreasing family {Vt | t ∈ R} ⊆
I . Moreover we have NGδ-α-lclτi(Vt) ⊆ NGδ-α-lintτi(Vs)

whenever s < t. We have,⋃
t∈R

Vt =
⋃
t∈R

⋂
r<t

Cr

⊇
⋃
t∈R

⋂
r<t

Br

=
⋃
t∈R

⋂
r<t

g−1(LI
r)

=
⋃
t∈R

g−1(LI
r)

= g−1(
⋃
t∈R

LI
t)

= 1N

Similarly,
⋂

t∈R Vt = 0N . Now define a function f :
(X, τ1, τ2,≤) → RI(I) satisfying the required conditions. Let

f(x)(t) = Vt(x), for all x ∈ X and t ∈ R. By the above

discussion, it follows that f is well defined. To prove f is a τi
upper∗ neutrosophic Gδ-α-locally continuous function and τj
lower∗ neutrosophic Gδ-α-locally continuous function (i,j=1,2

and i �= j). Observe that
⋃

s>t Vs =
⋃

s>t NGδ-α-lintτi(Vs)
and

⋂
s>t Vs =

⋂
s>t NGδ-α-lclτi(Vs). Then f−1(Rt) =⋃

s>t Vs =
⋃

s>t NGδ-α-lintτi(Vs) is an increasing τi neutro-

sophic Gδ-α-locally open set. Now f−1(Lt) =
⋂

s>t Vs =⋂
s>t NGδ-α-lclτi(Vs) is a decreasing τj neutrosophic Gδ-α-

locally closed set. So that f is a τi upper
∗ neutrosophic Gδ-α-

locally continuous function and τj lower∗ neutrosophic Gδ-α-

locally continuous function. To conclude the proof it remains to

show that g ⊆ f ⊆ h. That is g−1(LI
t) ⊆ f−1(LI

t) ⊆ h−1(LI
t)

and g−1(RI
t) ⊆ f−1(RI

t) ⊆ h−1(RI
t) for each t ∈ R. We

have,

g−1(LI
t) =

⋂
s<t

g−1(LI
s)

=
⋂
s<t

⋂
r<s

g−1(LI
r)

=
⋂
s<t

⋂
r<s

Br

⊆
⋂
s<t

⋂
r<s

Cr

=
⋂
s<t

Vs

= f−1(LI
t)
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and

f−1(LI
t) =

⋂
s<t

Vs

=
⋂
s<t

⋂
r<s

Cr

⊆
⋂
s<t

⋂
r<s

Ar

=
⋂
s<t

⋂
r<s

h−1(RI
r)

=
⋂
s<t

h−1(LI
s)

= h−1(Lt)

Similarly, we obtain

g−1(RI
t) =

⋃
s>t

g−1(RI
s)

=
⋃
s>t

⋃
r>s

g−1(LI
r)

=
⋃
s>t

⋃
r>s

Br

⊆
⋃
s>t

⋃
r>s

Cr

=
⋃
s>t

Vs

= f−1(RI
t)

and

f−1(RI
t) =

⋃
s>t

Vs

=
⋃
s>t

⋃
r>s

Cr

⊆
⋃
s>t

⋃
r>s

Ar

=
⋃
s>t

⋃
r>s

h−1(RI
r)

=
⋃
s>t

h−1(RI
s)

= h−1(RI
t)

Hence the proof.

Proposition 2.9. Let (X, τ1, τ2,≤) be a strongly pairwise neu-

trosophic Gδ-α-locally normally ordered space. Let A ∈ τ1
and A ∈ τ2 be crisp and let f : (A, τ1/A, τ2/A) → II(I)
be a τi upper

∗ neutrosophic Gδ-α-locally continuous function

and τj lower∗ neutrosophic Gδ-α-locally continuous function

(i,j=1,2 and i �= j). Then f has a neutrosophic extension over

(X, τ1, τ2,≤) (that is, F : (X, τ1, τ2,≤) → II(I).
Proof:

Define g : X → II(I) by

g(x) = f(x) if x ∈ A

= [A0] if x /∈ A

and also define h : X → II(I) by

h(x) = f(x) if x ∈ A

= [A1] if x /∈ A

where [A0] is the equivalence class determined by A0 : RI(I) →
II(I) such that

A0(t) = 1∼ if t < 0

= 0∼ if t > 0

and [A1] is the equivalence class determined by A1 : RI(I) →
II(I) such that

A1(t) = 1∼ if t < 1

= 0∼ if t > 1

g is a τi upper
∗ neutrosophic Gδ-α-locally continuous function

and h is a τj lower
∗ neutrosophic Gδ-α-locally continuous func-

tion and g ⊆ h. Hence by Proposition 3.8, there exists a function

F : X → II(I) such that F is a τi upper
∗ neutrosophic Gδ-

α-locally continuous function and τj lower∗ neutrosophic Gδ-

α-locally continuous function and g(x) ⊆ F (x) ⊆ h(x) for all

x ∈ X . Hence for all x ∈ A, f(x) ⊆ F (x) ⊆ f(x). So that F is

a required extension of f over X .
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IN Hence complete the proof. 

4. Multi attribute group decision making strat-
egy using IN-cross entropy measure in in-
terval neutrosophic set environment

In this section we develop a novel MAGDM strategy based 

on proposed IN- cross entropy measure.     

The MAGDM problem can be consider as follows: 

Let A {A1,A2,A3,...,Am} and G {G1,G2,G3,...,Gn} be the 

discrete set of alternatives and attribute respectively. Let 

W  {w1,w2,w3,...,wn} be the weight vector of attributes G j  

(j = 1, 2, 3, …, n), where w j  0 and w 1
n

j 1

 j


. Let 

E  {E1,E2,E3,...,E} be the set of decision makers who are 

employ to evaluate the alternative. The weight vector of 

the decision makers Ek (k  1,2,3,...,) is 

  {1,2,3,...,} (where, 10 and
k 1

k 


), which can be 

determined according to the decision makers expertise, 

judgment quality and decision making knowledge.  

50



Shyamal Dalapati, Surapati Pramanik, Shariful Alam, Florentin Smarandache and Tapan Kumar Roy, IN-cross Entropy 
based MAGDM strategy under Interval Neutrosophic Set Environment  

Neutrosophic Sets and Systems, 18/201751



Shyamal Dalapati, Surapati Pramanik, Shariful Alam, Florentin Smarandache, Tapan Kumar Roy, IN-cross Entropy
based MAGDM strategy under Interval Neutrosophic Set Environment 

Neutrosophic Sets and Systems, 18/2017

Figure.1 Decision making procedure of proposed MAGDM method 

................................................................................................................................................................................................... 

5. Illustrative example

In this section, we provide an illustrative example of 

MAGDM problems to reflect the validity and efficiency of 

our proposed strategy under INSs environment. 

Now, we solve an illustrative example adapted from [9] for 

cultivation and analysis. A venture capital firm intends to 

make evaluation and selection to five enterprises with the 

investment potential: 

1) Automobile company (A1)

2) Military manufacturing enterprise (A2)

3) TV media company (A3)

4) Food enterprises (A4)

5) Computer software company (A5)

On the basis of four attributes namely: 

1) Social and political factor (G1)

2) The environmental factor (G2)

3) Investment risk factor (G3)

4) The enterprise growth factor (G4).

The investment firm makes a panel of three decision 

makers E  {E1,E2,E3}  having their weights vector 

  Decision making analysis phase 

 Multi attribute gr                                            oup decision mak ing problem 

Formulate the decision matrices Step-1 

Formulate the weighted 

aggregated decision matrix 

Formulate priori/ ideal decision 

matrix   

Step- 2 

Step- 3 

Calculate the weighted IN-cross 

entropy matrix 

Rank the priority 

Step-4 

Step-5 

End 

Start 
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 {0.42,0.28,0.30}  and weight vector of attributes

is W  {0.24, 0.25, 0.23, 0.28} . 

The steps of decision making strategy to rank alternatives 

are presented below: 

Step: 1. Formulate the decision matrices 

We represent the rating values of alternatives 
i
A  (i = 

1, 2, 3, 4, 5) with respects to the attributes
j

 G  (j = 1, 2, 3, 

4) provided by the decision-makers
k
E  (k = 1, 2, 3) in ma-

trix form as follows: 

.................................................................................................................................................................................................... 

 Decision matrix for E1  decision maker 
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
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







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
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 

 

 

 
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

   


[.7,.9],[.1,.2],[.1, .3]

[.6,.7],[.1,.3],[.2,.3]

[.4,.5],[.3,.4],[.6,7]

[.7,.9],[.6,.7],[.4,.5]

[.7,.9],[.5,.6],[.4,.5]

[.8,.9], [.5,.7],[.3,.6]

[.6,.7],[.1, .2],[.4,.5]

[.5,.6],[.2,.4],[.3,.4]

[.7,.8],[.2,.4],[.2,.3]

[.5,.7],[.3,.4],[.1,.2]

[.3,.6],[.2,.3],[.3,.4]

[.4,.5],[.2,.4],[.3,.5]

[.6,.7],[.1,.2],[.2,.3]

[.6,.8],[.2,.4],[.3,.4]

[.4,.5],[.7,.8],[.6,.7]

[.7,.8],[.3,.4],[.2,.3]A

A

A

A

[.4,.5],[.3,.4],[.7, .8][.6,.7],[.2,.3],[.2,.4][.6,.7],[.3,.4],[.4,.5][.7,.9],[.3,.4],[.3,.4]A

GGGG  

M

5

4

3

2

1

4321

1 ……….(8) 

Decision matrix for E2  decision maker 


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
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

   



[.6,.8],[.3,.5],[.3,4]

[.3,.5],[.3,.4],[.4,.5]

[.5,.7],[.1,.3],[.3,.4]

[.8,.9], [.2,.5],[.3,.4]

[.4,.7],[.1, .4],[.3,.4]

[.6,.8],[.3,.5],[.,4.6]

[.6,.7],[.2,.3],[.3,.4]

[.4,.5],[.2,.3],[.3,.5]

[.5,.6],[.1,.3],[.4,.6]

[.3,.6],[.3,.4],[.2,.5]

[.5,.7],[.3,.5],[.1,.3]

[.6,.9],[.3,.4],[.2,.3]A

A

[.5,.6],[.3,.5],[.3,.6]

[.4,.7],[.2,.4],[.3,.4]

[.3,.6],[.2,.4],[.3,.4]A

[.4,.6],[.3,.4],[.2, .3]A

[.4,.6],[.4,.5],[.2, .3][.7,.9],[.3,.4],[.3,.5][.3,.5],[.2,.4],[.4,.5][.6,.7],[.1,.2],[.2,.3]A

GGGG  

M

5

4

3

2

1
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2 ……….(9) 

Decision matrix for E3  decision maker 





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







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
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



 

   



[.5,.7],[.2,.3],[.3,.5][.4,.6],[.1,.3],[.2,.4]

[.5,.6],[.1,.3],[.2,.4]

[.5,.6],[.2,.4],[.1,.3]

[.6,.9],[.2,.3],[.2,.4]

[.7,.8],[.1,.3],[.2,.3]A

[.5,.7],[.2,.3],[.3,5][.3,.5],[.1, .2],[.2,.4]A

[.6,.7],[.2,.3],[.3,.4]

[.5,.7],[.2,.4],[.2,.3]

[.6,.8], [.2,.3],[.3,.4]

[.7,.9],[.1,.3],[.3,.4]

[.8,.9],[.1,.3],[.3,.4][.7,.8],[.1,.3],[.4,.5]A

[.6,.8],[.2,.4],[.3, .5][.3,.6],[.4,.5],[.4,.5]A

[.8,.9],[.2,.4],[.1, .3][.6,.7],[.2,.4],[.3,.5][.3,.6],[.2,.4],[.3,.4][.4,.7],[.1,.2],[.3,.5]A

GGGG  

M

5

4

3

2

1

4321

3 …………(10) 

Step: 2. Formulate the weighted aggregated decision matrix 

Using equation (4), the aggregated decision matrix is presented below: 

    Aggregated decision matrix 


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
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
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
[.6,.7],[.2,.3],[.2,.4]

[.5,.7],[.3,.4],[.4,.5]

[.6,.8],[.4,.5],[.4,.5]  [.5,.7],[.2,.4],[.3,.4]

[.5,.6],[.2,.4],[.4,.4]

[.7,.8],[.2,.3],[.2,.4]

[.6,.8],[.2,.3],[.2,.3]

[.4,.6],[.1,.3],[.3,.4]

[.4,.6],[.2,.4],[.2,.4][.7,.8],[.2,.4],[.2,.3]A

[.5,.6],[.1, .2],[.3,.4][.5,.7],[.4,.5],[.3,.5]A

[.8,.9], [.3,.5],[.3,.5][.6,.8],[.2,.4],[.3,.4]A

[.6,.8],[.2,.3],[.2, .3][.6,.8],[.2,.4],[.3,.4]

[.6,.8],[.2,.3],[.3,.4]

[.5,.7],[.2,.3],[.3,.4]A

  [.6,.7],[.3,.4],[.3, .4][.6,.8],[.2,.3],[.2,.4]A

GGGG  

M

5

4

3

2

1

4321

 ………(11) 

Step: 3. Formulate priori/ ideal decision matrix 

 Priori/ ideal decision matrix 

























 

 

 

 

 

 

 

 

 

 

 

 





 

   



[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]

[1,1],[0,0],[0,0]A

[1,1],[0,0],[0,0]A

[1,1],[0,0],[0,0]A

[1,1],[0,0],[0,0]A

[1,1],[0,0],[0,0][1,1],[0,0],[0,0][1,1],[0,0],[0,0][1,1],[0,0],[0,0]A

GGGG  

M

5

4

3

2

1

4321

1        …………(12) 

Step: 4. Calculate the weighted IN-cross entropy matrix 

Using equation (2), we calculate the interval neutrosophic 

weighted cross entropy values between ideal matrixes (12)  

and weighted aggregated decision matrix (11).  

























0.90

0.95

0.78

0.77

0.86

w
CE

IN M ………….(13) 
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Step: 5. Rank the priority 

The position of cross entropy values of alternatives 

arranging in increasing order is  

0.77 < 0.78 < 0.86 < 0.90 < 0.95. Since, smallest 

values of cross entropy indicate the alternative is closer to 

the ideal alternative.  Thus the ranking priority of 

alternatives is A2 > A3 > A1 > A5 > A4. Hence, military 

manufacturing enterprise (A2) is the best alternative for 

investment.

.................................................................................................................................................................................................... 

In Figure 2, we draw a bar diagram to represent the cross 

entropy values of alternatives which shows that A2 is the 

best alternative according our proposed strategy.   

Figure.2. Bar diagram of alternatives versus cross entropy values of alternatives 

...................................................................................................................................................................................................

2. Conclusion

In this paper we have defined IN-cross entropy measure 

in INS environment which is free from all the drawback 
of existence cross entropy measures under interval 
neutrosophic set environment. We have proved the 
basic properties of the cross entropy measures. We have 
also defined weighted IN- cross entropy measure and 
proved its basic properties. Based on the weighted IN-

cross entropy measure, we have proposed a novel 
MAGDM strategy. Finally, we solve a MAGDM 
problem to show the feasibility and efficiency of the 
proposed MAGDM making strategy.  The proposed IN-
cross entropy based MAGDM strategy can be employed 
to solve a variety of problems such as logistics center 

selection, teacher selection, renewable energy selection, 
fault diagnosis, etc.  
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Function nm_out=nm(varargin); %single 
valued neutrosophic matrix class con-
structor. 

%A = nm(Am,Ai,An) creates a single val-
ued neutrosophic matrix 

% with membership degrees from matrix 
Am 

% indeterminate membership degrees from 
matrix Ai 

%   and non-membership degrees from Ma-
trix An. 

% If the new matrix is not neutrosophic 
i.e. Am(i,j)+Ai(i,j+An(i,j)>3  

% appears warning message, but the new 
object will be constructed. 

If 

length(varargin)==3 

Am = varargin{1}; % Cell array indexing 

Ai = varargin{2}; 

An = varargin{3}; 

end 

nm_.m=Am; 

nm_.i=Ai; 

nm_.n=An; 

nm_out=class(nm_,'im'); 

if ~checknm(nm_out) 
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disp('Warning! The created new object 
is NOT a Single valued neutrosophic ma-
trix') 

end

Function At=complement1(A); 

% complement of type1 single valued 
neutrosophic matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=A.n;

a.i=A.i;

a.n=A.m;

At=nm(a.m,a.i,a.n);

Function At=complement2(A); 

% complement of type2 single valued 
neutrosophic matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=1-A.m;

a.i=1-A.i;

a.n=1-A.n;

At=nm(a.m,a.i,a.n);

Function At=maxminmin(A,B); 

% maxminmin of two single valued neu-
trosophic matrix A and B  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

%"B" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=max(A.m,B.m);

a.i=min(A.i,B.i);

a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=minmaxmax(A,B); 

% minmaxmax of two single valued neu-
trosophic matrix A and B  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

%"B" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=min(A.m,B.m);

a.i=max(A.i,B.i);

a.n=max(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=power(A,k); 
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%power of single valued neutrosophic 
matrix A  

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

for i =2 :k 

a.m=(A.m).^k;

a.i=(A.i).^k;

a.m=(A.m).^k;

At=nm(a.m,a.i,a.m); 

end

Function At=softadd(A,B); 

% addition operations of two single 
valued neutrosophic soft  matrix A and 
B 

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=max(A.m,B.m);

a.i=(A.i+B.i)/2;

a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

softsub

Function At=softsub(A,B); 

% function st=disp_intui(A); 

% substraction operations of two single 
valued neutrosophic soft  matrix A and 
B 

% "A" have to be single valued neutro-
sophic  matrix - "nm" object: 

a.m=min(A.m,B.n);

a.i=(A.i+B.i)/2;

a.n=max(A.n,B.m);

At=nm(a.m,a.i,a.n);

Function At=transpose(A); 

% transpose Single valued neutrosophic 
matrix A  

% "A" have to be single valued neutro-
sophic matrix - "nm" object: 

a.m=(A.m)';

a.i=(A.i)';

a.n=(A.n)';

At=nm(a.m,a.i,a.n);
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>>complement2(A) 

% This command returns the complement2 

ans = 

<1.00, 0.00, 1.00><0.50, 0.70, 0.80><0.50, 0.80, 0.70> 

<0.70, 0.70, 0.60><1.00, 0.00, 1.00><0.90, 0.60, 0.50> 

<0.70, 0.90, 0.40><0.90, 0.50, 0.90><1.00, 0.00, 1.00> 

<0.90, 0.90, 0.70><0.80, 0.50, 0.50><0.90, 0.30, 0.50>

A=

B=
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>>softadd(A,B) 

ans = 

<0.00, 0.50, 0.00><0.50, 0.40, 0.20><0.50, 0.30, 0.30> 

<0.40, 0.30, 0.30><0.00, 0.50, 0.00><0.10, 0.45, 0.40> 

<0.30, 0.45, 0.10><0.20, 0.30, 0.10><0.00, 0.50, 0.00> 

<0.30, 0.20, 0.10><0.30, 0.35, 0.30><0.10, 0.55, 0.50> 

>>softsub(A,B) 

 % 
 

ans = 

<0.00, 0.50, 0.00><0.40, 0.40, 0.40><0.30, 0.30, 0.30> 

<0.30, 0.30, 0.40><0.00, 0.50, 0.00><0.10, 0.45, 0.50> 

<0.10, 0.45, 0.60><0.10, 0.30, 0.20><0.00, 0.50, 0.00> 

<0.10, 0.20, 0.30><0.20, 0.35, 0.50><0.10, 0.55, 0.50>

>>transpose(A) 

ans = 

<0.00, 1.00, 0.00><0.30, 0.30, 0.40><0.30, 0.10, 0.60><0.10, 0.10, 0.30> 

<0.50, 0.30, 0.20><0.00, 1.00, 0.00><0.10, 0.50, 0.10><0.20, 0.50, 0.50> 

<0.50, 0.20, 0.30><0.10, 0.40, 0.50><0.00, 1.00, 0.00><0.10, 0.70, 0.50
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The  complement of 
~

111111A  ([a ,b ],[c ,d ],[e , f ])  

is given by 

],[a ,b ]),1([e , f ],[1
~

111111 dcAC 

1. 
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2.7 Score of IVNS

Let ) ,R  (r~ mnij where 

],[ ijijijijijijijr~  [a ,b ],[c ,d e , f ] the collective 

interval - valued neutrosophic decision matrix be. 

Then ij mnS  (s )  is defined as the score matrix of 

ij mnR  (r~ )  , where

n  a  c  e  b  d  fijijijijijijijij ),i  1,2,....,2
3

1
s  s(r~ ) 

(1) 

And s(r~ij )  is called the score of ij
~r

Example2.7.1Let 

~
A  ([0.3,0.4],[0.1,0.2],[0.5,0.7])

([0.4,0.5],[0.2,0.3],[0.5,0.6])
~
B     be two INVSs. 

Then by Definition 2.7, 

2  0.3  0.1 0.5  0.4  0.2  0.7) 0.4
3

1~
(A ) ijs

 

0.433

0.60.30.50.50.20.42
3

1
)

~



ijs(B

Hence, 
~~

ijijs(A )  s(B )  

Properties2.7.2 Let ],[e , f ]r~ ij ij ij ij ijijij  [a ,b ],[c ,d

be an INVS. Then the score of ij
~r  has some properties as 

follows: 

(i) )  0s(r~ij
 if and only if 

 c d   f 2ij ij ij ijijij ea b  . 

(ii) ) 1s(r~ij  if and only if 

1e b  c  ijijijijijij fda . 

(iii) )  1s(r~ij  if and only 

if 1e   c  ijijijijijij fdba . 

2.8 Distance between two IVNS 

Let ],[],[ i1 i1i1i1i1i1 e fc , dX  ([a ,b ]) and

])],[],[c ,([ i2 i2i2 i2i2i2 e fdY  a ,b  be two IVNSs. The 

normalized Hamming distance between X and Y is defined 

by Chi & Liu [33] as 


 | 

c b 


n

i iii

iiii

H
f  fe  ed  d

cba  a

n
d

1 2i12i12i1

212i12i1

|]|| [|

||  ||  |(|

6

1
(X ,Y )

(2)

3. Problem description and methodology

3.1Problem Description 

The present paper deals with the selection of transpor-

tation company and their mode of transportation in interval 

valued neutrosophic environment. At first the neutrosophic 

relation Q from a set of different transportation 

companies T to a set of different criteria C like transporta-

tion cost, defective rate, tardiness rate, flexibility, etc. is 

considered. Then it follows the second relation R from the 

set of different criteria C to a set of different mode M of 

transportation like roadways, railways, waterways and air-

ways. The composition of the two neutrosophic relation Q 

and R is the relation S from the set of transportation com-

panies to the set of different modes which gives the best 

mode of transportation for each of the transportation com-

panies.  Finally, the best transportation company is to be 

selected among the given different companies. The prob-

lem can be solved by different methods available in this 

context taking into account the different criteria. The pre-

sent paper focuses on two methods. The first one involves 

weighted correlation coefficient method. The second one 

involves extended TOPSIS method. The different weights 

are given for different criteria. 
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3.2 Methodology 

A. Application of normalized hamming distance 

for interval valued neutrosophic set 

Let there be a neutrosophic relation X: Ai ->Bj 

and Y: Bj ->Ck.  Using the distance between two IVNSs in 

Definition 2.8 the normalized Hamming distance for all the 

elements of the Ai from the Ck is equal to 









n

j

kjUiUjkjLiLj

kjUijUkjLijL

kjUijUkjLijL

kiH

 r r (C
n

d (A ,C
1

(C ) |)) |  | r (A )| r (A )

(C ) |(C ) |  | (A )| (A )

(C ) |(C ) |  |  (A )(| (A )

6

1
) 



   (3)

B. Multi-criteria decision making method based on 

weighted correlation coefficients in interval valued 

neutrosophic environment 

Let ,...., A }321 mA  {A , A , A be a set of alternatives

and let ,........,321 nC {C ,C ,C C }be a set of criteria. 

An alternative 
iA  is represented by the following IVNS: 

}[r (C ),r (C )]:

(C )](C ),(C )],[(C ),{(C ,[

C C

A

jAi L j AiU j

jAiUjAi LjAiUjAi Lji  

(C ) 1(C )where 0  jAiUjAiU
 (C )  0jAiL



(C )  0jA Li
 j = 1; 2;... ; n, and i= 1,2,...,m. 

The IVNS that consists of Inter-

vals ]j ij ijA (C )  [a ,b ( ) [ ]ijijj c ,dCAi


)  [ ]j ijijA e , fr (C
i

for C j C is denoted 

by ],[ ],[ ])ij ij ij ijijijij e , fc , d  ([a ,b for conven-

ience. 

We can express an interval-valued neutrosophic decision 

matrix ij mnD  ( ) .

Ye ([18],[19]) established a model for weighted correlation 

coefficient between each alternative and the ideal 

alternative for single valued neutrosophic sets (SVNSs) 

using known weights of the criterion. Though the ideal 

alternative does not exist in real world, it does provide a 

useful theoretical construct against which to evaluate 

alternatives. Ye ([18],[19]) defined the ideal alternative for 

SVNSs as ( )  (1,0,0)*** ijijija ,b ,c* . 

If the information about weight wj of the criterion Cj (j= 

1,2,...,n) is completely known, for determining the criterion 

weight from the decision matrix D   we can establish an 

exact model for the weighted correlation coefficient 

between an alternative Ai and the ideal alternative A* 

represented by the IVNS as in Equation (4).We define the 

ideal alternative 
*A as the 

IVNS

([ ],[ ],[ ])  ([1,1],[0,0],[0,0])*******  ijijijijijij e , fc , da ,b

 . 

]]

. f ]

)

*2*2*22**2*2

1

22222

1

2

******

1*

jj j j j jj

n

j

ijij ij ijij

n

j

j ij

ij jij jij jij jij jj ij j

n

j

i i

w [.a fw [a f

w [a .a  b .b  c .c  d .d  e .e  f

W (A , A

 b  .c  d  e  b  c  d  e 







(4) 
Then the bigger the value of the weighted correlation 

coefficient 
iW is, the better the alternative 

iA is. Therefore 

all the alternatives can be ranked according to the value of 

the weighted correlation coefficients so that the best 

alternative can be selected. 

C. TOPSIS method to solve the multi-attribute decision 

making problem with the given information about attribute 

weights in interval valued neutrosophic environment 

In the situations where the information about weights is 

completely known, that is, the weights wi = (w1, w2, ..., 

wm)T of the 
jc  (j = 1,2,...,n) can be completely determined 

in advance, then we can construct the weighted collective 

interval-valued neutrosophic decision matrix 

mnijR  (r~ )**
where 

wi ]}],[,],[),1 (1)r~* wiiwiii

ijij

w

ijij

w

ij

w

iji ijij e , fc d b w r~ {[1 (1 a

 (5) 

is the weighted IVNS, i = 1,2,...,m; j = 1,2,...,n, and 
iw  is 

weight of the attribute ui  such that  0iw and 1
1

 


m

i

iw . 

Now, we denote by 

],[],[ *******

ijijijijijijij c , dr~  ([a ,b e , f ] where i= 1; 2;... ;m; 

Let
1

j= 1; 2;... ; n   (6) 

J  be a collection of benefit attributes (i.e., the larger 

ui, the greater preference) and 
2J  be a collection of cost 

attributes (i.e., the smaller ui , the greater preference). The 

interval-valued neutrosophic PIS, denoted by 
*A , and the 

interval-valued neutrosophic NIS, denoted by 
A , are de-
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fined as follows: 

T

n

ij
i

ij
i

j

j

j Jj JA  {{c

1,2,....,  ,.....,  )r~n}  (r~ , r~

)}:), (min r~ :, (max r~ :

21

2

*

1

**

T 

(7)
 (7)

T

n

T

ij
i

ij
i

j

j

r~ : i Jr~ : i JA

(  ,.....,  )r~r~ , r~1,2,...., n}

)}:), (max{{c , (min

21

2

*

1

*








(8)

 (8)

where ([ ],[c ,d ][e , f ]r~   i iiiiii a ,b and

],[  ([r~  

i iiiiii a ,b c ,d ][e , f ] ,i=1,2,..,m

Burillo & Bustince [13] method has been extended to find 

the separation measures for interval valued intuitionistic 

fuzzy numbers in Park et al. [17] and in Kour et al, [4]. The 

extension of this in IVNS has been used here to find sepa-

ration measures based on the Hamming distance. 

















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j
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i
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
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1
1      (10)

The relative closeness of an alternative 
iA  with respective 

*A  is defined as the to interval-valued neutrosophic PIS

following: 










ii

i
i

SS

S
C where i =1, 2 ,….,m      (11) 

The bigger the closeness coefficient


iC , the better the al-

ternative 
iA  will be, as the alternative 

iA  is closer to the 

*
interval-valued neutrosophic PIS A ,. Therefore, the alter-

natives Ai (i = 1, 2 ,..., m) can be ranked according to the 

closeness coefficients so that the best alternative can be se-

lected. 

3.3 Solution Procedure: 

A. Algorithm for the method based on normalized 

hamming distance 

Let ,....,T }321 mT {T ,T ,T be a set of transportation

companies, ,........,321 nCC  {C ,C ,C }  be a set of cri-

teria and ,....,321 pM {M , M , M M }be a set of

modes of transportation where each of the jC of
iT  and 

kM is represented by IVNS. 

(T )],[r (T ),r (T )])(T ),(T )],(T ),(T )  ([ i Uj iLjijUijLijL jUii [C  

)], (([ (M ), k k Uj kLjk jUjLkk k jUjL r (M ),r (MM ), (MM   (M [  )],[ )])  

Using the distance between two IVNSs in Definition 2.8 

the Normalized Hamming distance for all the criteria of the 

i-th transportation company from the k -th modes is equal 

to 







5

1 (M ) |)(M ) |  | r (T )(M ) |  | r (T )| (T )

(M ) |(M ) |  | (T )(M ) |  |  (T )(| (T )

30

1
)

j kjUUj ikjLLj ikjUjU i

kjLjL ikjUjU ikjLjL i

kiH
 r r

d (C(T ),M




(12) 

The minimum distance determines the appropriate mode of 

each transportation company. 

B. Algorithm for the method based on weighted corre-

lation coefficients using given weights 

Step 1: Calculate the weighted correlation coefficient 

(A , A )*

iiW  (i = 1,2,...,m) by using Eq. (4).

Step 2: Rank the alternatives according to the obtained cor-

relation coefficients, and then obtain the best choice. 

C. Algorithm for TOPSIS method with the given in-

formation about attribute weights 

Step1. Calculate the weighted collective interval-valued 

neutrosophic decision matrix ij mnR  (r~ )**

Step 2:  Calculate the score matrix ij mxnS  (s )   of the 

collective interval-valued neutrosophic decision matrix R 

using Equation(1 ) from Definition 2.7. 

Step3. Determine the interval-valued neutrosophic PIS
*A , 

and interval-valued neutrosophic NIS 
A using Equa-

tions(7) , (8) and score matrix S obtained above in Step 2 . 

Step 4.Calculate the separation measures 


iS and


iS  of

each alternative 
iA (i = 1,2,...,m) from interval-valued 

neutrosophic PIS 
*A  and interval-valued neutrosophic 

NIS 
A , respectively using Equations (9) and (10). 

Step 5: Calculate the relative closeness 


iC  of each alter-

native 
iA  (i = 1,2,...m) to the interval-valued neutrosophic 

*
PIS A using Equation(11). 
Table 1. Data of transportation companies and their criteria in 
form of interval valued neutrosophic fuzzy numbers 

Step 6. Rank the alternatives 
iA  (i = 1,2,...,m), according 
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to the relative closeness to the interval-valued neutrosophic 
*

PIS A  and then select the most desirable one (s). 

4. Numerical Illustration:

4.1 Example 

An international company needs a freight transporta-

tion company to carry its goods. The company determined 

four possible transportation companies. The criteria con-

sidered in the selection process are transportation costs, de-

fective rate, tardiness rate, flexibility and documentation 

ability. Transportation cost is the cost to carry one ton 

along one kilometre. Tardiness rate is computed as ‘‘the 

number of days delayed/the number of days expected for 

delivery. In Kulak & Kahraman [29], Transportation costs, 

defective rate and tardiness rate are taken to be crisp varia-

bles and the other criteria ‘‘flexibility’’ and ‘‘documenta-

tion ability’’ are taken as linguistic variables just to find 

only the best transportation company. In Kour et al. [4], the 

problem is taken in Interval valued Intuitionistic fuzzy en-

vironment in which each element of the decision matrix is 

taken as interval valued intuitionistic fuzzy numbers and 

the best appropriate transportation company is selected. 

In the present paper, the problem is modified as the best 

transportation company and also their mode of transporta-

tion is selected under interval valued neutrosophic  

environment. 

Let the set of transportation companies be T = {TC1, TC2, 

TC3, TC4}. Let the set of different criteria of the transpor-

tation companies be denoted by C = {Transportation cost 

(TC), Defective rate (DR), Tardiness rate (TR), Flexibility 

(F), Documentation ability (DA)}. The data of degree of 

satisfaction, indeterminacy and rejection of each criterion 

by each transportation company is represented by an IVNS 

in Table 1. The IVNS is  denoted by a set of Inter-

vals
)  ([ ],[ ],[ ])

][],[( ,[

ij ij ijijijijj

Ti L TiUTiUTi LTiUTi Lji

e , fc ,da ,bCC

r , rCT



  , , ] :  

Table 2. Data of criteria of transportation companies and their 

mode of transportation in form of interval valued neutrosophic 

fuzzy numbers 

The IVNS is usually elicited from the evaluated score to 

which the alternative TCi satisfies the criterion Cj by 

means of a score law and data processing or from 

appropriate membership functions in practice. Therefore, 

Alter-

native 

Trans

porta-

tion 

Com-

pa-

nies 

Criteria 

Transporta-

tion 

Cost 

Defective 

Rate 

Tardiness 

Rate 

Flexibility Documenta-

tion 

Ability 

Trans.

Comp

.1 

([0.7,0.8],[0.

01,0.02],[0.2,

0.4]) 

([0.8,0.85], 

[0.02,0.03] , 

[0.3,0.5]) 

([0.3,0.4],[

0.2,0.4] 

,[0.1,0.2]) 

([0.6,0.8],[

0.01,0.02],

[0.2,0.3]) 

([0.4,0.5], 

[0.1,0.3] , 

[0.1,0.2]) 

Trans.

Comp

.2 

([0.8,0.85],[0

.01,0.03],[0.2

,0.3]) 

([0.01,0.03],[

0.8,0.9], 

[0.3,0.5]) 

([0.8,0.92],

[0.01,0.04]

,[0.2,0.3]) 

([0.01,0.02

],[0.4,0.6],[

0.2,0.3]) 

([0.85,0.9], 

[0.01,0.02] , 

[0.2,0.4]) 

Trans.

Comp

.3 

([0.85,0.89],[

0.02,0.05],[0.

3,0.5]) 

([0.4,0.6], 

[0.1,0.3], 

[0.2,0.4]) 

([0.9,0.95],

[0.01,0.02]

,[0.3,0.4]) 

([0.9,0.92],

[0.01,0.03]

, [0.3,0.5]) 

([0.7,0.8], 

[0.02,0.04], 

[0.2,0.4]) 

Trans.

Comp

.4 

([0.8,0.9], 

[0.01,0.02],[0

.2,0.5]) 

([0.2,0.4], 

[0.6,0.7], 

[0.3,0.4]) 

([0.2,0.3],[

0.3,0.6],[0.

3,0.4]) 

([0.5,0.6],[

0.1,0.2],[0.

2,0.3]) 

([0.7,0.8], 

[0.3,0.4], 

[0.02,0.1]) 

Alter-
native 
Criteria 

Mode of transportation 

Road-
ways 

Railways Water-
ways 

Airways 

Trans-
porta-
tion 
Cost 

([0.7,0.85
],       
[0.02,0.03
], 
[0.1,0.15]
) 

([0.8,0.9], 
[0.02,0.03] 
, 
[0.01,0.04]
) 

([0.5,0.6], 
[0.1,0.2] ,  
[0.3,0.35]) 

([0.3,0.4], 
[0.2,0.3] ,  
[0.4,0.5]) 

Defec-
tive 
Rate 

([0.3,0.4],  
[0.1,0.2],  
[0.5,0.6]) 

([0.6,0.7],  
[0.03,0.04]
,   
[0.2,0.25]) 

([0.65,0.75
], 
[0.02,0.05]
,        
[0.1,0.2]) 

([0.8,0.9],  
[0.01,0.02]
,   
[0.01,0.1]) 

Tardi-
ness 
Rate 

([0.3,0.5], 
[0.02,0.04
] , 
[0.4,0.45]
) 

([0.5,0.65], 
[0.01,0.02]
,   
[0.2,0.25]) 

([0.4,0.5], 
[0.01,0.05] 
,     
[0.2,0.3]) 

([0.75,0.85
], 
[0.02,0.03]
,  
[0.1,0.15]) 

Flexibil-
ity 

([0.8,0.9], 
[0.2,0.3],  
[0.01,0.08
]) 

([0.6,0.7], 
[0.1,0.2] ,  
[0.2,0.25]) 

([0.5,0.6], 
[0.01,0.02]
,      
[0.15,0.2]) 

([0.4,0.5], 
[0.02,0.04]
,      
[0.2,0.3]) 

Docu-
menta-
tion 
Ability 

([0.6,0.7],  
[0.01,0.02
],       
[0.2,0.25]
) 

([0.65,0.8],  
[0.03,0.05]
,        
[0.15,0.2]) 

([0.7,0.8],  
[0.2,0.4],  
[0.1,0.15]) 

([0.75,0.85
],  
[0.03,0.04]
,    
[0.05,0.1]) 
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we can express an interval-valued neutrosophic decision 

matrix D = ij mxn( ) .

Similarly let the set of different transportation modes is 

denoted by M = {Roadways, Railways, Waterways, Air-

ways}. The data of degree of satisfaction, indeterminacy 

and rejection of each criterion for each mode is represented 

by an IVNS in Table 2. 

]),], [,], [) ([

C M ] :,][,], [,,[(

jkjkjkjkjkjkk

C jUC j LC jUC j LCjUC j Lj k

fedca ,bMM

rr



 

And it can be denoted by an interval-valued neutrosophic 

decision matrix D’ = jk nxp( ) .

The weights are taken as w1=0.38, w2=0.17, w3=0.21, 

w4=0.24, w5=0.00 

4.2 Solution 

The given problem is a multi criteria decision making 

problem in interval valued neutrosophic environment and 

is solved in two sections. The first section follows up with 

selecting the best mode of transportation for each transpor-

tation company using distance measures. The second sec-

tion includes the selection of the most appropriate trans-

portation company by the two above mentioned methods. 

The results are obtained as follows: 

A. Solution with method based on Applica-

tion of Normalized Hamming Distance for Inter-

val valued neutrosophic set 

The Equation (3) is used to find the distance for all the cri-

teria of the i-th transportation company from the k-th 

modes using the normalised Hamming distance as in Table 

3. In the definition 2.8, the normalized hamming distance

between X and Y (defined by Chi & Liu [33]) is given in 

Equation (2) which means the distance between any two 

IVNS. This definition is utilized to calculate the minimum 

distance between two IVNS in two different but related ta-

bles with IVNS as in Equation (3). Then the Equation (3) 

is utilized to find the Normalized Hamming distance for all 

the criterion of the i-th transportation company from the k-

th modes as in Equation (12) taking data from the related 

tables Table 1 and Table 2. The minimum distance deter-

mines the appropriate mode of each transportation compa-

ny. For Example - The minimum distance for all the crite-

ria of the transportation company TC2 is 0.2337 from 

the Railways mode. That means the appropriate mode for 

transportation companyTC2 is Railways. Similarly, the ap-

propriate mode for each transportation company is given in 

Table 4. 

Table 3. Data of distances for each transportation company 

from the considered set of their possible modes of transporta-

tion 

Alternative 

Transportation 

Companies 

Mode of transportation 

Roadways Rail-

ways 

Waterways Airways 

Trans.Comp.1 0.1737 0.1333 0.1283 0.1847 

Trans.Comp.2 0.2393 0.2337 0.361 0.292 

Trans.Comp.3 0.172 0.1303 0.1727 0.2087 

Trans.Comp.4 0.194 0.1923 0.1887 0.2743 

Table 4.  Appropriate Mode for each transportation company 

Transportation 

companies 

Minimum Dis-

tance 

Appropriate 

Mode 

Trans.Comp.1 0.1283 Waterways 

Trans.Comp.2 0.2337 Railways 

Trans.Comp.3 0.1303 Railways 

Trans.Comp.4 0.1887 Waterways 

B.  Solution with method based on weighted 

correlation coefficients 

The attribute weights are taken as w1=0.38, w2=0.17, 

w3=0.21, w4=0.24, w5=0.00 

Step 1: The weighted correlation coefficient between an al-

ternative Ai and the ideal alternative A* represented by the 

IVNS 

Is given by Equation (4).

Then taking weight attributes as w1=0.38, w2=0.17, 

w3=0.21, w4=0.24, w5=0.00, the weighted correlation coef-

ficient can be calculated for the data mentioned in Table 1 

by applying Equation (4). 

By applying Equation (4), we can compute (A , A )*

iiW  (i

= 1, 2, 3, 4) as 

(A , A )  0.67371

*

1W ; (A , A )  0.48112

*

2W ; 

(A , A )  0.89423

*

3W ; (A , A )  0.70764

*

4W

Step 2: From the weighted correlation coefficients between 

the alternatives and the ideal alternative, the ranking order 

is 214A3  A  A  A
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which is given in Table 5.

 Table 5 Ranking based on Weighted Correlation Coefficient 

Alternatives Value of 

(A , A )*

iiW

Rank 

Trans.Comp.1 0.6737 3 

Trans.Comp.2 0.4811 4 

Trans.Comp.3 0.8942 1 

Trans.Comp.4 0.7076 2 

Therefore, we can see that the alternative TC3  is the best

choice, which is the same result as Kulak & Kahraman 

[29] and by method of weighted correlation coefficient in 

Kour et al.[4]. 

C.  Solution with TOPSIS method with the 

given information about attribute weights 

The attribute weights are taken as w1=0.38, w2=0.17, 

w3=0.21, w4=0.24, w5=0.00 

Step 1: The weighted collective interval-valued neutro-

sophic decision matrix ij mnR  (r~ )**
is calculated (Table 

6) applying Equation (5).

ij mxnS  (s )Step 2: The score matrix    of the collective 

interval-valued neutrosophic decision matrix R is calculat-

ed using Equation (1 ) from Definition2.7 as in Table 7. 

Step 3: Using Equations. (7), (8) and score matrix obtained 

above , the interval-valued neutrosophic PIS 
*A  and in-

A is determined as in Ta-terval-valued neutrosophic NIS 

ble 8. 

Step 4: The separation measures 


iS  and i

S  of each alter-

native 
iA (i = 1, 2, 3, 4) are calculated from interval-

valued neutrosophic PIS 
*A and interval-valued neutro-

sophic NIS
A , respectively, based on the Hamming dis-

tance using Equations. (9) - (10) (Table 9). 

Step 5: The relative closeness i

C  of each alternative
iA  (i 

= 1, 2, 3, 4) to the interval-valued neutrosophic PIS
*A is 

calculated with the different separation measures, based on 

the Hamming distance, using Eq. (11) (Table 10). 

Step6. Rank the preference order of alternatives
iA   (i = 1, 

2, 3, 4) (Table 6), according to the relative closeness to the 

interval-valued neutrosophic PIS A *  and the ranking or-

der is 2134A  A  A  A .

Therefore, we can see that the alternative TC4  is the

best choice and then the most desirable alternative is 

Transportation company TC4 as by TOPSIS in Kour et

al. [4]. 
Table 6 Weighted collective interval valued neutrosophic fuzzy 

decision matrix 

Alternative 

Transpor-

tation 

Compa-

nies 

Criteria 

Transpor-

tation 

Cost 

Defective 

Rate 

Tardi-

ness 

Rate 

Flexibilty Documen-

tation 

Ability 

Trans.Co

mp.1 

([0.37,0.46

], 
[0.17,0.22]

, 

[0.54,0.71]

) 

([0.24,0.28]

, 
[0.51,0.55] 

, 

[0.81,0.89]) 

([0.07,0.

10], 
[0.7,0.83

] , 

[0.62,0.7

1]) 

([0.2,0.32], 

[0.33,0.39] 
, 

 [0.68,0.75]

) 

([0,0], 

[1,1] , 
[1,1]) 

Trans.Co

mp.2 

([0.46,0.51

], 

[0.17,0.26]

,  

[0.54,0.63]

) 

([0.0017,0.

005], 

[0.963,0.98

2], 

[0.815,0.88

8]) 

([0.29,0.

41], 

[0.38,0.5

1], 

[0.71,0.7

8]) 

([0.002,0.0

05], 

[0.8,0.88], 

[0.68,0.75]

) 

([0,0], 

[1,1] , 

  [1,1]) 

Trans.Co

mp.3 

([0.51,0.57

], 

[0.23,0.32] 

,  

[0.63,0.77]

) 

([0.08,0.14]

, 

[0.68,0.81], 

[0.76,0.86]) 

([0.38,0.

47], 

  [0.38,0.4

4] , 

[0.78,0.8

3]) 

([0.42,0.45

], 

[0.33,0.43]

, 

[0.75,0.85]

) 

([0,0], 

[1,1] , 

[1,1]) 

Trans.Co

mp.4 

([0.46,0.58

], 

[0.17,0.23]

, 

[0.54,0.77]

) 

([0.04,0.08]

, 

[0.92,0.94] 

,  

[0.81,0.86]) 

([0.05,0.

07], 

[0.78,0.9

], 

[0.78,0.8

3]) 

([0.15,0.2], 

[0.58,0.68]

, 

[0.68,0.75]

) 

([0,0], 

[1,1] , 

[1,1]) 

Table 7  Score matrix of  the Weighted collective interval val-

ued neutrosophic fuzzy decision matrix 

Alternative 

Transporta-

Criteria 

Minimize Maximize 
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tion 

companies 

Transporta-

tion 

Cost 

Defec-

tive 

Rate 

Tardi-

ness 

Rate 

Flexi-

bilty 

Documenta-

tion 

Ability 

1 

Trans.Comp.  0.3967 -0.08 -0.2333 0.1233 -0.6667 

Trans.Comp.

2 

0.45667 -0.5473 0.1067 -0.3677 -0.6667 

Trans.Comp.

3 

0.3767 -0.2967 0.14 0.17 -0.6667 

Trans.Comp.

4 

0.4433 -0.47 -0.39 -0.1133 -0.6667 

Table 8 Interval valued PIS and NIS 

Minimize Maximize 

Transporta-

tion 

Cost 

Defective 

Rate 

Tardiness 

Rate 

Flexibilty Docu-

menta-

tion 

Ability 

PI

S 

 ([0.51,0.57], 

[0.23,0.32], 

  [0.63,77]) 

[0.0017,0.005],

  [0.963,0.982],[

0.815,0.888]) 

[0.05,0.07], 

[0.78,0.9], 

[0.78,0.83]) 

 ([0.42,0.45], 

[0.33,0.43], 

[0.75,0.85]) 

 ([0,0], 

[1,1], 

[1,1]) 

S 

NI  ([0.46,0.51], 

[0.17,0.26], 

[,0.54,0.63]) 

 ([0.24,0.28], 

[0.51,0.55], 

[0.81,0.89]) 

([0.38,0.47]

,[0.38,0.44]

,[0.78,0.83]

) 

([0.002,0.00

5],[0.8,0.88], 

[0.68,0.75]) 

 ([0,0], 

 [1,1], 

[1,1]) 

Table9 Separation measures based on Hamming distance 

Alternatives 

iS 

iS

Trans.Comp.1 0.4997 0.5688 

Trans.Comp.2 0.6505 0.29073 

Trans.Comp.3 0.39033 0.5372 

Trans.Comp.4 0.287 0.6372 

Table 10 Relative closeness 
i

C based on Hamming Distance

Alternatives Value of 

iC
Rank 

Trans.Comp.1 0.53234 3 

Trans.Comp.2 0.30888 4 

Trans.Comp.3 0.57917 2 

Trans.Comp.4 0.68946 1 

5. Results and comparison

In this paper, the distance measures on interval valued neu-

trosophic set using the normalized hamming distance help 

to find the best modes of transportation for each transporta-

tion company as in Table 4. The paper helps to find the ap-

propriate transportation company. It follows with two 

methods. The first method which is based on weighted cor-

relation coefficient gives the best transportation company 

as TC3. The result is same as in the Kour et al. [4] for the 

method to find the best transportation company based on 

weighted correlation coefficient under interval valued intu-

itionistic fuzzy environment. The second method which is 

the extended TOPSIS gives the best transportation compa-

ny as TC4. The result is same as in the Kour et al. [4] for 

the extended TOPSIS method to find the best transporta-

tion company under interval valued intuitionistic fuzzy en-

vironment. In addition, this paper also helps to find the 

best mode of transportation for the selected transportation 

companies.  In the first result, the selected transportation 

company TC3 opt for Railways whereas in the second re-

sult, the selected transportation company TC4 chooses Wa-

terways as their mode of transportation. The present paper 

also deals with degree of indeterminacy along with the de-

gree of acceptance and rejection of the different attributes 

as in Kour et al. [4]. The results can be compared with the 

help of the below mentioned tables (Table 11, Table 12, 

Table 13 and Table 14). 

Table11 Solution as in [4] under interval valued intuitionistic 

fuzzy environment 

Alternatives Rank with 

Weighted Corre-

lation Coefficient 

Method(unknown 

Rank with Ex-

tended TOP-

SIS(known 

weights) 
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weights) 

Trans.Comp.1 3 3 

Trans.Comp.2 4 4 

Trans.Comp.3 1 2 

Trans.Comp.4 2 1 

Table12 Appropriate Transportation Company in [4] under in-

terval valued intuitionistic fuzzy environment 

Weighted Correlation 

Meth-Coefficient 

od(unknown weights) 

ExtendedTOPSIS(known 

weights) 

Trans Comp 3 Trans Comp 4 

Table13 Solution as in   the present paper under interval val-

ued neutrosophic environment 

Alternatives Rank with 

Weighted Cor-

relation Coef-

ficient Meth-

od(known 

weights) 

Rank with Ex-

tended TOP-

SIS(known 

weights) 

Trans.Comp.1 3 3 

Trans.Comp.2 4 4 

Trans.Comp.3 1 2 

Trans.Comp.4 2 1 

Table14 Appropriate Transportation Company and their mode 

in the present paper under interval valued neutrosophic envi-

ronment 

Methods Weighted Corre-

lation Coefficient 

Method     

(unknown 

Extended TOPSIS 

(known weights) 

weights) 

Best 

Transportation 

Company 

Trans Comp 3 Trans Comp 4 

Best 

Transportation 

Mode 

Railways Waterways 

6. Conclusion

 A new type of transportation company 

selection problem is constructed in which the 

mode of transportation is also selected along with 

the best transportation company which gives a 

greater scope of its application in real life circum-

stances to achieve better requirements of the 

transportation companies. 

 The method for the application of nor-

malized hamming distance on interval valued 

neutrosophic set helps the users to relate the given 

two different relational tables consisting of trans-

portation companies, their criteria and their mode 

of transportation and thus to find the appropriate 

mode of each transportation companies for the 

first time. 

 The weighted correlation coefficient 

method helps the users to solve the multi-criteria 

decision making problems with given weight in-

formation which has been done for the first time 

in Interval valued neutrosophic environment 

 The extended TOPSIS method provides 

us an effective and practical way to solve the 

same type of problems, where the data is charac-

terized by IVNSs and the information about 

weights is completely known. A score function 

has been defined for interval valued neutrosophic 

sets for the first time and is used to find the inter-

val valued neutrosophic PIS and NIS.  

 The interval valued neutrosophic set data 

can be seen as real life uncertainties and so repre-

sents more practical solutions of the problem 

where the degree of acceptance, indeterminacy 

and rejection of the different attributes are taken 

into account. 
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Abstract:
In this paper, we present the use of single-valued neutrosophic

sets in medical diagnosis by using distance measures and similar-
ity measures. Using interconnection between single-valued neutro-
sophic sets and symptoms of patient, we determine the type of dis-

ease. We define new distance formulas for single valued neutro-
sophic sets. We develop two new medical diagnosis algorithms under
neutrosophic environment. We also solve a numerical example to il-
lustrate the proposed algorithms and finally, we compare the obtained
results.

Keywords: Single-valued neutrosophic sets, distance, similarity measures, medical diagnosis.

1 Introduction

The notion of fuzzy set was introduced by Zadeh [1] to deal
with ambiguity, vagueness and imprecision. Atanassov [2]
popularized the concept of intuitionistic fuzzy set, as a gener-
alization of fuzzy set. Adlassnig [3] employed fuzzy set theory
to formalize medical relationships and fuzzy logic to model
the diagnostic process and developed a computerized diagnosis
system. Important developments and applications of some
medical expert systems based on fuzzy set theory were reported
in the literature [ 4-8]. De et al. [9] first proposed an application
of intuitionistic fuzzy sets in medical diagnosis. Davvaz and
Sadrabadi [10] discussed an application of intuitionistic fuzzy
sets in medicine. Several authors [10-15] employed intuitionistic
fuzzy sets in medical diagnosis and cited De et al. [9]. However,
Hung and Tuan [16] pointed out that the approach studied in [9]
contains questionable results that may lead to false diagnosis of
patients’ symptoms.
It is widely recognized that the information available to the
medical practitioners about his/her patient and about medical
relationships in general is inherently uncertain. Even infor-
mation is incomplete as it continually becomes enlarged and
gets changed. Heisenberg’s Uncertainty Principle [17] reflects
that nature possibly is fundamentally indeterministic. It is
widely accepted that knowledge may differ according to culture,
education, religion, social status, etc., and therefore information
derived from different sources may be inconsistent. We may
recall Godel’s Theorem [18] which clearly reflects that contra-
dictions within a system cannot be eliminated by the system
itself. So uncertainty, incomplete and inconsistency should be
addressed in medical diagnosis problem which can be dealt with
neutrosophic set [19] introduced by Florentin Smarandache.
Neutrosophic set [19] consists of three independent objects
called truth-membership (µ), indeterminacy-membership (σ)

and falsity-membership (ν) whose values are real standard or
non-standard subset of unit interval ]0−, 1−[. In 1998, the idea
of single-valued neutrosophic set was given by Smarandache
[19] and the term “single valued neutrosophic set” was coined in
2010 by Wang et al. [20].
Yang et al. [21] presented the theory of single-valued neu-
trosophic relation based on single-valued neutrosophic set. In
almost every scientific field, the idea of similarity is essentially
important. To measure the degree of similarity between fuzzy
sets, many methods have been introduced [22-25]. These
methods are not suitable to deal with the similarity measures of
neutrosophic sets (NSs). Majumdar and Samanta [26] presented
several similarity measures of single valued neutrosophic sets
based on distances, a matching function, membership grades,
and then proposed an entropy measure. Several studies dealt
with similarity measures for neutrosophic sets and single-valued
neutrosophic sets [27-31]. Salama et. al. [32] defined the
neutrosophic correlation coefficients which are another types of
similarity measurement. Ye [33] discussed similarity measures
on interval neutrosophic set [34] based on Hamming distance
and Euclidean distance and showed how these measures can be
used in decision making problems. Furthermore, on the domain
of neutrosophic sets, Pramanik et al. [35] studied hybrid vector
similarity measures for single valued neutrosophic sets as well
as interval neutrosophic sets. In medical diagnosis, Ye [36]
presented the improved cosine similarity measures of single
valued neutrosophic sets as well as interval neutrosophic sets
and employed them to medical diagnosis problems. Mondal and
Pramanik [37] propose tangent similarity measure and weighted
tangent similarity measure for single valued neutrosophic sets
and employed them to medical diagnosis.
In medical diagnosis problem, symptoms and inspecting data
of some disease may be changed in different time intervals.
It leads to the question that whether only by using a single
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period inspection one can conclude for a particular patient with
a particular decease or not. Sometimes symptoms of different
diseases may appear for a person under treatment. Then, natural
question arises, how can we decide a proper diagnosis for the
particular patient by using one inspection? To answer this
question Ye [38] proposed multi-period medical diagnosis (i.e.
dynamic medical diagnosis) strategy based on neutrosophic
tangent function. Several medical strategies [39-52] have been
reported in the literature in neutrosophic environment including
neutrosophic hybrid set environment. Nguyen et al. [53] made a
survey of the state-of-the-arts on neutrosophic sets in biomedical
diagnoses. The aforementioned strategies [ 36, 37, 38] employed
cosine similarity measure and tangent similarity measure under
neutrosophic environment.
The use of single-valued neutrosophic sets in medical diagnosis
by using distance measures and similarity measure which have
not been addressed in the literature. In this paper, we present two
algorithms for medical diagnosis by using distance measures and
similarity measures under neutrosophic environment. This study
answers the following research questions:

1. Is it possible to formulate a new algorithm for medical diag-
nosis by using normalized Hamming distance and similarity
measure?

2. Is it possible to formulate a new algorithm for medical diag-
nosis by using normalized Euclidean distance and similarity
measure?

3. Is it possible to develop a new algorithm for medical diagno-
sis by using new distance formula and similarity measure?

The above-mentioned analysis describes the motivation behind
proposing two new medical diagnosis algorithms under single
valued neutrosophic environment using new distance formulas
and similarity measures. This study develops two novel medical
diagnosis algorithms under single valued neutrosophic environ-
ment. The Objectives of the paper are stated as follows:

1. To define two new neutrosophic distance formulas.

2. To develop two new medical diagnosis algorithms under sin-
gle valued neutrosophic environment.

3. To show numerical example of medical diagnosis using the
proposed algorithms.

4. To compare the obtained results derived from the proposed
two algorithms with the algorithms based on normalized
Hamming and normalized Euclidean distance.

5. To fill the research gap, we propose two algorithms for med-
ical diagnosis by using distance measures and new similarity
measures under neutrosophic environment.

The proposed algorithms can be effective in dealing with medi-
cal diagnosis under single valued neutrosophic set environment.

It can be extended to interval neutrosophic environment and neu-
trosophic hybrid environment. The main contributions of this pa-
per are summarized below:

i. We define two new distance formulas for neutrosophic sets.

ii. We develop two new algorithms for medical diagnosis based
on new distance formulas and similarity measure.

iii. We present the comparison between the proposed algo-
rithms with the algorithms based on normalized Hamming
and normalized Euclidean distance.

The rest of the paper unfolds as follows: In section 2, we describe
some basic definitions and operations of single valued neutro-
sophic sets (SVNSs). In section 3, we present the definition of
proposed distance formulas and develop two new algorithms for
medical diagnosis and present comparison with numerical exam-
ple. In section 4, we present conclusion and future scope of the
study.

2 Preliminaries
In this section, we review some basic concepts related to neutro-
sophic sets.

Definition 1. [19] Let Z be a space of points (objects).
A neutrosophic set M in Z is characterized by a truth-
membership function (µM (z)), an indeterminacy-membership
function (σM (z)) and a falsity-membership function (νM (z)).
The functions (µM (z)), (σM (z)), and (νM (z)) are real stan-
dard or non-standard subsets of ]0−, 1+[, that is, µM (z) :
Z → ]0−, 1+[, σM (z) : Z → ]0−, 1+[ and νM (z) :
Z → ]0−, 1+[ and 0− ≤ µM (z) + σM (z) + νM (z) ≤ 3+.
From philosophical point of view, the neutrosophic set takes the
value from real standard or non-standard subsets of ]0−, 1+[. In
real life applications in scientific and engineering problems, it is
difficult to use neutrosophic set with value from real standard or
non-standard subset of ]0−, 1+[, , where 0− = 0− ε, 1+ = 1+ ε,
ε is an infinitesimal number > 0. To apply neutrosophic set in
real-life problems more conveniently, Smarandache and Wang
et al. [20] defined single-valued neutrosophic sets which takes
the value from the subset of [0, 1]. Thus, a single-valued neu-
trosophic set is a special case of neutrosophic set. It has been
proposed as a generalization of crisp sets, fuzzy sets, and intu-
itionistic fuzzy sets in order to deal with incomplete information.

Definition 2. Let Z = {z1, z2, ..., zn} be a discrete confined
set. Consider M,N,O be three neutrosophic sets in Z. For all
zi ∈ Z we have:

dH(M,N)=H(M,N)=max{|µM (zi)− µN (zi)|, |σM (zi)−
σN (zi)|, |νM (zi)− νN (zi)|}.

where dH(M,N)=H(M,N) denotes the extended Hausdroff
distance between between two neutrosophic sets M and N .
The above defined distance dH(M,N) between neutrosophic sets
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M and N satisfies the following properties:
(D1) dH(M,N) ≥ 0,
(D2) dH(M,N) = 0 if and only if M = N ; for all M,N ∈ NS,
(D3) dH(M,N) = dH(N,M),
(D4) If M ⊆ N ⊆ O for all M,N,O ∈ NS, then dH(M,O) ≥
dH(M,N) and dH(M,O) ≥ dH(N,O).
then d is called the distance measure between two neutrosophic
sets.

Definition 3. A mapping S : NS(Z) × NS(Z) −→
[0, 1], NS(Z) denotes the set of all NS in Z = {z1, z2, ..., zn},
S(M,N) is said to be the degree of similarity between M ∈ NS
and N ∈ NS, if S(M,N) satisfies the properties of conditions
(S1-S4):
(S1) S(M,N)=S(N,M),
(S2) S(M,N)=(1,0,0). If M = N for all M,N ∈ NS,
(S3) Sµ(M,N) ≥ 0, Sσ(M,N) ≥ 0, Sν(M,N) ≥ 0,
(S4) If M ⊆ N ⊆ O for all M,N,O ∈ NS, then S(M,N) ≥
S(M,O)and S(N,O) ≥ S(M,O).

Definition 4. The normalized Hamming distance between two
neutrosophic sets M and N is defined by

d3(M,N) =
1

2n

n∑
j=1

(|µM (zj)− µN (zj)|

+|σM (zj)− σN (zj)|+ |νM (zj)− νN (zj)|).

Definition 5. The normalized Euclidean distance between two
neutrosophic sets M and N is defined by

d4(M,N) =

{
1

2n

n∑
j=1

((µM (zj)− µN (zj))
2

+(σM (zj)− σN (zj))
2 + (νM (zj)− νN (zj))

2)

} 1
2

.

3 Neutrosophic Sets in Medical Diagno-
sis

We first correct the formulas for the Definitions 4 and 5, where
in both of them the we should put “ 1

3n” instead of “ 1
2n” in order

for the Hamming distance and respectively Euclidean distance to
be “normalized”. These formulas are extended from intuitionis-
tic fuzzy sets, where indeed one uses “ 1

2n ” since there are only
two intuitionistic fuzzy sets memberships (membership and non-
membership). But, we have three components in neutrosophic
sets.
For example, if we compute the Hamming distance between the
neutrosophic numbers: (1, 1, 1) and (0, 0, 0), we get 1

2{|1− 0|+
|1 − 0| + |1 − 0|} = 3

2 = 1.5 > 1. Therefore, it is not nor-
malized since the result is not in [0, 1]. Similarly for the Eu-
clidean formula, where we get for the same neutrosophic num-

bers:
√

1
2{|1− 0|+ |1− 0|+ |1− 0|} =

√
3
2 > 1.

We write normalized formulae for two neutrosophic sets as fol-
lows.

Definition 6. The normalized Hamming distance between two
neutrosophic sets M and N is defined by

d3(M,N) =
1

3n

n∑
j=1

(|µM (zj)− µN (zj)|

+|σM (zj)− σN (zj)|+ |νM (zj)− νN (zj)|).

Definition 7. The normalized Euclidean distance between two
neutrosophic sets M and N is defined by

d4(M,N) =

{
1

3n

n∑
j=1

((µM (zj)− µN (zj))
2

+(σM (zj)− σN (zj))
2 + (νM (zj)− νN (zj))

2)

} 1
2

.

In this section, we give new concepts for medical diagnosis
via distances between neutrosophic sets. In fact our purpose is
to find an accurate diagnosis for each patient pi, i = 1, 2, 3. The
relation between neutrosophic sets for all the symptoms of the
i-th patient from the k-th diagnosis is as follows:

d1(pi, dk) =
1

n

n∑
j=1

[
1

6

[
|µpi(zj)− µdk(zj)|+ |σpi(zj)− σdk(zj)|

+ |νpi(zj)− νdk(zj)|
]
+

1

3

[
max(|µpi(zj)− µdk(zj)|,

|σpi(zj)− σdk(zj)|, |νpi(zj)− νdk(zj)|)
]]
. (1)

We take n = 5.
We consider there are three patients: Ali, Hamza, Imran and
symptoms of patient are Temperature, Insulin, Blood pressure,
Blood plates, Cough and finally we get diagnosis as Diabates,
Dengue, Tuberculosis.
In Table 1, the data are explained by three parameters: mem-
bership function (µ), non-membership function (ν) and inde-
terminacy function (σ). In Table 2, the symptoms are de-
scribed by (µ, σ, ν). For example, Diabates temperature is low
(µ = 0.2, σ = 0.0, ν = 0.8), while Dengue temperature is high
(µ = 0.9, σ = 0.0, ν = 0.1).

Table 1. Membership function µ, Indeterminacy function σ and
non-membership function ν.

I1 Ali Hamza Imran
Temperature (0.8,0.1,0.1) (0.6,0.2,0.2) (0.4,0.2,0.4)

Insulin (0.2,0.2,0.6) (0.9,0.0,0.1) (0.2,0.1,0.7)
Blood pressure (0.4,0.2,0.4) (0.1,0.1,0.8) (0.1,0.2,0.7)
Blood plates (0.8,0.1,0.1) (0.2,0.1,0.7) (0.3,0.1,0.6)

Cough (0.3,0.3,0.4) (0.5,0.1,0.4) (0.8,0.0,0.2)
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Table 2. Symptoms
I2 Temperature Insulin Blood pressure Blood plates Cough

Diabates (0.2,0.0,0.8) (0.9,0.0,0.1) (0.1,0.1,0.8) (0.1,0.1,0.8) (0.1,0.1,0.8)
Dengue (0.9,0.0,0.1) (0.0,0.2,0.8) (0.8,0.1,0.1) (0.9,0.0,0.1) (0.1,0.1,0.8)

Tuberculosis (0.6,0.2,0.2) (0.0,0.1,0.9) (0.4,0.2,0.4) (0.0,0.2,0.8) (0.9,0.0,0.1)

By using formula (1), for n = 5, we obtain Table 3.

Table 3. Using formula (1), for n = 5.
I Ali Hamza Imran

Diabates 0.38 0.14 0.27
Dengue 0.15 0.40 0.34

Tuberculosis 0.25 0.25 0.14

The best medical diagnosis in each column is identified by the
lowest difference. Therefore, in the first column, Ali suffers from
Dengue, in the second column, Hamza suffers from Diabates,
in the third column, Imran suffers from Tuberculosis. Now we
define another relation for the best medical diagnosis:

d2(pi, dk) =
1

3
r
√
n

{ n∑
j=1

(|µpi(zj)− µdk(zj)|

+|σpi(zj)− σdk(zj)|+ |νpi(zj)− νdk(zj)|)r
} 1

r

.

(2)

and r is a positive number. We take n = 5. We examine the
above relation for r = 1, 2, ..., 10. First, for r = 1 we calculate
Table 4.

Table 4. Using formula (2), for r = 1.
I Ali Hamza Imran

Diabates 0.39 0.15 0.26
Dengue 0.16 0.4 0.36

Tuberculosis 0.25 0.25 0.15

Now, for r = 2 we get Table 5.

Table 5. Using formula (2), for r = 2.
I Ali Hamza Imran

Diabates 0.4 0.22 0.32
Dengue 0.19 0.43 0.38

Tuberculosis 0.32 0.32 0.15

The result for r = 3 is given in Table 6.

Table 6. Using formula (2), for r = 3.
I Ali Hamza Imran

Diabates 0.41 0.25 0.35
Dengue 0.2 0.45 0.39

Tuberculosis 0.35 0.37 0.16

For r = 4, we obtain Table 7.

Table 7. Using formula (2), for r = 4.
I Ali Hamza Imran

Diabates 0.42 0.28 0.37
Dengue 0.21 0.47 0.41

Tuberculosis 0.39 0.41 0.17

For r = 5, we get Table 8.

Table 8. Using formula (2), for r = 5.
I Ali Hamza Imran

Diabates 0.43 0.3 0.39
Dengue 0.22 0.48 0.41

Tuberculosis 0.41 0.44 0.17

By calculation for r = 6, we find Table 9.

Table 9. Using formula (2), for r = 6.
I Ali Hamza Imran

Diabates 0.43 0.31 0.4
Dengue 0.23 0.49 0.41

Tuberculosis 0.42 0.46 0.17

For r = 7, we find Table 10.

Table 10. Using formula (2), for r = 7.
I Ali Hamza Imran

Diabates 0.43 0.32 0.41
Dengue 0.23 0.5 0.42

Tuberculosis 0.43 0.48 0.18

For r = 8, we get Table 11.

Table 11. Using formula (2), for r = 8.
I Ali Hamza Imran

Diabates 0.44 0.33 0.41
Dengue 0.24 0.51 0.43

Tuberculosis 0.44 0.49 0.18

For r = 9, we get Table 12.

Table 12. Using formula (2), for r = 9.
I Ali Hamza Imran

Diabates 0.44 0.33 0.42
Dengue 0.24 0.51 0.43

Tuberculosis 0.45 0.5 0.18

For r = 10, we obtain Table 13.

Table 13. Using formula (2), for r = 10.
I Ali Hamza Imran

Diabates 0.45 0.34 0.43
Dengue 0.24 0.52 0.43

Tuberculosis 0.45 0.51 0.18
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As r becoming larger, the difference between the data in tables
become inferior, that is, the data approaches to the real amount.
In Tables 4-13, the results are same. In fact in all tables, in the
first column, the lowest difference is related to Ali and Dengue,
so Ali suffers from Dengue, also in the second column Hamza
suffers from Diabates, in the third column Imran suffers from
Tuberculosis.
The normalized Hamming distance for all the symptoms of the
i-th patient from the k-th diagnosis [?] is

d3(pi, dk) =
1

3n

n∑
j=1

(|µpi(zj)− µdk(zj)|

+|σpi(zj)− σdk(zj)|+ |νpi(zj)− νdk(zj)|). (3)

and the normalized Euclidean distance [?] is

d4(pi, dk) =

{
1

3n

n∑
j=1

((µpi(zj)− µdk(zj))2

+(σpi(zj)− σdk(zj))2 + (νpi(zj)− νdk(zj))2)
} 1

2

.

(4)

We set n = 5.
By formulas (3), (4) respectively, the results are given in Tables
14 and 15.

Table 14. Using formula (3).
I Ali Hamza Imran

Diabates 0.39 0.15 0.26
Dengue 0.16 0.4 0.36

Tuberculosis 0.25 0.25 0.15

Table 15. Using formula (4).
I Ali Hamza Imran

Diabates 0.46 0.24 0.37
Dengue 0.20 0.49 0.43

Tuberculosis 0.35 0.37 0.18

Thus, we studied results that have been obtained from formulas
(3), (4) are same with relations (1), (2). Another idea for medical
diagnosis is

d(M,N) =max(|µM (zi)− µN (zi)|,
|σM (zi)− σN (zi)|, |νM (zi)− νN (zi)|). (5)

Table 16. Medical diagnosis.
I Ali Hamza Imran

Diabates 0.7 0.6 0.7
Dengue 0.4 0.9 0.7

Tuberculosis 0.8 0.9 0.3

The similarity measures between two neutrosophic sets M and

N is defined as follows :

S1(M,N) =
1

n

n∑
i=1

[[
min(µM (zi), µN (zi)) + min(σM (zi), σN (zi))

+ min(νM (zi), νN (zi))
]
÷
[
max(µM (zi), µN (zi))

+ max(σM (zi), σN (zi)) + max(νM (zi), νN (zi))
]]
.

(6)

We set n = 5 (Table 17).

Table 17. Using formula (6), for n = 5.
I Ali Hamza Imran

Diabates 0.28 0.70 0.45
Dengue 0.63 0.27 0.32

Tuberculosis 0.51 0.52 0.65

S2(M,N) =
1

n

[ n∑
i=1

(1− 1

3
(|µM (zi)− µN (zi)|

+ |σM (zi)− σN (zi) + |νM (zi)− νN (zi))

]
. (7)

We set n = 5 (Table 18).

Table 18. Using formula (7), for n = 5.
I Ali Hamza Imran

Diabates 0.69 0.45 0.72
Dengue 0.84 0.4 0.66

Tuberculosis 0.55 0.55 0.85

S3(M,N) =
n∑
i=1

[
min(µM (zi), µN (zi)) + min(σM (zi), σN (zi))

+min(νM (zi), νN (zi))
]
÷

n∑
i=1

[
max(µM (zi), µN (zi))

+max(σM (zi), σN (zi)) + max(νM (zi), νN (zi))
]
.

(8)

We set n = 5 (Table 19).

Table 19. Using formula (8), for n = 5.
I Ali Hamza Imran

Diabates 0.27 0.64 0.41
Dengue 0.61 0.25 0.31

Tuberculosis 0.45 0.45 0.64

S4(M,N) =1− 1

3
(max

i
(|µM (zi)− µN (zi)|)

+ max
i

(|σM (zi)− σN (zi)|)

+ max
i

(|νM (zi)− νN (zi)|)). (9)

We set n = 5 (Table 20).
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Table 20. Using formula (9), for n = 5.
I Ali Hamza Imran

Diabates 0.47 0.6 0.5
Dengue 0.5 0.1 0.25

Tuberculosis 0.67 0.4 0.73

S5(M,N) =1−
[ n∑
i=1

[
|µM (zi)− µN (zi)|

+|σM (zi)− σN (zi)|+ |νM (zi)− νN (zi)|
]

÷
n∑
i=1

[
|µM (zi) + µN (zi)|+ |σM (zi) + σN (zi)|

+|νM (zi) + νN (zi)|
]]
. (10)

We set n = 5 (Table 21).

Table 21. Using formula (10), for n = 5.
I Ali Hamza Imran

Diabates 0.42 0.78 0.58
Dengue 0.76 0.4 0.46

Tuberculosis 0.62 0.62 0.78

We can see that the results obtained by using the relations
S1, S2, S3, S4, S5 are different from relations 1 − 5. Therefore,
these similarity measures are not applicable.
The new similarity measures between neutrosophic sets M and
N are defined as follows. The first one is

Snew1 =
1

1− exp(−n)

[
1− exp(−1

3

n∑
i=1

(|µM (zi)− µN (zi)|

+|σM (zi)− σN (zi)|+ |νM (zi)− νN (zi)|))
]
. (11)

We set n = 5 (Table 22).

Table 22. Using formula (11), for n = 5.
I Ali Hamza Imran

Diabates 0.86 0.52 0.75
Dengue 0.55 0.88 0.84

Tuberculosis 0.73 0.73 0.52

The second one is

Snew2 =
1

1− exp(−n)

[
1− exp(−1

3

n∑
i=1

(|
√
µM (zi)−

√
µN (zi)|

+|
√
σM (zi)−

√
σN (zi)|+ |

√
νM (zi)−

√
νN (zi)|))

]
.

(12)

We set n = 5 (Table 23).

Table 23. Using formula (12), for n = 5.

I Ali Hamza Imran
Diabates 0.83 0.50 0.75
Dengue 0.60 0.86 0.84

Tuberculosis 0.74 0.75 0.55

The obtained relations from Snew1(M,N), Snew2(M,N) are
closely same with relations 1 − 5. Consequently, the obtained
results from the relations between neutrosophic sets (1), (2), (5),
(11), (12) are equivalent to the results of formula (3), (4). By us-
ing the distance and similarity measures formulas between neu-
trosophic sets, we establish the most applicable medical diagno-
sis that in all tables are related to the lowest difference in each
column. Finally, we conclude that the methods which have the
results equivalent to normalized hamming and normalized Eu-
clidean formulas are best to determine the diseases of a patient.
Now we present our first method in the following algorithm 1.
Algorithm 1:
Step 1. Input the truth membership, indeterminacy and non-
membership values of patients and diagnosis.
Step 2. Compute the diseases by different distance measures
given in steps 3− 7.
Step 3.

d1(pi, dk) =
1

n

n∑
j=1

[
1

6

[
|µpi(zj)− µdk(zj)|+ |σpi(zj)− σdk(zj)|

+ |νpi(zj)− νdk(zj)|
]
+

1

3

[
max(|µpi(zj)− µdk(zj)|,

|σpi(zj)− σdk(zj)|, |νpi(zj)− νdk(zj)|)
]]
.

Step 4.

d2(pi, dk) =
1

3
r
√
n

{ n∑
j=1

(|µpi(zj)− µdk(zj)|

+|σpi(zj)− σdk(zj)|+ |νpi(zj)− νdk(zj)|)r
} 1

r

.

Step 5.

d3(pi, dk) =
1

3n

n∑
j=1

(|µpi(zj)− µdk(zj)|

+|σpi(zj)− σdk(zj)|+ |νpi(zj)− νdk(zj)|).

Step 6.

d4(pi, dk) =

{
1

3n

n∑
j=1

((µpi(zj)− µdk(zj))2

+(σpi(zj)− σdk(zj))2 + (νpi(zj)− νdk(zj))2)
} 1

2

.
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Step 7.

d(M,N) =max(|µM (zi)− µN (zi)|,
|σM (zi)− σN (zi)|, |νM (zi)− νN (zi)|).

W present our second method in the following algorithm 2.
Algorithm 2:
Step 1. Input the truth membership, indeterminacy and non-
membership values of patients and diagnosis.
Step 2. Also compute the diseases by similarity measures given
in steps 3− 9.
Step 3.

S1(M,N) =
1

n

n∑
i=1

[[
min(µM (zi), µN (zi))

+min(σM (zi), σN (zi)) + min(νM (zi), νN (zi))
]

÷
[
max(µM (zi), µN (zi)) + max(σM (zi), σN (zi))

+max(νM (zi), νN (zi))
]]
.

Step 4.

S2(M,N) =
1

n

[ n∑
i=1

(1− 1

3
(|µM (zi)− µN (zi)|

+ |σM (zi)− σN (zi) + |νM (zi)− νN (zi))

]
.

Step 5.

S3(M,N) =
n∑
i=1

[
min(µM (zi), µN (zi)) + min(σM (zi), σN (zi))

+min(νM (zi), νN (zi))
]
÷

n∑
i=1

[
max(µM (zi), µN (zi))

+max(σM (zi), σN (zi)) + max(νM (zi), νN (zi))
]
.

Step 6.

S4(M,N) =1− 1

3
(max

i
(|µM (zi)− µN (zi)|)

+ max
i

(|σM (zi)− σN (zi)|)

+ max
i

(|νM (zi)− νN (zi)|)).

Step 7.

S5(M,N) =1−
[ n∑
i=1

[
|µM (zi)− µN (zi)|

+|σM (zi)− σN (zi)|+ |νM (zi)− νN (zi)|
]

÷
n∑
i=1

[
|µM (zi) + µN (zi)|+ |σM (zi) + σN (zi)|

+|νM (zi) + νN (zi)|
]]
.

Step 8.

Snew1 =
1

1− exp(−n)

[
1− exp(−1

3

n∑
i=1

(|µM (zi)− µN (zi)|

+|σM (zi)− σN (zi)|+ |νM (zi)− νN (zi)|))
]
.

Step 9.

Snew2 =
1

1− exp(−n)

[
1− exp(−1

3

n∑
i=1

(|
√
µM (zi)−

√
µN (zi)|

+|
√
σM (zi)−

√
σN (zi)|+ |

√
νM (zi)−

√
νN (zi)|))

]
.

Finally, We compare these methods to normalized hamming and
normalized Euclidean formulas and conclude that the methods
which have results equivalent to normalized hamming and nor-
malized Euclidean formulas are the best methods to determine
the disease of a patient.

4 Conclusion

In this we have developed two new algorithms for medical di-
agnosis using the proposed distance formula and similarity mea-
sures. We have solved a numerical example and compared the
obtained results derived from the proposed two algorithms with
the algorithms based on normalized Hamming and normalized
Euclidean distance. The proposed algorithms can be extended to
interval neutrosophic set environment and other neutrosophic hy-
brid environment for medical diagnosis.
Acknowledgment: The authors are highly thankful to Dr. Sura-
pati Pramanik and the referees for their valuable comments and
suggestions.
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