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Abstract: The motivation of this paper is to extend the concept of
Neutrosophic soft matrix (NSM) theory. Some basic definitions of
classical matrix theory in the parlance of neutrosophic soft set the-
ory have been presented with proper examples. Then, a theoretical
studies of some traditional operations of NSM have been developed.

Finally, a decision making theory has been proposed by developing
an appropriate solution algorithm, namely, score function algorithm
and it has been illustrated by suitable examples.

Keywords: Intuitionistic fuzzy soft matrix, Neutrosophic soft set, Neutrosophic soft matrix and different operators, Application in decision making.

1 Introduction

Researchers in economics, sociology, medical science, engineer-
ing, environment science and many other several fields deal daily
with the vague, imprecise and occasionally insufficient informa-
tion of modeling uncertain data. Such uncertainties are usually
handled with the help of the topics like probability, fuzzy sets
[1], intuitionistic fuzzy sets [2], interval mathematics, rough sets
etc. But, Molodtsov [3] has shown that each of the above topics
suffers from inherent difficulties possibly due to inadequacy of
their parametrization tool and there after, he initiated a novel con-
cept ‘soft set theory’ for modeling vagueness and uncertainties.
It is completely free from the parametrization inadequacy syn-
drome of different theories dealing with uncertainty. This makes
the theory very convenient, efficient and easily applicable in prac-
tice. Molodtsov [3] successfully applied several directions for the
applications of soft set theory, such as smoothness of functions,
game theory, operation research, Riemann integration, Perron in-
tegration and probability etc. In 2010, Cagman and Enginoglu [4]
introduced a new soft set based decision making method which
selects a set of optimum elements from the alternatives. Maji et
al. [5, 6] have done further research on soft set theory.

Presence of vagueness demanded ‘fuzzy soft set’ [7] to come
into picture. But satisfactory evaluation of membership values is
not always possible because of the insufficiency in the available
information situation. For that, Maji et al. [8, 9] have introduced
the notion ‘intuitionistic fuzzy soft set’ in 2001. Matrices play
an important role in the broad area of science and engineering.
Classical matrix theory sometimes fails to solve the problems in-
volving uncertainties. Hence, several authors proposed the ma-
trix representation of soft set, fuzzy soft set, intuitionistic fuzzy
soft set and applied these in certain decision making problems,
for instance Cagman and Enginoglu [10], Yong and Chenli [11],
Borah et al. [12], Neog and Sut [13], Broumi et al. [14], Mondal
and Roy [15], Chetia and Das [16], Basu et al. [17], Rajara-
jeswari and Dhanalakshmi [18].

Evaluation of non-membership values is also not always pos-
sible for the same reason as in case of membership values and
so, there exist an indeterministic part upon which hesitation sur-
vives. As a result, Smarandache [19, 20] has introduced the con-
cept of Neutrosophic Set (NS) which is a generalisation of clas-
sical sets, fuzzy set, intuitionistic fuzzy set etc. Later, Maji [21]
has introduced a combined concept Neutrosophic soft set (NSS).
Using this concept, several mathematicians have produced their
research works in different mathematical structures, for instance
Deli [22, 24], Broumi and Smarandache [25]. Later, this con-
cept has been modified by Deli and Broumi [26]. Accordingly,
Bera and Mahapatra [23, 27-31] introduce some view on alge-
braic structure on neutrosophic soft set. The development of de-
cision making algorithms over neutrosophic soft set theory are
seen in the literatures [32-37].

The present study aims to extend the NSM theory by develop-
ing the basic definitions of classical matrix theory and by estab-
lishing some results in NSS theory context. The organisation of
the paper is as following :

Section 2 deals some preliminary necessary definitions which
will be used in rest of this paper. In Section 3, the concept of
NSM has been discussed broadly with suitable examples. Then,
some traditional operators of NSM are proposed along with some
properties in Section 4. In Section 5, a decision making algo-
rithm has been developed and applied in two different situations.
Firstly, it has been adopted in a class room to select the best stu-
dent in an academic year and then in national security system to
emphasize the security management in five mega cities. This al-
gorithm is much more brief and simple rather than others. More-
over, a decision can be made with respect to a lot of parameters
concerning the fact easily by that. That is why, this algorithm is
more generous, we think. Finally, the conclusion of the present
work has been stated in Section 6.

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making
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2 Preliminaries

In this section, we recall some necessary definitions related to
fuzzy set, intuitionistic fuzzy soft matrix, neutrosophic set, neu-
trosophic soft set, NSM for the sake of completeness.

2.1 Definition [28]

A binary operation x : [0,1] x [0,1] — [0, 1] is continuous ¢ -
norm if x satisfies the following conditions:
(i) = is commutative and associative.
(>ii) * is continuous.
(ii)ax1=1%a=a, Ya € [0,1].
(ivy axb<cxd if a<ec,b<d with a,b,c del0,1].
A few examples of continuous ¢t-norm are a * b = ab,a * b =
min{a, b}, a * b= max{a+b—1,0}.

2.2 Definition [28]

A binary operation ¢ : [0, 1] x [0,1] — [0, 1] is continuous ¢ -
conorm (s - norm) if ¢ satisfies the following conditions :
(i) ©is commutative and associative.
(i1) ¢ is continuous.
(ii)ao0=00a=a, Ya € [0,1].
(iv) aob<cod if a<e¢, b<d with a,b,c,d € [0,1].
A few examples of continuous s-norm are a ¢ b = a + b —
ab,a b = max{a,b},aob=min{a + b, 1}.

2.3 Definition [16]

Let U be an initial universe, F be the set of parameters and A C
E. Let, (fa, E) be an intuitionistic fuzzy soft set over U. Then
a subset of U x F is uniquely defined by R4 = {(u,e) : e €
A,u € fa(e)} which is called a relation form of (fa, F). The
membership function and non-membership functions are written
by pp, : UXE — [0,1] and vg, : U x E — [0, 1] where
pr,(u,e) € 10,1] and vg, (u,e) € [0,1] are the membership
value and non-membership value, respectively of u € U for each
e € E.If (pij, vij) = (ra (wi ), VR, (w4, €5)), we can define
a matrix [(,u'ija Vij)]'mxn =

(p1,v11)  (paz, v12) (K1n, Vin)
(,u217 V21) (,u22, V22) (Mzm V2n)
(,umlvyml) (Mm2aym2) (an;ymn)

which is called an m x n IFSM of the IFSS (fa, E) over U.
Therefore, we can say that a IFSS (f4, E) is uniquely charac-
terised by the matrix (145, V)] mxn and both concepts are inter-
changeable. The set of all m x n IFS matrices over U will be
denoted by IFSM,, x ...

2.4 Definition [20]

Let X be a space of points (objects), with a generic element
in X denoted by x. A neutrosophic set A in X is charac-
terized by a truth-membership function 74, an indeterminacy-
membership function /4 and a falsity-membership function F4.
Ta(z), I4(x) and F4(z) are real standard or non-standard sub-
sets of |70,17[. That is Ta,la,Fa : X —|70,17[. There
is no restriction on the sum of Ty(x),I4(x), Fa(z) and so,
0 <supTa(x)+supla(z)+sup Fa(z) < 3T.

2.5 Definition [3]

Let U be an initial universe set and E be a set of parameters. Let
P(U) denote the power set of U. Then for A C FE, a pair (F, A)
is called a soft set over U, where F' : A — P(U) is a mapping.

2.6 Definition [21]

Let U be an initial universe set and I be a set of parameters. Let
NS(U) denote the set of all NSs of U. Then for A C FE, a pair
(F,A) is called an NSS over U, where F' : A — NS(U) is a
mapping.

This concept has been modified by Deli and Broumi [26] as
given below.

2.7 Definition [26]

Let U be an initial universe set and I be a set of parameters. Let
NS(U) denote the set of all NSs of U. Then, a neutrosophic soft
set IV over U is a set defined by a set valued function fy repre-
senting a mapping fn : F — N.S(U) where fy is called approx-
imate function of the neutrosophic soft set N. In other words, the
neutrosophic soft set is a parameterized family of some elements
of the set NS(U) and therefore it can be written as a set of or-
dered pairs,

N ={(e;,{< 2, Ty () (@), L1y (e) (), Fyy(e)(z) > 2 €U} :
e€ E}

where Ts () (%), Ity (e)(2), Fy(e)(x) € [0,1] are respectively
called truth-membership, indeterminacy-membership, falsity-
membership function of fx(e). Since supremum of each T', I, F’
is 1 so the inequality 0 < Ty (o) (%) + 15y (o) (2) + Fry(ey(7) < 3
is obvious.

2.7.1 Example

Let U = {hi,ho,h3} be a set of houses and E =
{e1(beautiful), eo(good location), es, (green surrounding)} be a

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making



set of parameters describing the nature of houses. Let,

faler) = {<h1,(0.5,0.6,0.3) >, < ho, (0.4,0.7,0.6) >,

< h3,(0.6,0.2,0.3) >}

fN(eg) = {< h1, (0.6,0.3, 05) >, < ho, (0.7,0.4, 03) >,
< h3,(0.8,0.1,0.2) >}
fy(es) = {<h1,(0.7,0.4,0.3) >, < ho, (0.6,0.7,0.2) >,

< h3,(0.7,0.2,0.5) >}

Then N = {[61, fN(el)], [62, fN(eg)], [63, fN(QS)]} is an NSS
over (U, E). The tabular representation of the NSS N is given in

Table 1.

fn(er) fn(e2) In(es)
Iy [05.0.603) (060303 (0.7.04.03)
he | (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
hs | (0.60203) (0.80.1,02) (0.7,0.2,0.5)

Table 1 : Tabular form of NSS V.

2.8 Definition [26]

1. The complement of a neutrosophic soft set NV is denoted by
N? and is defined by :

Ne ={(e,{< x, Fy(e)(®), 1 = Tty ey (), Ty (e) (@) > 2 €
U}):e€ E}

2. Let Ny and N3 be two NSSs over the common universe (U, E).
Then V; is said to be the neutrosophic soft subset of N, if Ve &
Fandz e U

Ty, (e)(®) < Thyy ) (@), Iy, (0)(T) 2 1y, e) (@),
Fr (@) 2 Fry, o) (@)

We write N1 C N5 and then Ns is the neutrosophic soft superset
of V 1-

3. Let N7 and N5 be two NSSs over the common universe (U, E).
Then their union is denoted by N1 U Ny = N3 and is defined by

Ng = {(e, {< .%'7TfN3(@)($C),Ist(e)(l'),FfNa(@)(fv) > x €
U}):e€FE

where Tst (e) (;v) = Tle (e) (3;‘) <o TfN2 (e) (1‘), IfNa (e) (CL’) =
Ty, (@) % Ly, (0 (%), Fryg (o) (%) = Fry 0)(@) * Fy, () (2)-
4. Let N and N be two NSSs over the common universe (U, E).

Then their intersection is denoted by N1 N Ny = N, and is de-
fined by :

No={(e;{< 2, Tpy, () (@), Lpy, () (), Fpy, 0) () > 7 €
U}):e€ E}

where Ty (o) (x) = Ty (¢)() * Thy,(e) (@) Lpy, () (T) =
Iy, (0 (@) 0 Ipy, (0)(@), Fry () () = Fiy, ()(%) © Fiy, () (%)

Neutrosophic Sets and Systems, 18/2017

2.9 Definition [26]

1. Let N be a neutrosophic soft set over N(U). Then a subset
of N(U) x E is uniquely defined by : Ry = {(fn(x),2) : 2 €
E, fn(z) € N(U)} which is called a relation form of (N, E).
The characteristic function of R is written as :

Ory : N(U)x E —[0,1] x [0,1] x [0,1] by
Ory (u, @) = (Tpy (2) (1), Ly () (W), Fpy () (w)
where T’ (2)(), Iy () (1), Fy(2)(u) are truth-membership,

indeterminacy-membership and falsity-membership of v € U,
respectively.

2. LetU = {uy,ug, -+ ,um}, B = {x1,29, -+ ,x,} and N be
a neutrosophic soft set over N (U). Then,
Ry | fn(21) fn(z2) In ()
ur | Opy(u,21)  Ory(u1,72) ORry (u1,2n)
Uz ORy (U2,$1)

@RN (u27x2) GRN ('I.LQ,.’BH)

Um GRN(Umaxl) GRN(UmaxQ) @RN(umaxn)

If a;; = O, (us, x;), we can define a matrix

a11 a2 A1n

a21 a2 A2
[as;] =

Am1 Am?2 Amn

such that ai; = (Tpy (o) (i), Lpy () (i), Fry () (wi)) =
(T3, If;, F5), which is called an m x n neutrosophic soft ma-
trix (NS-matrix) of the neutrosophic soft set N over N (U).

According to this definition, a neutrosophic soft set N is
uniquely characterised by a matrix [@;; ], xr». Therefore, we shall
identify any neutrosophic soft set with it’s soft NS-matrix and
use these two concepts as interchangeable. The set of all m x n
NS-matrix over N (U) will be denoted by N,, .. From now on
we shall delete the subscripts m x n of [a;j]mxn, We use [a;;]
instead of [a;j]mxn, since [a;;] € N,,«» means that [a;;] is an
m x n NS-matrix for: =1,2,--- ,mandj =1,2,--- ,n.

2.10 Definition [26]

Let [aij], [bij] c Nan. Then,

1. [a;] is a zero NS-matrix, denoted by [0], if a;; =
(0,1,1), Vi, j.

2. [ai;] is a universal NS-matrix, denoted by [1], if a;; =
(1707 0)7 vi?j'

3. [a;;] is an NS-submatrix of [b;;], denoted by [a;;]C[b;;], if

a b a b a b P
T% < Ty, I = 17, Fi > Fy, Vi, g
4. [a;;] and [b;;] are equal NS- matrices, denoted by [a;;] = [b;;],

ifaij = bij, Vl,j
5. Complement of [a;;] is denoted by [a;;]° and is defined as

another NS-matrix [c;;] such that ¢;; = (F%, 1 — I, TS), Vi, j.

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making
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3 Neutrosophic soft matrix

In this section, we have introduced some definitions and have
included some new operations related to NSM.

3.1 Definition

Let U = {uj,ug, - ,up,} and E = {e1,ea, - ,e,} be the
universal set of objects and the parametric set, respectively. Sup-
pose, N be a neutrosophic soft set over (U, E) givenby N = {<
(e, fn(e)) >: e € E} where

In(e) ={<u, (Thy(e)(w), Iy (e) (W), Fry(e) (1) > u € U}

Thus, fx(e) corresponds a relation on {e} x U i.e., fy(e) =
{(e,u;) : 1 < i < m} foreach e € E. It is obviously a sym-
metric relation. Now, consider a relation Rg on U x E given
by Rg = {(u,e) : e € E,u € fy(e)}. Itis called a relation
form of the NSS N over (U, E). The characteristic function of
Rgis xmrp : UxE — [0,1] x [0,1] x [0, 1] and is defined
as: Xrp (U, €) = (Tpy (o) (W), L5y () (1), Fryey(w)). The tabular
representation of R, is given in Table 2.

€1 €2 cot €n
uy XRg (U17€1) XRg (U17€2) XRg (Uh@n)
) XRg (Uz, 61)

XRE(U2’62) XRE(UQaen)

XRE(Umyel) XRE<um7€2) XRE(umyen)

Table 2 : Tabular form of Rg

Um

If a;j = XRrp(ui, €;), then we can define a matrix

a11 a12 A1n
as1 Q22 Qa2n
[aij]mm:
Am1 Am2 Amn
where ai; = (Tpy(e;) (i) Lyiey) (i) Fryep(wi)) =
(T3, Ify, F5).-

Thus, we shall identify any neutrosophic soft set with it’s NSM
and use these two concepts as interchangeable. Since we con-
sider the full parametric set F, so each NSS N over (U, E) cor-
responds a unique NSM [a;; ] x» Where cardinality of U and E
are m and n, respectively. To get another NSM of the same order
over (U, E), we need to define another NSS over (U, E). The set
of all NSMs of order m X n is denoted by N.SM,,, «x». Whenever
U and FE are fixed, we get all NSMs of unique order i.e., to obtain
an NSM of distinct order, at least any of U and F will have to be
changed.

3.1.1 Example

Consider the Example [2.7.1]. The relation form of the NSS N
over the said (U, F) is

‘ €1 €2 €3
hi | (0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
hs | (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
hs | (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Hence, the NSM corresponding to this NSS N over (U, E) is :

(0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)
[aijlsxs = | (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
(0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)

Next, let F; = {e;(cheap), ea(moderate), e3(high), e4(very high)}
be another set of parameters describing the cost of houses in U.
The relation form of an NSS M over (U, Ey) is written as :

€1 €2 €3 €q
hi | (4,55 (5.7,.6) (2,5,.8) (5,.6,.4)
ha | (.6,.4,.7) (6,3,4) (7,.6,.5 (8, .4,.3)
hs | (7,.3,4) (52,5 (8,44 (1,.6,.6)

Here, the NSM corresponding to the NSS M over (U, Ey) is
[bijl3xa =

(4,5,5) (.5,.7,.6) (2,.5,.8) (.5,.6,.4)
(6,.4,.7) (.6,.3,.4) (.7,.6,.5) (.8,.4,.3)
(7,3,4) (5,.2,.5) (8,.4,.4) (.1,.6,.6)

3.2 Definition

Let A = [a;;] € NSMy, 5, where a;; = (T}%, If;, F}%). Then,
1. Ais called a square NSM if m = n i.e., if the number of rows
and the number of columns are equal. The NSS corresponding to

this NSM has the same number of objects and parameters.

2. A square NSM A = [a;;]nxn is called upper triangular NSM
ifa;; = (0,1,1), Vi > j and is called lower triangular NSM if
Qaijj = (0, 1, 1), Vi < 7.

A is called triangular NSM if it is either neutrosophic soft up-
per triangular or neutrosophic soft lower triangular matrix.

3. The transpose of a square NSM A = [a;;]nxn is another
square NSM of same order obtained from [a,;] by interchanging
it’s rows and columns. It is denoted by A*. Thus A* = [a;;]" =
(T8, 18, FE)l = (T4, I5;, Ffy)]. The NSS corresponding to
A becomes a new NSS over the same universe and the same
parametric set.

4. A square NSM A = [a;]nxn is said to be a symmet-
ric NSM if A* = A ie., if a;j = aj; or (TZaIZaFZ) =
(T3, 155, E53)s Wi 5.

3.3 Definition

Let A = [a;;] € NSM,xn, Where a;; = (’Z’z‘;,[f;,FZ‘;) Then,
the scalar multiple of NSM A by a scalar k is defined by kA =

[ka;j]mxn Where 0 < k < 1.
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3.3.1 Example 3.6 Definition
Let A =lajjloxs = Let A = J[ai;] € NSMyxn, where m = n and a;; =
(0.4,0.5,0.5) (0.5,0.7,0.6) (0.5,0.6,0.4) (T;;,IZ,F“) Then, the trace of NSM A is denoted by ¢r(A)
( (0.6,0.4,0.7) (0.7,0.3,0.4) (0.8,0.4,0.3) > and is defined as tr(A) = 3", [T} — (1% + F2)].

be an NSM. Then the scalar multiple of this matrix by £ = 0.5
is kA = [ka;jlaxs = 3.6.1 Example

(0.20,0.25,0.25)  (0.25,0.35,0.30) (0.25,0.30,0.20) Let A= [aylsxs =
(0.30,0.20,0.35)  (0.35,0.15,0.20) (0.40, 0.20,0.15)

(0.5,0.6,0.3) (0.6,0.3,0.5) (0.7,0.4,0.3)

3.4 Proposition (0.4,0.7,0.6) (0.7,0.4,0.3) (0.6,0.7,0.2)
Let A = [l B = [by] € NSMyen where ay = (0.6,0.2,0.3) (0.8,0.1,0.2) (0.7,0.2,0.5)
(T;}, Ig, F“) For two scalars s, k € [0, 1],

- be an NSM. Then ¢r(A) = (0.5—0.6—0.3)+(0.7—0.4—0.3) +

sA C sB.
Proof 3.7 Proposition
() s(kA) = slkay] = s[(KT%, k1Y, kF)]

: . . Y e Let A = [ai;] € NSM,xn, where a;; = (T;;,IZ,F’I) If
= (KT skl skFG)] = sk[(T35, 15, F) e [0, 1] is a scalar, then tr(kA) = ktr(A).
= skla;;] = (sk)A.
Proof. tr(kA) =31 [T — (KIf + kFR)] = k32, [TF —
(ii) Since T, Iy, Ffs € [0,1], Vi,j so, sTf% < kTf, sIf < (15 + F)] = kitr(A).

350 igo W5
kI, sFS < kEL.
Now, sA = o sl sEY KTS kIS kFE)] = KA. .
(875, 885, sF)) < (RT3, KL K] 3.8 Max-Min Product of NSMs
Giy ACB = [ay] C [by] Two NSMs A anq B are said to be conformable for the
. b ra s b ge > pb i product A @ B if the number of columns of the NSM
= Ti; < Tij Iy > Ly, Iy = Fij, Vi, A be equal to the number of rows of the NSM B and
= ST{ < sT), s > sV, sF > sFy;, Vi, j  this product becomes also an NSM. If A = [aj]mxn
= slay] C slby] and B = [bjklnxp, then A ® B b: b[cik]mxp where
—~ sACsB aij = (TZ’IZ’ Ej) b = (Tgkvfjk’ij) and ¢ =
- (max; mm(Tw,Tjk) min; max(I”,I]k) min; max(F”,Fb ).

Clearly, B ® A can not be defined here.
3.5 Theorem

Let A = [a;j]mxn be an NSM where a;; = (T, I F“) Then,

1777190
(i) (kA)! = k A" for k € [0, 1] being a scalar. 38.1 Example
(i) (A")" = A. . _ . (0.5,0.6,0.3) (0.6,0.3,0.5)
(iii) If A = [ai;]nxn is an upper triangular (lower triangular) Let A= [aijlax2= (0.4,0.7,0.6) (0.7,0.4,0.3)
NSM, then A" is lower triangular (upper triangular) NSM. (0.6,0.2,0.3) (0.8,0.1,0.2)

Proof.(i) Here (kA)t, k At € NSM,, . Now,
and B = [bjk]gxg =

(kA)" = (KT, kI, kFS)) = (KT}, kI, kEY)]
= ]f[(T]aw[JaijaZ)]—k[(TZ’IZ’Fa)] — kAL (0.4,0.5,0.5) (0.5,0.7,0.6) (0.5,0.6,0.4)
(0.6,0.4,0.7) (0.7,0.3,0.4) (0.8,0.4,0.3)

(ii) Here A® € NSM,, ., and so (A)t € NSM,, .. Now,
be two NSMs. Then, A ® B = [cik]sxs =

(A = (T, 15, F)IN)' = (75, I, B
— (T8, I8, FL)] = A. (0.6,0.4,0.5) (0.6,0.3,0.5) (0.6,0.4,0.4)
(0.6,0.4,0.6) (0.7,0.4,0.4) (0.7,0.4,0.3)
(iii) Straight forward. (0.6,0.4,0.5) (0.7,0.3,0.4) (0.8,0.4,0.3)
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One calculation is provided herewith for convenience of A ® B.

T35 = mjax{mm(TQl,TH) min(T3,, Ty, )}
= max{min(0.4,0.4), min(0.7,0.6)} = 0.6
5, = mm{max([ I8, max (18, I5,)}
mln{max( 0.5),max(0.4,0.4)} =04
F = mm{max( 21’F11) max(Fgy, F3))}
= mm{max(O 6,0.5), max(0.3,0.7)} = 0.6

Thus, ¢21 = (0.6, 0.4, 0.6) and so on.

3.9 Theorem

Let A =

a Ta
Qij= (2]3 [’Lj?

[@ijlmxn, B = [bjklnxp be two NSMs where
F?). Then, (A® B)' = B! @ A!

Proof. Let A® B = [¢ik)mxp- Then (A® B)" = [ckilpsm, AL =
[@ji]nxm, B" = [bkjlpxn and so the order of (B*® A*) is (pxm).
Now,

(A® B)!

[(TISN Iliz’ FEZ)]PXm

[(mjax mln(Tkj , T

i) mjln max(ij 150,

min max(Fy;, Ff:))]pxm
j

= [(TISjvllgjaFI?j)]an ® [(TJawIJawFa)}nXm =B'® A"

4 Operators of NSMs

Let A = [(T4%, I8, F8)], B = (T4, 15, F5)] € NSMypn.

igo tigo 3501450

Then,
(i) Union AU B = C where Tj; = Tj; © Tg, If, = I *

b b
L, B = Fj « F, Vi, g
(i) Intersection A N B = C where T}; = Tf « Tp;, If; =
I8 610, Fe = F% o Fb, Vi, j.

a b
(i) Arithmetic mean A ® B = C where Tf, = T34 J¢ —
g +1§’7 c Ff7+
= , Vi, 7.

(1V) Welghted arlthmetlc mean A ®¥ B = C where T;} =
wlT{;--i-ngibj c ’wllfj+wglfj c wlF;;.—i-ngibj
witwy T T witwy T4 T w1 +wa

w1, we > 0.

(v) Geometric mean A© B = C where T =415 - 1, ”, It =

I I B = \JFS - FY, Vi,

(vi) Weighted geometric mean A ©* B = C where
Ticj = (witwy) (Tz%')wl . (’Til;,)wz’

[zc] = <w1+w2>/(]ij)w1 . ([ij)wz,

, Vi,j and

8
Fo= <w1+w2,>/(F{;)wl . (Fibj)w% Vi, j and wy, we > 0.
ii) Harmoni ADB = C where T¢, = 22074 e —
(vil) Harmonic mean = C where T}, = Ta+Th i
21517 c _ 2FLF Vi i
Ia +Ib I Fa-‘,-Fb 9 Z?j'
(viii) Welghted harmonic mean A (1Y B = C where T35 =
12011711;2, IC = ;ﬁyfﬁ,Fc = %, Vz,] andlU1,7JJ2 > 0.
T Tl AN P T ED
4.1 Proposition
Let A = [aij], B [blj] € NSM,,x,, where Qij =
(T35, 1%, F). Then,
(i) (AUB)t=A"UB!, (ANnB)!=A'nB.
(i) (A® B)! = A'® B, (Aa@" B)! = A' @™ B".
(i) (Ae@ B)! = A'e® B!, (Aev B)!=A'ev B'.
(iv) (AL B)t = A'TI B, (AI* B)t = At[Ov Bt

Proof. (i) Here AU B, (AU B)t, A, Bt, A* U Bt € NSM, 5.
Now,

(AUB)' = [(T4oTh I « 1Y, Fi « F)*
= [(Tf 0T, 15 % 10, Fis 5 FY)]
= (T}, 1§, i) U (T, I, F))
= (T3, Iy, F) O (T, 1, F))
= A'uB.

Next AN B, (AN B)t, A" N Bt € NSM,, . Now,

(ANBY = (T34 Fh I o1 15). F3 0T
JZ*FwaIJaz o (1 _Il‘)‘) F‘-’-<>T§-’i)]

[(
[(
= (T3, 15 Ef)I 0 (T, 1, F))
(75, 185, F5)) 0 (T3, 1, B

= A'nB.

177 71))

Remaining others can be proved in the similar manner.

4.2 Proposition

Let A = [a;;], B = [b;;] are upper triangular (lower triangular)
NSMs of same order. Then (i) AUB, ANB (ii) A® B, A®"“ B
(iii) A © B, A ®" B all are upper triangular (lower triangular)
NSMs.

Proof. Straight forward.

4.3 Theorem
Let A=
Then,

) AUA AUB,ANB,A®B,A®“ B, A9 B, AoV B, A
B, AY B are so.

[a;;], B = [b;;] be two symmetric NSMs of same order.
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(ii) A ® B is symmetric iff A® B = B ® A.
(iii) A ® A, A* ® A both are symmetric.

Proof. Here A® = A and B* = B as both are symmetric NSMs.
Clearly AUA*, AUB,ANB,A® B,A®Y B,A® B, A"
B,ALOB, ALY B,A® B, B A, A® A, A @ A all are well
defined as both the NSMs are same order and square. Now,

(i) These are left to the reader.

(i) (A®B)!=B'® A'=B® A=A®B.
(i) (A ® A" = (A @ A" = A® A" and (A" @ A)!
At @ (A = Al @ A.

4.4 Proposition

Let A = [(T¢, I8, F&). B = (T4, 15, F2)] € NSMy.

150 Fig 150 Fig

Then,

i) (AUuB)°=A4°NB°, (ANB)° = A°U B°.

(i) (A® B)° = A°® B°, (A®Y B)° = A° ®" B°.

Proof. (i) Here (AU B)°, A° N B° € NSM,,,. Now,

(AUB)® = [(ToTy I+ 1), F % F))°

J
F'a*Fb 17([0« *Ib)sz(;OTb)]

~

177

[(
[(F35
= [(F-j*Fb
[(
[(

a b a b
g 7.3’( _I) ( _I' )’Z]OT )]
= Fi?‘ﬂ If}T;;)] [(ng Izbg?szg)]

Te 14 Fa)]o [(Tb Ib Fb)}

1797150 137710

= A°nB°.

Next, (AN B)°, A° U B° € NSM,,xn. Now,

o __ a b a b a b
(AﬁB) - [(Tz]*j-‘zg?[szIzyﬁF OF )]
a b a b a b
= [(Fo by, 1 — (I o 1), Ti + T;5)]
= [(FfoFy (- 1)+ (1*1?’)7T{3*Tb)]
o a a b b
- [(F’L]’ Il]’z—;j)] [( zgv IszIZJ)]
_ a 7a a\lo b b b
- [(T]7I7,]7F )] [(TJ7I’LJ’F )}
= A°UDB°.
Note : Here, (1 — I5) o (1 —1I}) =1 — (I{; * I%) and (1 —
) (1 — Ifj) =1- (359 Ifj) hold for dual pairs of non-

parameterized t-norms and s-norms e.g., @ * b = min{a, b} and
aob = max{a,b}, axb=max{a+b—1,0}andaob =
min{a + b, 1} etc.

(ii) Here (A ® B)°, A° ® B° € NSM,,xn.

Te + 70 J9 4+ Jb Fa 4 Fb
A B)Y = v] vj vj zJ ] tJ 10
(A® B) (== =)
a b a b a b
_ Ff + Fyj 1 I + I TG + Ty
(( : ) )]
2 2 2
RS EL O -I5)+ (1-1) TE+ T
(e ; )

Neutrosophic Sets and Systems, 18/2017

= (P31 =I5, TH)] ® [(F,1 - 1, T55))

ij9 ij0 *ig
= [(TZ’I@O}’FCL ]O®[(szj>IzbJan)]
= A°® B°.

Next, for wy,ws > 0, we have,

(A ®1U B)O
_ [(wsz‘; + ngibj wilj; + wglfj wi B+ ngiI} o
wy+we | wp+ws | wy +ws
w1+w2 ’ w1 +1U2 ’ w1 +U)2
_ [(wlFl’erngf; ’LUl(].*IZ)ﬁ*wQ(].*I,Z)
w1 + wo ’ w1 + wo ’
wlT;} + IUQTZbJ )]
w1 + wo
= [(F;;,l IE‘]’TlZ)}® [(szgﬁl I’f]’j—;bj)]
= [(T8, 1, FY)1° @ (T, 1), F))]° = A’ @" B,

4.5 Proposition (Commutative law)

Let A = (T2, 1%,
Then,

i) AUB=BUA, ANB=BNA ((i)A®B=B®A, A®@"
B=B&®"YA (iAo B=BoA, A" B=Bo"A (iv)
AOB=BHA, ALY B=BOY A.

Fa)]aB = [(Tb I Fb)] € NSMyxn.

370 Tig0

Proof. Obvious

4.6 Proposition (Associative law)

Let A = [(I818,FLB = (T4 10, F)LC =
(T, 5, Ff;)) € NSMpprn. Then,

(i) (AuB)UC = AU(BUC) (i) (ANB)NC = AN(BNC)
(iii) (A®B)®C # A® (B®C) (iv) (A@B)@C # Ae(BeC)
W (AOB)OC# AQ(BEC).

Proof. (i) Clearly (AUB)UC, AU(BUC) € NSM,, .. Now,

AUB)UC
177 71] 177 170 zngC)]

(T8 o Th) o T, (IS IY) + Iy, (F % FY) + Ff)]

i \tij 5 ij

(T o (T 0 T, I + (If % I5;), Fil

r g

(

= (T4 o T), It = 1D, Fiy « FO U [(T5, I
[
[

= AU (B uaQ)

Similarly, the other results can be verified.

4.7 Proposition (Distributive law)

Let A = [(TzaaIZ,Fa)] B = [(TZ’[Z’Fb)] c =
(T5, If;, ;)] € NSMy,s,. Then,

HANB®C) = (AnB)® (AnC),(A®B)nC
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(AnC)® (BN (C).
i) AUuB®C) = (AUB)® (AUuC),(A® B)UC
(AuC)® (BUC).

Proof. () Here AN (B&®C), (ANB)® (ANC) € NSMp,xn-

Now,

AN(B®C)
Tb Te¢ b Jc Fb Fe
1j 2] Iij iy i ij

= (75, 15, FiI 0 [(

170 iy T ig
T + TF I + I, FY + F§
i ¥ T 5 54 © y i © =)l
2 2 2
a b a c a b a c
N KTij*Tij""Tij*Tij IijOIij+Iij<>Iij
2 ’ 2 ’
a b a c
Ff o FY + Ff o FY,
. )

= (T8 =Th I o I8, Fl o )
ST * T3, Iy 0 I, Ffy o F)]

= (AnB)®(ANCQC)

Next (A® B)NC, (ANC)® (BNC) € NSM,,x». Now,

(A®@ B)ynC
TE+ T If + 1Y Fy+ F c e e
= [( . 9 ]7 s B Jv s 9 JﬂmKTiijiijij)]
a b a b a b
T+ T}, It + I Fg + F},

ol R Y P R DY L RAL N B)
a c b c a c b c
_ [(Tz‘j*TiﬁLTz‘j*Tij 15 o Iy + Iy o I
2 ’ 2 ’
a c b c
FijoFZ-j+Fij<>Fij)]
2
= [(Tl‘;*Tc I% o I° FijoFicj)]

177 *1g 379
®T « Tj, Iy 0 Iy, Fly o F;)]

170 71g 7

= (AnC)®(BNCO)

In a similar way, the remaining can be established.

4.8 Proposition (Distributive law)

_ _ b o7b b
Let A = [(T% 1%, F8),B = [T, 1, F;)),C
[(TzC]aIfJancj)] € NSMan~

If a * b = min{a, b} and a © b = max{a, b}, then

i) ANBUC) = (ANB)UANC),(AuB)nC
(ANC)u (BNC).

i) Au(BNC)=(AUB)N(AUC), ANnB)UuC
(AuC)N(BUC).

(iidA® (BUC) = (A®@B)Uu(A® (), AUB)®C
(A®C)U(B®C).

A®(BNC) = A®eBnNn(Aa®(C),(ANnB)®C
(A@C)n(B®C).
(ivvAe®(BUC) = (A®@B)U(A®C), AUB)e C

2 ’ 2 2 )

10

(A®C)U(B®OC).
A®(BNC) = (AeB)N(A®C),(ANB)® C
(AeC)N(B®O0).
V) AQ(BUC) = (AOB)U(AEC), (AUB)EC
(AT C)U(BOO).
AB(BNC) = (ABB)N(AEBC),(ANB) EC
(ADC)N(BEO).

Proof. We shall here prove (i), (iv) and (v) only. The others can
be proved in the similar fashion.

(i)Here AN(BUC), (ANB)U(ANC) € NSM,, . Now,

AN(BUC)

= [(T, I, Fipl 0 [(max{ T, T3}, min{ L3, I} },
min{Ff} cmg})]

= [(min{Ti‘}, rnax{Til}7 Tfj}}, max{[fj, min{]fj, Ifj}},

max{Fg, min{Fl}, F5 }})
= [(max{min{T2, T}, min{T%, T5}}, min{max{I%, I},

ijr g ijs g i tig
max{[%, Ifj}}7 min{maX{Fi‘;, Ffj}, max{FZ-‘;-, Ffj}})]
_ : b b a b

Ul(min{T}, T5: }, max{I%, I}, max{F, F{:})]

177 g 30 tig ij0 iy

= (ANB)U((ANCQC)
Next (AUB)NC,(ANC)U(BNC) € NSM,,xn. Now,

(AuB)NnC

= [(max{T%, T3}, min{I%, I}, min{ F%, F}}})]
NI(T5, 1, Fij))

= [(min{max{T};, Til}}, T}, max{min{I;, [f’j}, If},
max{min{Fi‘;7 Fil}}, Fl‘;})}

= [(max{min{Ti‘}, 75}, min{]}bj, T} ), min{max{I, If;},
max{[f’j,I%}Lmin{max{Fi‘},F{}},max{F;},Fi;}})]

= [(min{Ti‘;-,Tfj},max{ffj,ffj},maX{Fi‘},Ffj})]
U[(min{ﬂ%,ﬂ?},max{[fj,Ifj},max{FiI},Ffj})]

— (ANC)U(BNO)

(ivyHere A® (BUC),(A®@B)U(A®C) € NSM,,xn. Now,

A® (BUC)
a Ta a b c . b c
- [(Tija Iija E])] © [(max{lrija Tij}a mln{]ijv Iz'j}7

min{Fiz}vFicj})]

= (/T8 - max{T}, T}, \ /1 - min{1h, 1),
\/Fi(;' mm{ngFij})]

= [(max{\/T3 - 70, /T - T5}, min{y/1¢, - 11,

Iij 'Iicj}amin{\/Fz’(} ’ Fil}a \/ % cm]})]
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= [(\/ 1311137\/]%]’5)]7\/F’L(;F’Z)]
UlG/Ts - T /I - I\ B - )

= (A®@B)U(AeC)

Next (AUB)® C,(A®C)U(B®C) € NSM,,xn. Now,

(AUB)® C
= [(max{T%, T} }, min{I{, I}, min{ %, F’})]

= [(fmax{Tg, Th} - T, \/min{15, 1%} - g,
\/min{Fil}7Fil}}'FiC]'7)]
= [max{\ /T - T /T - T, mind /13- T,
1 15} min{ [ B\ [F - Fi )l
= [T T5 I - I JFG - F5))

OlG/Th - T [Ty I\ JFY - F)
- (Ae@C)U(B®O)

(v)Here AGI (BUC), (A B)U(AEC) € NSM,,xn. Now,

AB(BUC)
= (T35, 15, F5)) O
[(max{TiZ}, 75}, min{]f’j, I5 ), min{F}}, i)
_ [(2-Ti§-max{1§’;,fi;}’2jgj-@in{ifj,lg}7
TZ‘ + max{ﬂj,EE} Ifj + mm{[ij,]fj}
2. Fg - min{F’, Ff} )
Fg +min{F};, F}
a b a e a 1b
_ [(max{;_ff;b_, Z 0} min ]i_jfﬁy
ij ij g ij ij ij
2015 min{ 2F3F)  2FLFf :
I+ I Fi+ F)Ff + Ff
e B
17 (%] 17 17 1J (%)
oreTe  9Jagc.  QFafC

U[( az] ’L]c’ a” z]c’ al] l]c )}
Te + TS I+ 15 FS + F
= (ADB)U(AEC)

Next (AU B)EC,(ADC)U(BEC) € NSMy, . Now,

(AuB)IC
_ a b : a b : a b
= [(maX{TijvTij}’mln{]ij?Iij}vmln{Fiijij})]
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2 - max{T Tb}Tfj 2 - min{I¢ ]b}.]icj

- max{Tibj,jﬂ‘;-}]Jr Ty, ’ min{[fj,iffj}JJr If; '
2. min{F2, Fb} - FS ;
min{Fil;-7 sz} +
a e b e a TC
=l e ) i
ij ij tij ij ij T tij
2[%]%  min{ QFZ-‘;-FZ-C]- QFZ-Z}FZ-C]- W]
L+ 17 FG+ FGFG+ Fy
-l T 2T )
g TG LG LG G+ E
Ul( QTZTZZ 2]%]% ZFZI’JFZCJ 1

b ’1b c’ b
T+ T Ly + 15 B+ F
— (ABDC)U(BEO)

4.9 Proposition (Idempotent law)

Let A = [(T5, If;, F;)] € NSM,y, . Then,

170 g0
HA®Y A=A ()AY A=A (i) ALY A= A.
Proof. For all 7, 7 and w1, wo > 0 we have,

a a a a a a
7”1T1:j+w2Tij 11111”4-“121” 7“1F11j+w2F¢j )] _
witwsz 7 witws witwsz ’

(i) AevY A = [(
(T2, 18, F5)) = A.

YRR YR

(i1) A% A= [( (w1+w2)/(7174_¢;_)w1 . (n@)wQ’
(“’1+“’2)/(Igj)w1 . (I%)W27 ("’1+“"2>/(Fi‘;-)w1 . (F%)wz)]
= [( <w1+w2>/(Tit})w1+wz’ (w1+w2>/([£zj)w1+w2,

o [(Fgywton)] = (T8, 18, F)) = A,

A v A _ w1 +wa wi +wa w1 w2 _
11 = W We, Wi, W, W | W3 =
Tat76  Tat1d | Fa T Ea
iJ ij k%3 ij k%3 ij

(T2, 15, F2)) = A.

150 Tig0

5 Neutrosophic soft matrix theory in de-
cision making (score function algo-
rithm)

5.1 Definition

1. Let A = [ai;]mxn be an NSM where a;; = (T{},I%,Fi‘}).
Then the value of the matrix A is denoted by V' (A4) and is defined
as: V(A) = [v%]mxn where v, = T% — I, — Ff, Vi, j.

2. The score of two NSMs A and B is defined as S(4, B) =
[Sij]mxn Where s;; = v + vfj. So, S(A,B) =V (A) + V(B).

3. The total score for each object in U is X7_; s;;.
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5.2 Properties of Score Function

Value matrices are classical real matrices which follow all prop-
erties of classical real matrices. The score function is basically
a real matrix in classical sense derived from two or more value
matrices. So score functions obey all properties of real matrices.

5.3 Methodology

Suppose, N number of decision makers wish to select an ob-
ject jointly from m number of objects i.e., universal set U with
respect to n number of features i.e., parametric set /. Each deci-
sion maker forms an NSS over (U, F) and corresponding to each
NSS, each get an NSM of order m x n. It needs to compute the
value matrix corresponding to each matrix. Then the score matrix
and finally, the total score of each object will be calculated.

5.3.1 Algorithm

Step 1 : Construct the NSMs from the given NSSs.

Step 2 : Calculate the value matrices of corresponding NSMs.
Step 3 : Compute the score matrix from value matrices and the
total score for each object in U.

Step 4 : Find the object of maximum score and it is the optimal
solution.

Step 5 : If score is maximum for more than one object, then find
%11 (sij)", k > 2 successively. Choose the object of maximum
score and hereby the optimal solution.

5.3.2 Case study 1 (application in class room)

Three students {s1, s2, $3} from class - x in a school have been
shortened to win the best student award in an academic session.
A team of three teachers {77, 75,73} has been formed by the
Head Master of that school for this purpose. Final selection is
based on the set of parameters {ej, ez, 3, €4, €5} indicating the
quality of student, participation in school cultural programme,
class room interactions, maintenance of discipline in class room,
daily attendance, respectively. Teachers have given their valuable
opinions by the following NSSs separately i.e., first NSS given by
first teacher and so on.

M = {fum(er), far(e2), far(es), far(ea), far(es)} where

fuler) = {<s1,(0.7,0.2,0.6) >, < s2,(0.6,0.3,0.5) >,

< 53,(0.8,0.3,0.5) >}

farles) = {<s1,(0.4,0.6,0.7) >, < s9,(0.7,0.6,0.3) >,
< 53,(0.5,0.5,0.4) >}

farles) = {<s1,(0.5,0.5,0.3) >, < s2,(0.7,0.4,0.4) >,
< 53,(0.6,0.4,0.6) >}

farles) = {<s1,(0.6,0.6,0.5) >, < s9,(0.5,0.8,0.6) >,

< 53,(0.4,0.7,0.4) >}

il}2

N = {fn(e1), fn(e2), fn(e3), fn(ea), fn(es)} where

fnler) = {<s1,(0.6,0.4,0.5) >, < s9,(0.7,0.4,0.2) >,

< s3,(0.9,0.4,0.2) >}

fnles) = {<s1,(0.5,0.5,0.6) >, < s9,(0.8,0.5,0.1) >,
< 53,(0.6,0.7,0.5) >}

fn(es) = {<s1,(0.7,0.3,0.4) >, < s9,(0.8,0.5,0.3) >,
< s3,(0.5,0.6,0.7) >}

fnles) = {<s1,(0.7,0.5,0.3) >, < 59,(0.6,0.7,0.5) >,
< 53,(0.5,0.5,0.5) >}

fnles) = {<s1,(0.6,0.4,0.6) >, < s2,(0.6,0.3,0.7) >,

< 55,(0.8,0.3,0.3) >1}
P ={fp(e1), fr(ez2), fr(es), fr(es), fr(es)} where

frer) = {<s1,(0.8,0.3,0.3) >, < ss,(0.8,0.5,0.3) >,

< 53,(1.0,0.4,0.2) >}

frles) = {<51,(0.6,0.4,0.5) >, < s9,(0.7,0.6,0.2) >,
< $3,(0.8,0.5,0.4) >}

fr(es) = {<s1,(0.8,04,0.1) >, < s2,(0.7,0.5,0.5) >,
< s3,(0.6,0.7,0.3) >}

frles) = {<51,(0.6,0.6,0.2) >, < s9,(0.8,0.6,0.4) >,
< s3,(0.7,0.3,0.6) >}

fples) = {<s1,(0.8,0.4,0.2) >, < s2,(0.6,0.4,0.3) >,

< 53,(0.7,0.5,0.4) >}}

The above three NSSs are represented by the NSMs A, B and C,
respectively, as following :

(.7,.2,6) (4,.6,.7) (.5,.5,.3) (.6,.6,.5) (.8,.3,.4)
(.6,.3,.5) (.7,.6,.3) (.7,.4,4) (.5,.8,.6) (.7,.2,.6)
(.8,.3,.5) (.5,.5,4) (.6,.4,.6) (4,.7,.4) (.9,.1,.2)
(.6,.4,.5) (.5,.5,.6) (.7,.3,.4) (.7,.5,.3) (.6,.4,.6)
(.7,.4,.2) (.8,.5,.1) (.8,.5,.3) (.6,.7,.5) (.6,.3,.7)
(.9,.4,.2) (.6,.7,.5) (.5,.6,.7) (.5,.5,.5) (.8,.3,.3)
(.8,.3,.3) (.6,.4,.5) (.8,4,.1) (.6,.6,.2) (.8,.4,.2)
(.8,.5,.4) (.7,.6,.2) (.7,5,.5) (.8,.6,.4) (.6,.4,.3)
(1,.4,.2) (.8,.5,.4) (.6,.7,.3) (.7,.3,.6) (.7,.5,.4)
Then the corresponding value matrices are :

-1 -9 -3 -5 01

ViA)=| -2 -2 -1 -9 -1

00 -4 -4 -7 0.6

-3 -6 00 -1 -4

Vv(B)=| 01 02 00 -6 -4

03 -6 -8 -5 02

02 -3 03 -2 02

vie)y=| -1 -1 -3 -2 -1

04 -1 -4 -2 -2
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The score matrix is :

—-0.2 —-1.8 000 —-0.8 -0.1
S(A,B,C) = -0.2 —-01 -04 -1.7 —-0.6
00.7 —-1.1 —-1.6 —-1.4 00.6
—-2.9
and the total score = —-3.0
—2.8

Hence, the student s3 will be selected for the best student award
from class-x in that academic session.

5.3.3 Case study 2 (application in security management)

An important discussion on internal security management has
been arranged by the order of Home Minister. Two officers
have mate in that discussion to analyse and arrange the secu-
rity management in five mega-cities e.g., Delhi(D), Mumbai(M),
Kolkata(K), Chennai(C), Bengaluru(B). The priority of manage-
ment is given to the cities based on the set of parameters {a, b, ¢}
indicating their geographical position(e.g., having international
boarder line, having sea coast etc ), population density, past his-
tory of terrorist attack, respectively. Following NSSs refer the
opinions of two officers individually regarding that matter.

N1 = {fn,(a), fn, (b), fn, (c)} where

fa(a) = {<D,(0.9,0.4,0.5) > < M,(0.8,0.5,0.4) >
< K,(0.7,0.6,0.6) >, < C, (0.6,0.4,0.7) >
< B,(0.5,0.3,0.8) >}

{< D,(0.8,0.5,0.5) >, < M, (0.9,0.3,0.3) >
< K,(0.7,0.6,0.5) >, < C,(0.6,0.7,0.8) >
< B,(0.6,0.8,0.5) >}

{< D,(0.7,0.5,0.4) >, < M, (0.9,0.3,0.2) >
< K,(0.5,0.6,0.7) >, < C,(0.7,0.4,0.6) >
< B,(0.6,0.3,0.4) >}

No = {fn,(a), fn,(b), fn,(c)} where
sz (a) =

le (b) =

le(C) =

{< D,(1.0,0.5,0.4) >, < M, (0.9,0.4,0.5) >

< K,(0.7,0.7,0.5) >, < C,(0.6,0.5,0.3) >

< B,(0.6,0.7,0.4) >}

{< D,(0.9,0.4,0.5) >, < M, (0.9,0.2,0.3) >

< K,(0.8,0.5,0.4) >, < C,(0.7,0.7,0.6) >

< B,(0.6,0.8,0.7) >}

{< D,(0.8,0.3,0.2) >, < M, (0.9,0.2,0.1) >
K, (0.4,0.5,0.6) >, < C,(0.5,0.6,0.6) >

< B,(0.7,0.4,0.3) >}

fna(b) =

fN2 <C>

These two NSSs are represented by the NSMs A and B, respec-
tively, as following :
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(0.9,0.4,0.5) (0.8,0.5,0.5) (0.7,0.5,0.4)
(0.8,0.5,0.4) (0.9,0.3,0.3) (0.9,0.3,0.2)
A= (0.7,0.6,0.6) (0.7,0.6,0.5) (0.5,0.6,0.7)
(0.6,0.4,0.7) (0.6,0.7,0.8) (0.7,0.4,0.6)
(0.5,0.3,0.8) (0.6,0.8,0.5) (0.6,0.3,0.4)
(1.0,0.5,0.4) (0.9,0.4,0.5) (0.8,0.3,0.2)
(0.9,0.4,0.5) (0.9,0.2,0.3) (0.9,0.2,0.1)
B = (0.7,0.7,0.5) (0.8,0.5,0.4) (0.4,0.5,0.6)
(0.6,0.5,0.3) (0.7,0.7,0.6) (0.5,0.6,0.6)
(0.6,0.7,0.4) (0.6,0.8,0.7) (0.7,0.4,0.3)
Then the corresponding value matrices are :
00 -2 -2
-1 03 04
V(A) = -5 -4 -8
-5 -9 -3
-6 -7 -1
0.1 0.0 0.3
0.0 04 0.6
V(B) = -5 -1 =7
-2 -6 -7
-5 -9 00
The score matrix and the total score for selection are :
00.1 —-0.2 00.1
—0.1 00.7 01.0
S(A,B) = -1.0 -5 -1.5
-0.7 —-15 -1.0
-1.1 —-1.6 -0.1
00.0
01.6
Total score = —-3.0
—3.2
—-2.8

Hence, the priority of security management should be given in
descending order to Mumbai, Delhi, Bangaluru, Kolkata and
Chennai.

6 Conclusion

In this paper, some definitions regarding neutrosophic soft ma-
trices have been brought and some new operators have been in-
cluded, illustrated by suitable examples. Moreover, application
of neutrosophic soft matrix theory in decision making problems
have been made. We expect, this paper will promote the future
study on different algorithms in several other decision making
problems.

References

[1] L. A. Zadeh, Fuzzy sets, Information and control, 8, (1965),
338-353.

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making



Neutrosophic Sets and Systems, 18/2017

[2] K. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and sys-
tems, 20, (1986),87-96.

[3] D. Molodtsov, Soft set theory- first results, Computer and
Mathematics with Applications, 37, (1999), 19-31.

[4] N. Cagman and S. Enginoglu, Soft set theory and uni-int de-
cision making, European J. Oper. Res., 207(2), (2010), 848-
855.

[5] P. K. Maji, R. Biswas and A. R. Roy, An application of soft
sets in a decision making problem, Comput. Math. Appl., 44,
(2002), 1077-1083.

[6] P.K.Maji, R. Biswas and A. R. Roy, Soft set theory, Comput.
Math. Appl., 45, (2003), 555-562.

[7] P. K. Maji, R. Biswas and A. R. Roy, Fuzzy soft sets, J. Fuzzy
Math., 9(3), (2001), 589-602.

[8] P. K. Maji, R. Biswas and A. R. Roy, Intuitionistic fuzzy soft
sets, J. Fuzzy Math., 9(3), (2001), 677-692.

[9] P. K. Maji, R. Biswas and A. R. Roy, On intuitionistic fuzzy
soft sets, J. Fuzzy Math., 12(3), (2004), 669-683.

[10] N. Cagman and S. Enginoglu, Soft matrix theory and it’s
decision making, Comput. Math. Appl., 59, (2010), 3308-
3314.

[11] Y. Yong and J. Chenli, Fuzzy soft matrices and their appli-
cations, part 1, LNAI, 7002, (2011), 618-627.

[12] M. J. Borah, T. J. Neog and D. K. Sut, Fuzzy soft matrix
theory and it’s decision making, IIMER, 2, (2012), 121-127.

[13] T.J.Neog and D. K. Sut, An application of fuzzy soft sets in
decision making problems using fuzzy soft matrices, IIMA,
(2011), 2258-2263.

[14] S. Broumi, F. Smarandache and M. Dhar, On fuzzy soft
matrix based on reference function, Information engineering
and electronic business, 2, (2013), 52-59.

[15] J. I. Mondal and T. K. Roy, Intuitionistic fuzzy soft matrix
theory, Mathematics and statistics, 1(2), (2013), 43-49, DOI:
10.13189/ms.2013.010205.

[16] B. Chetia and P. K. Das, Some results of intuitionistic fuzzy
soft matrix theory, Advanced in applied science research,
3(1), (2012), 412-423.

[17] T. M. Basu, N. K. Mahapatra and S. K. Mondal, Intuition-
istic fuzzy soft matrix and it’s application in decision mak-
ing problems, Annals of fuzzy mathematics and informatics,
7(1), (2014), 109-131.

[18] P. Rajarajeswari and P. Dhanalakshmi, Intuitionistic fuzzy
soft matrix theory and it’s application in decision making,
IJERT, 2(4), (2013), 1100-1111.

14

[19] F. Smarandache, Neutrosophic set, A generalisation of the
intuitionistic fuzzy sets, Inter.J.Pure Appl.Math., 24, (2005),
287-297.

[20] F. Smarandache, Neutrosophy, Neutrosophic Probability,
Set and Logic, Amer. Res. Press, Rehoboth, USA., (1998),
p- 105, http://fs.gallup.unm.edu/eBook-neutrosophics4.pdf
(fourth version).

[21] P. K. Maji, Neutrosophic soft set, Annals of Fuzzy Mathe-
matics and Informatics, 5(1), (2013), 157-168.

[22] 1. Deli, Interval-valued neutrosophic soft sets and its deci-
sion making, International Journal of Machine Learning and
Cybernetics, DOI: 10.1007/s13042-015-0461-3.

[23] T. Bera and N. K. Mahapatra, On neutrosophic soft func-
tion, Annals of fuzzy Mathematics and Informatics, 12(1),
(2016), 101-119.

[24] I. Deli and S. Broumi, Neutrosophic soft relations and some
properties, Annals of Fuzzy Mathematics and Informatics,
9(1), (2015), 169-182.

[25] S. Broumi and F. Smarandache, Intuitionistic neutrosophic
soft set, Journal of Information and Computing Science, 8(2),
(2013), 130-140.

[26] I. Deli and S. Broumi, Neutrosophic Soft Matrices and
NSM-decision Making, Journal of Intelligent and Fuzzy Sys-
tems, 28(5), (2015), 2233-2241.

[27] T. Bera and N. K. Mahapatra, Introduction to neutrosophic
soft groups, Neutrosophic Sets and Systems, 13, (2016), 118-
127, doi.org/10.5281/zenodo.570845.

[28] T. Bera and N. K. Mahapatra, On neutrosophic normal
soft groups, Int. J. Appl. Comput. Math., 2(4), (2016), DOI
10.1007/s40819-016-0284-2.

[29] T. Bera and N. K. Mahapatra, («, 3, v)-cut of neutrosophic
soft set and it’s application to neutrosophic soft groups,
Asian Journal of Math. and Compt. Research, 12(3), (2016),
160-178.

[30] T. Bera and N. K. Mahapatra, On neutrosophic soft rings,
OPSEARCH, 1-25, (2016), DOI 10.1007/ s12597-016-0273-
6.

[31] T. Bera and N. K. Mahapatra, Introduction to neutrosophic
soft topological space, OPSEARCH, (March, 2017), DOI
10.1007/s12597-017-0308-7.

[32] S. Das, S. Kumar, S. Kar and T. Pal, Group deci-
sion making using neutrosophic soft matrix : An al-
gorithmic approach, Journal of King Saud University

- Computer and Information Sciences, (2017), https
://doi.org/10.1016/j.jksuci.2017.05.001.

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making



15

[33] S. Pramanik, P. P. Dey and B. C. Giri, TOPSIS for single
valued neutrosophic soft expert set based multi-attribute de-
cision making problems, Neutrosophic Sets and Systems, 10,
(2015), 88-95.

[34] P. P. Dey, S. Pramanik and B. C. Giri, Generalized neutro-
sophic soft multi-attribute group decision making based on
TOPSIS, Critical Review 11, (2015), 41-55.

[35] S. Pramanik and S. Dalapati, GRA based multi criteria de-
cision making in generalized neutrosophic soft set environ-
ment, Global Journal of Engineering Science and Research
Management, 3(5), (2016), 153-169.

Neutrosophic Sets and Systems, 18/2017

[36] P. P. Dey, S. Pramanik and B. C. Giri, Neutrosophic soft
multi-attribute group decision making based on grey rela-
tional analysis method, Journal of New Results in Science,
10, (2016), 25-37.

[37] P. P. Dey, S. Pramanik and B. C. Giri, Neutrosophic soft
multi-attribute decision making based on grey relational pro-
jection method, Neutrosophic Sets and Systems 11, (2016),
98-106.

Received: October 2, 2017. Accepted: October 25, 2017.

Tuhin Bera, Nirmal Kumar Mahapatra, Neutrosophic Soft Matrix and its application to Decision Making



Neutrosophic Sets and Systems, 18/2017

W NSS

16

University of New Mexico <~

Interval neutrosophic sets applied to ideals
in BCK/BCl-algebras

Seok-Zun Song!, Madad Khan?, Florentin Smarandache®, Young Bae Jun®*

I Department of Mathematics, Jeju National University, Jeju 63243, Korea. E-mail: szsong@jejunu.ac.kr

2Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan. E-mail: madadmath@yahoo.com

3Mathematics & Science Department, University of New Mexico, 705 Gurley Ave., Gallup, NM 87301, USA. E-mail: fsmarandache@gmail.com

“4Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea. E-mail: skywine@gmail.com

*Correspondence: skywine@gmail.com
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1 Introduction

BCK-algebras entered into mathematics in 1966 through the
work of Imai and Iséki [3], and have been applied to many
branches of mathematics, such as group theory, functional anal-
ysis, probability theory and topology. Such algebras generalize
Boolean rings as well as Boolean D-posets (= MV -algebras).
Also, Is¢ki introduced the notion of a BC'I-algebra which is a
generalization of a BC' K -algebra (see [4]). The neutrosophic set
developed by Smarandache [7, &, 9] is a formal framework which
generalizes the concept of the classic set, fuzzy set [14], interval
valued fuzzy set, intuitionistic fuzzy set [1], interval valued in-
tuitionistic fuzzy set and paraconsistent set etc. Neutrosophic
set theory is applied to various part, including algebra, topol-
ogy, control theory, decision making problems, medicines and
in many real life problems. Wang et al. [11, 12, 13] presented
the concept of interval neutrosophic sets, which is more precise
and more fl xible than the single-valued neutrosophic set. An
interval-valued neutrosophic set is a generalization of the con-
cept of single-valued neutrosophic set, in which three member-
ship (¢,4, f) functions are independent, and their values belong
to the unit interval [0, 1]. The interval neutrosophic set can repre-
sent uncertain, imprecise, incomplete and inconsistent informa-
tion which exists in real world. Jun et al. [5] discussed interval
neutrosophic sets in BCK/BCI-algebras, and introduced the
notion of (7'(¢, j), I(k, 1), F'(m,n))-interval neutrosophic subal-
gebras in BCK/BCT-algebras for 4, j, k,l,m,n € {1,2,3,4}.
They also introduced the notion of interval neutrosophic length of
an interval neutrosophic set, and investigated related properties.

In this article, we apply the notion of interval neutrosophic
sets to ideal theory in BC'K/BCI-algebras. We introduce the
notion of (7°(4, j), I(k,1), F(m,n))-interval neutrosophic ideals
in BCK/BC1I-algebras for i, j, k,l,m,n € {1,2,3,4}, and in-
vestigate their properties and relations.

BCK/BC1I-algebras is introduced, and their properties and re-
lations are investigated.

2 Preliminaries

By a BCI-algebra (see [2, 6]) we mean a system X := (X, %,0)
in which the following axioms hold:

D ((@*y)*(zx2))* (zxy) =0,
D) (z* (z*y)) *xy =0,
() z %z =0,
(V) zxy=y*xz=0 = z=y

forall x,y, z € X.Ifa BCI-algebra X satisfie 0%z = 0 for all
x € X, then we say that X is a BC K -algebra (see [2, 0]).

A non-empty subset S of a BC'K/BC1T-algebra X is called a
subalgebra (see [2, 0]) of X if z xy € S forall x,y € S.

The collection of all BC' K -algebras and all BC'I-algebras are
denoted by Bg (X) and Br(X), respectively. Also B(X) :=
BK(X) U B[(X)

We refer the reader to the books [2] and [6] for further infor-
mation regarding BC'K / BC'I-algebras.

By a fuzzy structure over a nonempty set X we mean an or-
dered pair (X, p) of X and a fuzzy set p on X.

Definition 2.1 ([10]). A fuzzy structure (X, u) over (X, *,0) €
B(X) is called a

o fuzzy ideal of (X, *,0) with type 1 (briefl , 1-fuzzy ideal of
(X, *,0)) if

(Vo € X) (1(0) > p(x)),
(Va,y € X) (u(z) > min{u(x xy), u(y)}),

2.1)
2.2)
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o fuzzy ideal of (X, ,0) with type 2 (briefl , 2-fuzzy ideal of ~ Given an interval neutrosophic set Z := (Z[T],Z[I],Z[F]) in

(X, %,0))if X, we consider the following functions (see [5]):
(Vx € X) (u(0) < p(x)), (2.3) I[Ting : X — [0,1], 2 — inf{Z[T](z)}
(Vo,y € X) (u(z) <minfu(z+y),u(y)}),  (2.4) It : X — [0,1], 2 — inf{Z[I](x)}

I[Flint : X — [0,1], z — inf{Z[F](z)}
o fuzzy ideal of (X, *,0) with type 3 (briefl , 3-fuzzy ideal of
(X, *,0)) if it satisfie (2.1) and
I Tsup : X — [0,1], & — sup{Z[T](z)}
I sup : X — [0,1], & — sup{Z[I](z)}
I[F)sup : X — [0,1], z > sup{Z[F](z)}.

(Vo,y € X) (u(z) > max{pu(z xy), u(y)}),  (2.5)

o fuzzy ideal of (X, *,0) with type 4 (briefl , 4-fuzzy ideal of
(X, *,0)) if it satisfie (2.3) and

(V2. y € X) (u(z) < max{u(z +y), u(y)}). (26) O Interval neutrosophic ideals

) ) Definition 3.1. For any 4, j, k, [, m,n € { 1,2, 3, 4}, an inter-
Let X be a non-empty set. A neutrosophic set (NS) in X (see  val neutrosophic set Z := (Z|T), Z|1), Z|F']) in X is called a (T
[8]) is a structure of the form: %z', i), I(k, 1), F(m, n))-interval neutrosophic ideal of X if the
OIIZ)wing assertions are valid.
A= {{z; Ap(z), Ar(x), Ap(2)) |z € X}
() (X,Z[T)ing) is an i-fuzzy ideal of (X,#,0) and

where Ar : X — [0,1] is a truth membership function, A; : (X, Z[T)sup) is a j-fuzzy ideal of (X, ,0),
X — [0,1] is an indeterminate membership function, and A :
X — [0,1] is a false membership function. (2) (X, Z[I]ine) is a k-fuzzy ideal of (X, *,0) and (X, Z[/]sup)

An interval neutrosophic set (INS) A in X is characterized by is an [-fuzzy ideal of (X, *,0),

truth-membership function 74, indeterminacy membership func-
tion 14 and falsity-membership function F'4. For each point x in
X, Ta(x), Ia(x), Fa(z) € [0,1] (see [12, 13]).

In what fOHOV}’S, let (X,*,0) € B(X) and P*([O7 1]) be the  Example 3.2. Consider a BC K-algebra X = {0,1,2,3} with
family of all subintervals of [0, 1] unless otherwise specifie . the binary operation * which is given in Table 1 (see [6]).

(3) (X,Z[F)int) is an m-fuzzy ideal of (X,x,0) and
(X, Z[Flsup) is an n-fuzzy ideal of (X, *,0).

Definition 2.2 ([12, 13]). An interval neutrosophic set in a
nonempty set X is a structure of the form:

(33021

Table 1: Cayley table for the binary operation “x

* 0 1 2 3

7= {{z,Z[T)(x),Z[I](2),Z[F](z)) |z € X} 0 0 0 0 0

1 1 0 0 1

where 92 ) 9 0 )
3 3 3 3 0

I[T): X — P*([0,1])

which is called interval truth-membership function,
(1) LetZ := (Z[T], Z|I], Z]F]) be an interval neutrosophic set

Il : X — P*(]0,1]) in (X, x,0) for which Z[T'], Z[I] and Z[F] are given as follows:
which is called interval indeterminacy-membership function, and [0.4,0.6) ifx=0,
I[F]: X — P*([0,1]) ' ’ 0.2,0.7) ifz=2,
o 01,08 ifz=3,

which is called interval falsity-membership function.

For the sake of simplicity, we will use the notation 7 := [0.5,0.6) %fﬂ? =0,
(Z[T),Z[I],Z|F)) for the interval neutrosophic set ) * (0.4,0.6) ifz =1,
I} X = P((0.1]) = - (0.2,0.9] ifz=2,
T :={(x,Z[T)(x),Z[I)(2),Z[F)(x)) |z € X }. [0.5,0.7) ifz =3,
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and
[0.4,0.5) ifz=0,
. . (03,05) ifz=1,
I[F]: X = P*([0,1]) 2 +— 0.1,0.7] ifz =2,
(0.2,0.8] ifz =3.

It is routine to verify that Z := (Z[T], Z[I], Z[F]) is a (T'(1,4),
I(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0).

(2) LetZ := (Z[T1], Z|I], Z]F]) be an interval neutrosophic set
in (X, x,0) for which Z[T'], Z|I] and Z[F] are given as follows:

[0.1,0.4) ifz =0,

I X =P 2= 3 103708 ife =2,
0.4,0.6) ifz =3,

(0.2,0.5) ifz =0,

: . [0.5,0.6] ifz =1,
X =PH00) =0 0607 itz =2
(0.3,0.8] ifz=3,

and

0.3,04) ifz =0,

' . (0.4,0.7) ifz =1,
IFX = PA0A) 229 (06.0.8) ife =2,
0.4,0.6] ifz = 3.

By routine calculations, we know that Z := (Z[T], Z[I], Z[F))
is a (T'(4,4), 1(4,4), F(4,4))-interval neutrosophic ideal of
(X, *,0).

Example 3.3. Consider a BC'I-algebra X = {0, a, b, ¢} with the
binary operation * which is given in Table 2 (see [0]).

“ 2

Table 2: Cayley table for the binary operation “x

* 0 a b c
0 0 a b c
a a 0 c b
b b c 0 a
c c b a 0

Let Z := (Z[T], Z[I], Z[F]) be an interval neutrosophic set in
(X, *,0) where Z[T|, Z[I] and Z[F] are given as follows:

0.33,0.91) ifz =0,
. ) (0.72,0.91) ifz =a,

I X =PH0.0) 2= 3 072)0.82) itz =b,
(0.55,0.82] ifz =rc,
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0.22,0.65) ifz =0,

P 052,055 ifz =a,

L X = PH00) 2= 0 (062,065)  ifa = b,
0.62,0.55) ifz=c,

and

(0.25,0.63) ifz =0,

. ) 0.45,0.63] ifz = a,

IF: X = PO 2= 9 (035 053] ife b,
0.45,0.53) ifz=c.

Routine calculations show that Z := (Z[7T], Z[I], Z[F))
is a (T(4,1), I(4,1), F(4,1))-interval neutrosophic ideal of
(X,%,0). Butitisnota (7'(2,1), I(2,1), F'(2,1))-interval neu-
trosophic ideal of (X, %, 0) since

I[T]ime(a) = 0.72 > 0.55 = min{Z[T )¢ (a % b), Z[T]ins (b)},

T int(b) = 0.62 > 0.52 = min{Z[1]ine (b * ¢), Z|1]ine(c) },
and/or
Z[F)int(c) = 0.45 > 0.35 = min{Z[Fine(c * a), Z[Flint(c) }.

Also, itisnota (7(4,3),
ideal of (X, *,0) since

1(4,3), F(4,3))-interval neutrosophic

T[T )sup () = 0.82 < 0.91 = max{Z[T]nt (c * b), Z[T]ins (b)}

and/or
Z[F)sup(b) = 0.35 < 0.62 = max{Z[Fine(b* a),Z[Flint(a)}.

We also know that 7 := (Z[T], Z[I], Z[F]) is not a (T'(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, *,0).

Let Z := (Z[T), Z[I], Z|F]) be an interval neutrosophic set in
X. We consider the following sets (see [5]):

U(Z[T)y; or) :=A{z € X [ Z[T]y(2) = ar},
L(Z[Ty; as) = {x € X [ Z[T]y(z) < as},

U(Z[I]y; Br) :={x € X | Z[I]y(x) > b1},
L(Z[I]y;Bs) == {z € X | I[I]y(z) < Bs},

and

UZ[Fly; 1) = A{x € X | I[Fly(z) = 71},
L(Z[Fly;ns) == A{z € X | I[Flyp(x) < s},

where ¢ € {inf,sup}, and oy, ag, f1, Bs, yr and g are num-
bers in [0, 1].

Theorem 3.4. Given an interval neutrosophic set 1T :=
T[], Z[F)) in (X, *,0), we have the following assertions:

([T,
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W If I = (Z[T], I[1], I[F]) is a (T(1,4), I1(1,4),
F(1,4))-interval  neutrosophic  ideal of (X, x*,0),

then U(I[T]inf; O‘I); L(I[T]supa O(S), U(Z[I]inf; ﬁ]);
L(I[[}511p; ﬂS)r U(I[F}inff)/]) and L(I[F]sup; ’YS) are
either empty or ideals of (X, *,0) for all ay, ag, Br, Bs,

,YIJ ’75’ E [07 1}

@ 1 = (I[T]a I[IL I[F]) is a (T(471)a I(4al)a
F(4,1))-interval  neutrosophic  ideal of (X,%,0),
then L(I[T]inﬁ Oé[), U(I[T]sup; aS): L(I[I]inf; ﬁ[);

U(I[I]sup;ﬁS)’ L(I[F]mfaryI) and U(I[F]supa’YS) are
either empty or ideals of (X, x,0) for all ay, ag, B, Bs,
’YI: ’YS E [07 ]‘}

G If T = (Z[T), Z[1], ZI[F)) is a (T(1,1), I(1,1),
F(1,1))-interval  neutrosophic  ideal of (X ,*,0)
then U(I[T]inf;a]), U(I[T]sup;OéS); ( [ ]mf;ﬂ[)
U(Z)sup; Bs), U(Z[Flint;vi) and U(Z[Flsup;ys) are
either empty or ideals of (X, *,0) for all oy, as, Br, Bs,

5

VI, VS € [07 1}

@ If T = (Z[T), Z[1], Z[F]) is a (T(4,4), 1(4,4),
F(4,4))-interval  neutrosophic  ideal of (X, %,0),
then L(Z[Tl|insiar), L(Z[T|sup; vs),  L(Z[I)ing; Br),

L(Z[I)sup; Bs), L(Z[Fling;vr) and L(Z[Flsup;vys) are
either empty or ideals of (X, *,0) for all ay, as, Br, Bs,
Y1, Vs S [07 1}

Proof. (1) Assume that 7 := (Z[T)], Z[I], Z[F]) is a (T'(1,4),
I(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0). Then
(X, Z[T)int), (X, Z[I)int) and (X, Z[F)int) are 1-fuzzy ideals of
X; and (X, Z[T)sup)s (X, Z[I)sup) and (X, Z[Fsyp) are 4-fuzzy
ideals of X. Let vy, avg € [0, 1] be such that U(Z[Tin¢; ey) and
L(Z[T)sup; vs) are nonempty. Obviously, 0 € U(Z[T)ins; 1)
and 0 € L(Z[T)sup; s). Let z,y € X be such that x x y €
U(I[T]inf; Ck[) and y € U(I[T]inf; Oq). Then I[T]inf(x * y) >
ag and Z[Tine(y) > ar, and so

I([T)int(x) > min{Z[T|ine(z * y), Z[T]ine(y) } > o,

thatis, z € U(Z[T)ing; ar). fx vy € L(Z[T)sup; vs) and y €
L(Z[T)sup; as), then T[T syp(zxy) < agand Z[Tgup(y) < ag,
which imply that

[T sup(z) < max{Z[Tsup(z * y), Z[T)sup(y) } < as,

that is, © € L(Z[T)sup;xs). Hence U(Z[T|ins; ) and
L(Z[T)sup; vs) are ideals of (X, x,0) for all ay, g € [0,1].
Similarly, we can prove that U(Z[I]ins; Br), L(Z[I]sup;Bs),
U(Z[Fling; 1) and L(Z[Flsup; vs) are either empty or subalge-
bras of (X, *,0) for all 51, Bs, 71, 7s € [0,1]. By the similarly
way to the proof of (1), we can prove that (2), (3) and (4) are
true. O
Corollary 3.5. Given an interval neutrosophic set T := (Z[T],
T[], Z[F)) in (X, *,0), we have the following assertions:
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() If T := (Z[T), T|1). Z|F)) is a (T(3.4), I(3,4), F(3,4))-
interval neutrosophic ideal of (X,%,0) or a (T(i,2),
1(i,2), F(i,2))-interval neutrosophic ideal of (X, *,0)
Jor i € {1,3}, then U(Z[Tint;r), L(Z[T)sup; as),
UZing; Br).  L(Z[sup; Bs).  U(Z[Fling;y1)  and
L(Z[Fsup;vs) are either empty or ideals of (X, *,0) for
all ay, as, B, Bs, v, vs € [0,1].

Q) IfT = (Z[T), Z|I), Z[F)) is a (T(4,3), 1(4,3), F(4,3))-
interval neutrosophic ideal of (X,*,0) or a (T(2,7),
1(2,7), F(2,7))-interval neutrosophic ideal of (X,x,0)
Jor j € {1,3}, then L(Z[T)ing;r), U(Z[T)sup; vs),
L(I[I]inf;ﬁl): U(I[I]sup;ﬁS): L(I[F]inf;’yl) and
U(Z[Flsup;ys) are either empty or ideals of (X, *,0) for
all oy, s, Br. Bs, 71, vs € [0, 1].

(3) If T := (Z|T), Z|I], Z[F)) is a (T(3,1), I(3,1), F(3,1))-
interval neutrosophic ideal of (X,*,0) or a (T(i,3),
I(i,3), F(i,3))-interval neutrosophic ideal of (X,*,0
Jor i € {1,3}, then U(Z[Tint;r), U(Z[T)sup; ts),
U(Z[)int; B1),  UZsup; Bs),  U(Z[Flint;vr) and
U(Z[Flsup;s) are either empty or ideals of (X, *,0) for
all ag, s, Br, Bs, 71, s € [0, 1].

F(i,2))-interval neutrosophic ideal of( 7*,0) for i €
{2, 4} then L( [T]mf, Oq), L(I[T]bup, Ots) L(I[I]inf; ﬁ[),
L(Z[I]SumﬁS)’ L(Z[Flint; 1) and L(Z[F Supvfys) are ei-
ther empty or ideals of (X, ,0) for all oy, ag, B1, Bs, V1,
vs € [0,1].

Proof. Straightforward since every 3-fuzzy (resp., 2-fuzzy) ideal
is a 1-fuzzy (resp., 4-fuzzy) ideal. O

Theorem 3.6. Given an interval neutrosophic set T := (Z[T],
Z[I], Z]F)) in (X, *,0), the following assertions are valid.

(1) [f U(I[T]inf;al)’ L(I[T]sup;aS): U(I[I]inf;ﬁl),
L(I[I]sup;ﬁs), U(I[F]mfy’yl) and L(I[F]supa’yS)
are nonempty ideals of (X, *,0) for all o;, as, Br, Bs, V1,
vs € [0,1], then T := (Z[T), Z|I], Z[F]) is a (T(1,4),
1(1,4), F(1,4))-interval neutrosophic ideal of (X, *,0).

(2) If U(I[T]inf; OZ]), U(I[T]sup; aS): U(I[I]inf; ﬂ]),
U(I[[]sup;ﬁs>: U(I[F]mfy’yf) and U<I[F]sup775)
are nonempty ideals of (X, *,0) for all o;, as, Br, Bs, V1,
vs € [0,1], then T = (Z[T), Z[I], Z|F)) is a (T(1,1),
I(1,1), F(1,1))-interval neutrosophic ideal of (X, *,0).

(3) If L(I[T}lnf7 CV[), U(I[T]sup; O[S), L(I[I]inf; ﬁ])y
U(I[I]sup;ﬁS): L(I[F]inf;’yl) and U(I[F]sup;’VS) are
nonempty ideals of (X, *,0) for all oy, s, Br, Bs, VI,
vs € [0,1], then T = (Z[T), Z[I], Z|F)) is a (T(4,1),
1(4,1), F(4, 1))-interval neutrosophic ideal of (X, *,0).

@ If  L(Z[T)ins; ax), L(I[T]surﬁas)’ L(ZI)int; Br),
L(I()sup; Bs).  L(Z[Flint;vr) and L(Z[Flsup;7ys) are
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nonempty ideals of (X, *,0) for all ay, ag, Br, Bs, V1,
vs € [0,1], then T := (Z[T), I|I), Z|F)) is a (T(4,4),
1(4,4), F(4,4))-interval neutrosophic ideal of (X, *,0).

Proof. (1) Suppose that U(Z[Tint;r), L(Z[T)sup; as),
U@l 8, L@Mapi Bs)  UEIFlurs ) and
L(Z[Fsup;vs) are nonempty ideals of (X,*,0) for all ay,
as, B1, Bs, 1, vs € [0,1]. If (X, Z[T]int) is not a 1-fuzzy ideal
of (X, *,0), then there exist z, y € X such that

T[T int (2) < min{Z[T]int(z % y), Z[T]int () }-

If we take ooy = min{Z[Ting(z*y), Z[T)int(y)}, then x xy, y €
U(Z[T)ing; 1) but @ ¢ U(Z[T)ing; oor). This is a contradic-
tion, and so (X,Z[T]inr) is a 1-fuzzy ideal of (X, *,0). If
(X, Z[Tsup) is not a 4-fuzzy ideal of (X, %, 0), then

ZTsup(a) > max{Z[Tsup(a * b), Z[T]sup(b) }

for some a,b € X, and so a * b, b € L(Z[Tsup; xs) and a ¢
L(I[T]sum Oés) by taking

ag = max{Z[T|sup(a *b), Z[T)sup(b) }.

This is a contradiction, and therefore (X, Z[T]syp) is a 4-fuzzy
ideal of (X, *,0). Similarly, we can verify that (X, Z[I]in¢) is
a 1-fuzzy ideal of (X, *,0) and (X, Z[I]sup) is a 4-fuzzy ideal
of (X,%,0), and (X,Z[FJin) is a 1-fuzzy ideal of (X,x,0)
and (X, Z[Fsyp) is a 4-fuzzy ideal of (X, *,0). Consequently,
T := (Z|T), Z[I),Z[F))isa (T(1,4),I(1,4), F(1,4))-interval
neutrosophic ideal of (X, *,0). The assertions (2), (3) and (4)
can be proved by the similar way to the proof of (1). O

Theorem 3.7. [f an interval neutrosophic set T := (Z[T], Z[I],
IIF)) in (X,%,0) is a (T(2,3), 1(2,3), F(2,3))-interval
neutrosophic ideal of (X,*,0), then — U(Z|Tint; 1),
L(I[T]sup§aS)cr U(Z[I]inf;ﬁl)c’ L(Z[I]su;ﬂﬁs’)cy
U(Z[Flint;y1)¢ and  L(Z[Fsup;vs)® are either empty or
ideals of (X, *,0) for all a;, as, B1, Bs, V1, Vs € [0, 1].

Proof. Let T = (I[T), Z[I], Z[F]) be a (T(2,3), I(2,3),
F(2, 3))-interval neutrosophic ideal of (X, *,0). Then

(1) (X, Z[Ting), (X, Z[1int) and (X, Z[Fline) are 2-fuzzy ide-
als of (X, x,0),

2) (X, Z[T)sup)> (X,Z[I]sup) and (X,Z[Flsup) are 3-fuzzy
ideals of (X, *,0).

Br, Bs, v, vs € [0,1] be such that
LTl as)’s Ui B
LT B5)s  UE[Flarivn)® and  LE[Flaupi 19)°
are nonempty. Then there exist x,y,z,a,b,d € X
such that = € U(Z[T)in;;ar)% a € L(Z[T)sup; s)S,
(/S U(Z[I]inf;ﬂl)ca be L(I[I]sup;ﬂS)ca z € U(I[F]inf;'}/l)c
and d € L(Z[F)sup;vs). Hence
I T)ine(0) < Z[T)ine(x)
ZT)sup(a) > ag,

Let a7, ag,
U(Z[Tins; 1),

< oy and Z[T]ep(0) >
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I[I]lnf(o) S I[I]mf(y) < /81 andI[I]Sup(O) Z I[I]sup(b) >
Bs,

I[Flint(0) < Z[Fline(2)
I[F]sup(d) >8>
and so 0 € U(Z[Tlin; )¢ N L(Z[T)sup; s)¢, 0 €
U(I[I]inf;ﬁl)c N L(I[I]sup;ﬁS)c’ and 0 € U(I[F]inf§’71)c N
L(Z[F)sup;vs)®. Let x,y € X be such that x *x y €
U(Z[T)ing; ar) and y € U(Z[T)ing; oor)©. Then Z[Tins(xxy) <
oy and Z[Tine(y) < a. Hence

< 41 and Z[Flgp(0) >

Z[Tin (x) < min{Z[Tine (2 * ), T[Tl (y)} < e,

and so © € U(Z[Ting; aor)€. Thus U(Z[T |ins; oor)€ is an ideal of
(X, *,0). Similarly, we can verify that

o Ifxxy € L(Z[T)sup; vs)® and y € L(Z[T]sup; s)®, then
x € L(Z[T)sup; 0s)<,

o Ifzxy € U(Z[I]ins; Br)° and y € U(Z[I]ins; B1)°, then
x € U(Z[I]int; B1)¢,

o Itz %y € L(T[I]sup; 33)° and y € L(Z[I]sup; 3s)°, then
HAS] L(I[I]sup;BS)c7

o Ifzxy € UZ[Flint; 1) and y € U(Z[Flint; v1)°, then
z € U(Z[Flint;v1)°,

o Ifxxy € L(Z[Flsup;vs)® and y € L(Z[Flgup;vs)®, then
T e L(I[F]sup;’YS)c'

Therefore L(Z[T]sup; vs), U(Z{]int; B1)%, L(Z[]sups Bs)°,
U(Z[Fling;yr)© and L(Z[Fsup; vs)€ are ideals of (X, *,0). O

The converse of Theorem 3.7 is not true in general as seen in
the following example.

Example 3.8. Consider a BC'I-algebra X = {0, 1, a, b, ¢} with
the binary operation * which is given in Table 3 (see [6]).

Table 3: Cayley table for the binary operation “x”

* 0 1 a b c
0 0 0 a b c
1 1 0 a b c
a a a 0 c b
b b b c 0 a
c c c b a 0

Let 7 := (Z[T], Z[I], Z[F)]) be an interval neutrosophic set in
(X, *,0) where Z[T|, Z[I] and Z[F] are given as follows:

0.25,0.85) ifx =0,
(0.45,0.83] ifz =1,
T[T : X = P([0,1]), =+ { [0.55,0.73] ifz =a,
(0.65,0.73] ifz =b,
(0.65,0.75) ifx =c,
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I : X — 75([0, 1]), = —

and

I[F): X — P([0,1]), z

Then

{0}
UZ[T)ing;ar)® = q {0,1}
{0,1,a}

{0}
L(I[T]SumaS)c = {0,1}

{0,1,¢}

=

U(Z[1)ins; Br)° = {0, 1,}b}

><’8

{0}
L(Z[I]sup;ﬁs)c = {071}
{0,1,¢}

U(Z[Flint; 1) = ig,}La}
X

0

L(Z[Flsup;vs)© = %8: },}b}
X

Hence the nonempty sets U (Z[Tint; 1) L(Z[Tsup; @)%,
U(I[I]inf; ﬂ[)cs L(I[I}sup; ﬁS)C
, *

L(Z[Flsup;vs)© are ideals of (X

0.3,0.75
0.3,0.70
0.6,0.63
0.5,0.63
0.6, 0.68

A,_,A
e =T

~~—

[0.44,0.9)
(0.55,0.9]
[0.55,0.7]
(0.66, 0.8]
0.66,0.7)

ifz =0,
ife =1,
ifr=a,
ifx =0,
ifx =c¢,

ifx =0,
ifer=1,
ife =a,
ifx =0,
ifx =c.

if a; €[0,0.25),

if oy € (0.25,0.45),
if o € (0.45,0.55),
if a; € (0.55,0.65),
if a; € (0.65,1.0],

ifag €
ifag €
ifag €
ifag €
ifag €

=
2
~

M MMM

5
)

0.85,1.0],
0.83,0.85),
0.75,0.83),
0.73,0.75),
[0,0.73),

0.70,0.75),
0.68,0.70),
0.63,0.68),
0,0.63),

[0,0.44],

(
(
(

0.44,0.55],
0.55,0.66],
0.66,1.0],

U(Z[Fint;v1)°
0) for all ay, as, Br, Bs,
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~v1,vs € [0,1]. But Z := (Z[T)], Z[I], Z[F)) is not a (T'(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, %, 0) since

T[Tt (c) = 0.65 > 0.55 = min{Z[T)in¢(c * a), Z[T]ine (@)},
I[Tsup(a) = 0.73 < 0.75 = max{Z[T]sup(a * ¢), Z[T]sup(¢)},
Iine(c) = 0.6 > 0.5 = min{Z[I]in¢(c * a), T[T (a)},
T[Isup(a) = 0.63 < 0.68 = max{Z[I]sup(a * ¢), T[sup(c)},

Z[Flint(¢) = 0.66 > 0.55 = min{Z[F|int(c * a), Z[Flint(a)},
and/or
Z[Flsup(a) = 0.7 < 0.8 = max{Z[Flsup(a * ¢), Z[Flsup(c)}.

Using the similar way to the proof of Theorem 3.7, we have
the following theorems.

Theorem 3.9. Given an interval neutrosophic set T := (Z[T],
Z[I], ZF)) in (X, *,0), we have the following assertions:

() If 7 = (Z[T), Z|I], Z|F]) is a (T(2,2), I1(2,2),
F(2,2))-interval neutrosophic ideal of (X,x*,0), then
U(I[T]inf;al)cx U(I[T]supnaS) ( [}mfzﬁ])c,

U(I[I]sup;ﬁS>C: U(I[F]mfy’yl) and U [F]supy’ys are
either empty or ideals of (X, *,0) for all ay, as, Br, Bs, V1,
Vs € [Oa 1]

Q) If T = (I[T], T[], Z[F)) is a (T(3,2), 1(3,2),
F(3,2))-interval neutrosophic ideal of (X,x*,0), then
LTThasiar)',  U@Tlapias)’ LTt B1)
U(Zsups Bs)®s L(Z[Fling; 1) and U(Z[Flsup;ys)© are
either empty or ideals of (X, *,0) for all oy, s, Br, Bs, V1,
Vs € [0, 1].

() If T = (I[T], Z[1], ZIF)) is a (T(3,3), I(3,3),
F(3,3))-interval neutrosophic ideal of (X,x*,0), then
LTt 0r)',  LTThpias)s LTt B1)°
L(T[Taup: 05", L(Z{Flingi v0)° and L(Z[Flaupi 1) are
either empty or ideals of (X,x*,0) for all oy, ag, Br, Bs,
~v1, vs € [0,1].

Using the similar way to the proofs of Theorems 3.4 and 3.7,
we have the following theorem.

Theorem 3.10. Given an interval neutrosophic set T := (Z[T],
Z[),Z[F])in (X,*,0), we have the following assertions:

W) If T = (Z[1], Z[1], Z[F)) is a (T(1,2), I(1,2),
F(1,2))-interval neutrosophic ideal of (X,*,0), then
U(Z[Ting; ox), U(Z[T)sup; vs)", U(Z[I)ins; Br),
U(T{Tp: B9, U(TIF e 11) and U(Z{FJaup 75" are
either empty or ideals of (X, *,0) for all ay, ag, Br1, Bs,
1. 7s € [0, 1].
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Q) If T := (Z|T), Z[I), Z|F)) is a (T(1,3), I(1,3), neutrosophicideal T := (Z|T),Z[I],Z[F]) of (X, x,0) satisfies
F(1,3))-interval neutrosophic ideal of (X,*,0), then
U(Z[Tint; 1), L(Z[Tsup; as), U(Z[1int; B1), Z[Tint(2) = Z[Tint (y)
LTI B5) U(T{Flingi 1) and L(T[Flaupsys)° are I(T)uup () < T[Ty ()
either empty or ideals of (X, *,0) for all ay, ag, B, Bs, T[Tt (z) = T]ine(y)
vros €0 Z{1)o(#) < Z{T}upl0) oy
Z[Flint(z) = Z[Fline (y)
@ T = @], 11, 1AF) s @ (121, 121, TFlo(®) < Z[Fhup()

F(2,1))-interval neutrosophic ideal of (X,*,0), then

U(Z[Tins; o1)", U(Z[Tsup; vs), U(Z[Iing; B1)%,  forall z,y € X with x < 1.

U(I[I}sup;ﬁS)l U(I[F}inf;’y‘f)c and U( [ }sup"é&') gre

either empty or ideals of (X, *,0) for all a;, ag, Br, Bs,

NI s eﬁ)t?}l]. # ) Proof. IfZ := (Z[T|,Z[I],Z[F])isa(T(1,4),1(1,4), F(1,4))-
interval neutrosophic ideal of (X,*,0), then (X,Z[T)int),
(X, Z[I)int) and (X, Z[FJin¢) are 1-fuzzy ideals of (X, *,0), and

@ If 7 = (ZI[1), I[1], Z[F]) is a (T(3,1), 1(3,1), (X,Z[T)sup), (X,Z[]sup) and (X, Z[Flsyp) are 4-fuzzy ideals

F(3,1))-interval neutrosophic ideal of (X,*,0), then of (X,x,0). Letx,y € X be such thatz < y. Thenz xy = 0,

LIMi0r)’,  UTapias) LT A1), andso

U(Z{Tlsup: B5), LT[ Flinti 11 and U(Z[Flaupsvs) are

either empty or ideals of (X, *,0) for all oy, as, Br, Bs, T[T ine(x) > min{Z[T)int(z * y), Z[T]int (y) }

v s € 0,1 = min{Z[Tint (0), Z[TTint (y) } = Z[Tine (),

® g(214)¢)= (I[ZZF]’ (1}, I}[lF]) C;'S la } (( 4), o (2ah4)7 Z[Tsup(x) < max{Z[T]sup(x * y), Z[T]sup(y) }
interval neutrosophic ideal o * then = max{Z[Tsup(0), Z[T]sup = Z[T]sup(y),

UM 01)'s (Tl vs), U@ o 61 ax{Z[Tsup(0), Z[T]sup(y) } = Z[T]sup(v)

L(I[I]sup;ﬂS)’ U(I[F]inﬁ'yl)c and L( [ ]supa’VS) are

either empty or ideals of (X, *,0) for all oy, ag, Br, Bs, I[int(z) > min{Z[]ins (@ * y), Z[{]int (v) }

v1, vs € [0,1]. = min{Z[1]ins(0), Z[int(v) } = Z[{]int (v),
©) If 7 = (I[T]a I[I]v Z[F]) is a (T(3v4)7 1(354)7 I[I]sup(x) SmaX{I[I]sup(x*y)aI[I]sup(y)}

F(3,4))-interval neutrosophic ideal of (X,x*,0), then = max{Z[Isup(0), Z[Lsup ()} = Z[Tsup (1),

L(Z[T)ins; 1), L(Z[Tsup; avs), L(Z[I]ing; Br)©,

L(Z[I)sup; Bs), L(Z[Fling;v1)¢ and L(Z[Flsup;ys) are

either empty or ideals of (X,*,0) for all oy, ag, Br, Bs, I[Flint(z) > min{Z[Fin ( Y), Z[Flint(y)}

7175 € [0 1] = min{Z[Fling (0), ZFlint (%)} = Z[Flint (v),

(M g(f 2):)= (I[ilf], 1], I}EF]) ;S la }T((glé 2),0)1(4,}[2)7 Z[Flsup(z) < max{Z[Flsup(x * y), Z[Flsup(y)}
,2))-interval neutrosophic ideal o ,%,0), then — max _ )
LT er),  U@(Tlaupsas)s L[ Br), =T Loup (), T Fleup (9)} = T1Flene )

U(ZUsup; Bs), L(Z[Fling; vr) and U(Z[Flsup;ys)® are  pig completes the proof. O
either empty or ideals of (X, *,0) for all oy, ag, By, Bs,
Y1, VS € [Oa 1]

® If 7 = (Z|T), Z|I), Z[F)) is a (T(4,3), 1(4,3), Using the similar way to the proof of Proposition 3.11, we have
F(4,3))-interval neutrosophic ideal of (X,*,0), then the following proposition.
L(I[T]inf; OZ]), L(I[T]sup; aS)C: L(I[I]inf; 5]);

L(Z[sup; Bs)S,  L(Z[Flint;vr) and  L(Z[Flsup;vs)© .. ) ) )

are either empty or ideals of (X, *,0) for all ay, s, B, Proposition 3.12. Given an interval neutrosophic set T :=
T|T), Z|I|,Z|F)) in (X, *,0), we have the following assertions:

Bs, v1, vs € [0,1]. (Z[T], 711}, ; g

Proposition 3.11. Every (T(1,4), I(1,4), F(1,4))-interval (1) If T := (Z[T), Z|1], Z[F]) is a (T(1,1), I(1,1), F(1,1))-
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interval neutrosophic ideal of (X, ,0), then

VA
7

[TTint(z) = Z[T]int (y)
[T

7]
[
[

Tlsup(®) = Z[Tsup(y)
I]inf( [ ]mf( )

1] [sup(y)
F [Flint (y)
Z[Flsup(v)

8
\ v

3.2)
sup

(
1nf(1'

forall x,y € X withx < y.
2 1 = (I[T], I[I], I[F]) isa (T(4,1), 1(4,1), F(4,1))-

interval neutrosophic ideal of (X, ,0), then
I[T]mf( ) [T]mf(y)
Z[T]sup(x) =2 Z[T]sup(y)
I[I]m( ) [ ]mf( )
I sup(w) > Z[]sup(y) G2
Z[Flint(z) < Z[Fline(y)
Z[Flsup(z) = Z[Flsup(y)

forall x,y € X withx < y.

@) [T = (T[T], ZU), Z[F)) is a (T(4,4), I(4,4), F(4,4))-
interval neutrosophic ideal of (X, *,0), then

I[Tint () < I[T]ine(y)
Z[T]sup(x) < Z[T]sup(y)
I[I]mf(x) [ ]mf( )
I{sup(w) < Z[]sup(y) G4
I[F]mf(x) < [ ]mf( )
ZFsup(z) < Z[Flsup(y)

forall x,y € X withx <.

Proposition 3.13.  For every (4,7
{(27 2)7 (2a 3)’ (37 2)a (37 3)}) Every (T(i,j), I(i,j), F(’L,]) -
interval neutrosophic ideal T = (Z[T), Z|1], Z|F)) *
satisfies

~m

il
[
I[Iint(x) = Z[1]ine(0)
T sup(®) = Z[1]sup(0) (3.5)
Z[Flint(z) = Z[Flint (0)
I[Flsup(z) = Z[Flsup(0)

forallx,y € X withx <y

Proof. Assume that 7 := (Z[T], Z[I], Z[F]) is a (T(2,3),
1(2,3), F(2,3))-interval neutrosophic ideal of (X, *,0). Then
(X, Z[T)int), (X, Z[I)ing) and (X, Z[Fin¢) are 2-fuzzy ideals of
(X, *,0), and (X, Z[T)sup)s (X,Z[]sup) and (X, Z[F]sup) are

Neutrosophic Sets and Systems, 18/2017

3-fuzzy ideals of (X,
Then z * y = 0, and thus

Z[TTint(z) < min{Z[Ting
= min{I[T]inf

T[T sup(x) > max{Z[T)sup(x * y
= max{Z[T]sup(0), 7]

I ]int(z) < min{Z[1]ins
= min{I[I]inf

I sup(x) = max{Z[I]
= max{Z[I]sup(0), Z[I]s

Z[Flint(r) < min{Z[FJin
= min{Z[FJin

ol

*,0). Let z,y € X be such that z < y.

(x*y), Z[T]ine(y) }
(0)71[ Lnf( )} I[ ]mf(O),

)a I[T]sup(y)}
Jsup (¥)} = Z[Tint (0),

(x*y), L]t (y)}

(0)7Z[I]inf(y)} = Z[I]inf(o)a

up('r * y)aI[I]sup(y)}

up(y)} :I[I]inf(0)7

(@), T[Fline(y)}

£(0), Z[Fint (y)} = Z[Flint (0),

Z[Flup() > max{Z[Fls, <x ). Z[F)uup (4)}
— mac{Z[Foup (0). Z[Fluup (4)} = Z[Fiu 0).

It follows that Z[T|int(z) = Z[T)int(0), Z[T)sup(z) =
Z[Tsup(0), Z[]int(x) = Z[I]int(0), Z[]sup(x) = Z[I]sup(0),
Z[F)int(x) = Z[F)int(0) and Z[Flgyp(x) = Z[F)sup(0) for all
z,y € X with x < y. Similarly, we can verify that (3.5) is true
for (i,7) € {(2,2),(3,2),(3,3)}. O

Using the similar way to the proof of Propositions 3.11 and

3.13, we have the following proposition.

Proposition 3.14. Given an interval neutrosophic set T =
(Z[T), Z[1], Z]F)) in (X, *,0), we have the following assertions:

interval neutrosophic ideal of (X, *,0) for j € {2,3}, then

I[T]lnf( ) [T]lnf(y)
Z[Tsup(x) = Z[Ts5up(0)
Iint(z) > Z{Tint (y)
Tl aup(®) = T[T uup(0) G0
I[F]lnf(x) > [ ]mf( )
[F]bup(x) =I[F ]SUP(O)

forall x,y € X withx < y.

Q) If T := (Z|T), Z|I), Z|F)) is a (T(i, 1), I(i,1), F(i,1))-
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interval neutrosophic ideal of (X, x,0) for i € {2,3}, then  and so

Z[Tint () = Z[TTint (0) I[Tint(x) > min{Z[Tint (z * y), Z[T|int (y) }
T sup(z) = Z[T)sup(y) > min{min{Z[Tin¢((x * y) * 2), Z[T]ine(2) },
I[I}ln( ) [I}lnf(o) I[T]mf( )}
T () > Tl (1) G = sin{min{ (ot (0), Z(Thut (=)}, ZThne ()}
I[Flint(z) = Z[Fine (0) = min{Z[TTint (), Z[Tlint (2) },

Z[Flsup(x) > Z[Flsup(y)

I[Tsup(z) < max{Z[T]sup(z * y), Z[T]sup(y)}
< max{max{Z[T]sup((z * y) * 2), Z[T]sup(2) },
I[Tlsup(y)}
= max{max{Z[Tsup(0), Z[T]sup(2) }, Z[Tlsup(y) }

forall x,y € X withx < y.

(3) If T == (Z[T), ZII), Z|F)) is a (T(i,4), I(i,4), F(i,4))-

interval neutrosophic ideal of (X, *,0) for i € {2, 3}, then = max{Z{Tloup (1), T[T ou ()},
I[T)int(x) = Z[Tine (0)
I[T]Sup(ﬁ) S I[T]SUP(y) I[I]mf(x) 2 min{I[I]inf(x * y)»I[I]mf(y)}
Iint(x) = Z[I]int(0) (3.8) > min{min{Z[]ine((z * y) * 2), T[]t (2)},
I[sup() < I ]sup(y) ' T[Tins(y)}
I[Flint(z) = Z[Fint (0) = min{min{Z[7int(0), Z[ins ()}, Z[ine (v) }
L[Flsup (@) < T[Flsup(y) = min{Z[Tint (y), Z[Tine ()},

forall x,y € X withx < y.
I sup(2) < max{Z[lsup(® * y), Z[{]sup(y)}
< max{max{Z|[|sup y) *2), L )sup(2) },
4 If7 ::] (Z[11, I[Ih]v Ic[jF]g i}z}éT(%)]}a 1(4,.7{)5 1;‘§43}{))' a { i (I([I] )(y)}) Hleuo (23
interval neutrosophic ideal of (X, *,0) for j € {2, 3}, then sup
8 ’ = max {mas{Z[Taup (0). Tl uup(2)}. Tl uup (4}

I[T}lnf( ) [T]lnf(y) = maX{I[I}sup(y [I]sup( )}
I[T]sup(x) = [T]sup(o)
T ine(w) < Zne (v) (.9)  IlFlur(2) > min{Z[Flue(x *y), Z[Fliue (0)}
THsup(2) = Z{I]sup(0) > min{min{Z[Flint((z * y) * 2), Z[Flint (2) },
I[Flint(x) < Z[Fline(y) T[Flimt(y)}
TFloup (@) = Z1FJsup (0) = min{min{Z[Fiut(0), Z{Flint (=)}, Z[Flur (1)}
forall x,y € X withx < y. = min{Z[Flint (y), Z[Flint (2) },

Proposition 3.15. Every (T(1,4), I(1,4), F(1,4))-interval ZIFlsup(z) < max{Z[Flsup(z *y), Z[Flsup(y)}

Y),
neutrosophic ideal T := (Z[T], Z[I], Z|F)) of (X, x, 0) satisfies < max{max{Z[F|sup((x * y) * 2), Z[Flsup(2)},
: I[Flsup(y)}
I[Tine(x) = min{Z[T]ing(y), Z[T]ine(2) }
T{T )y () < ma{ T[T oy () Z(T ()} I
Tllur(e) 2 min(TTcl) s} 5 0 i} o) e
T sup(z) < max{Z[I]sup(y), Z[I]sup(2)} ' This completes the proof. O
Z[Flint(w) = mindZ[Fline (), T[F it (2)} Using the similar way to the proof of Proposition 3.15, we have
Z[Flsup(2) < max{Z[Flsup(y), Z[Flsup(2)} the following proposition.
Jorallxz,y,z € X withx*xy < z. Proposition 3.16. Given an interval neutrosophic set T =

(Z[T), Z|1], Z[F)) in (X, *,0), we have the following assertions:

Proof. Letx,y,z € X besuchthatzxy < z. Then (zxy)xz =0, (1) IfZ := (Z[T), Z[I], Z|F)) is a (T(1,1), I(1,1), F(1,1))-
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interval neutrosophic ideal of (X, ,0), then

Ting(z) > min{Z[T]ine (y), Z[T]ine (2) }
Tlsup(2) = max{Z[Tsup(y), Z[T)sup(2) }
Iine(z) = min{Z[T]ine(y), Z[ine (2)}
sup(2) > max{Z[{]sup(y), Z[{]sup(2)}
Flint(2) > min{Z[Flint (), Z[Fline(2) }
Flsup(z) = max{Z[Flsup(y), Z[Flsup(2)}

forall x,y,z € X withx xy < z.

z

o L B W

[
[
[
[
[
[

N

() IfT = (Z[T], Z1], I[F)) is a (T'(4,1), I1(4,1), F(4,1))-

interval neutrosophic ideal of (X, *,0), then
I[Tins () < min{Z[Tine(y), Z[TTine ()}
I[T)sup(2) = max{Z[T]sup(y), Z[Tlsup(2)}

N

Iing(2) < min{Z[I]ine(y), Z[{]ine(2)}
Tsup(2) > max{Z[{]sup(y), Z[{]sup(2)}
Fling(z) < min{Z[Fline(y), Z[Flint (2)}
Flsup(2) > max{Z[Flsup(y), Z[Flsup(2)}

forallx,y,z € X withx xy < z.
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[
[
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3) If T := (Z[T), Z[1], I|F)) is a (T(4,4), I(4,4), F(4,4))-

interval neutrosophic ideal of (X, x,0), then

int (%) < MIn{Z[Tint(y), Z[Tline ()}
sup(2) < max{Z[T]sup(y), Z[T]sup(2) }
Ting(2) < min{Z[int(y), Z[L]ine(2) }
sup(2) < max{Z[{]sup(y), Z[{]sup(2)
Flint(2) < min{Z[FJint (y), Z[Fline (2)
Flsup(#) < max{Z[Flsup(y), Z[Fsup(2)}

forall x,y,z € X withx xy < z.

N

T
T

N

]
Jsu

N

N N
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[
[
[
[
[
[

N

Proposition 3.17.  For every (4,7) €
{(2’ 2)7 (2a 3)’ (37 2)a (3’ 3)}’ Every (T(Za ])a I(Za ])a F(Zvj))'
interval neutrosophic ideal T := (Z[T), Z|I], Z|F)]) of (X, *,0)
satisfies

I[T}lnf( ) [T]lnf (0)

Z[Tsup(x) = Z[Tsup(0)

I[I]int(z) = Z[1ins (0

I sup(z) = Z[1]sup(0) G40

I[F]mf(x) :I[ ]mf( )

I[Flsup(x) = Z[Fsup(0)

forall x,y,z € X withx xy < z.

Proof. Assume that 7 := (Z[T], Z[I], Z[F]) is a (T(2,3),
1(2,3), F(2

I[Flsup(z) > max{Z[Fsup(z * y),

,3))-interval neutrosophic ideal of (X, *,0). Then
(X, Z[T)int), (X, Z[I)int) and (X, Z[F)int) are 2-fuzzy ideals of
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(X, *,0),and (X, Z[T)sup)> (X, Z[I)sup) and (X, Z[F|gyp) are 3-
fuzzy ideals of (X, ,0). Let z:,y, 2 € X be such that x x y < z.
Then (z * y) * z = 0, and thus

T[T it () < min{Z[TTint (z * y), Z[Thint (y) }
< min{min{Z[T)int((z * y) * 2), Z[T|ins(2) },
I[Tline(y)}
= min{min{f{ Jint (0), Z[TTin (2)}, Z[TTin () }

Z[Tsup () = max{Z[Tsup(z * ), Z[T]sup(y) }
> max{max{Z[T]sup((z * y) * 2), Z[T]sup(2)},
Z[Tsup ()}
= max{max{Z[T|sup(0), Z[T]sup(2) }, Z[T]sup(y) }
Z[Tsup(0),

Iint(2) < min{Z[I]int(z * y), Z[L]ine (y) }
< min{min{Z[1)ine((z * y) * 2), Z[I]ins(2)},
It (y)}
= min{min{Z{l}int(0), Z[Iint ()}, Z[I)in
= I[I]ins(0),

i(v)}

I sup(z) = max{Z[I]sup(z * y), Z[I]sup(y) }
> max{max{Z[/]sup((x * y) * 2), Z[]sup(2)},
IMsup(y)}
= max{max{Z[]sup(0), Z[I]sup(2) }; Z[I]sup(¥)}
= I[I]sup(o)a

I[Fline(x) < min{Z[Fline(x * y), Z[Fint (y) }
< min{min{Z[Fins((z * y) * 2), Z[Fint (2) },
I[F]lnf(y)}
= min{min{Z[Flin¢(0), Z[Fint (2) }, Z[Fine (y) }
= Z[Flint(0),

Z[Flsup(y)}

> max{max{Z[Flgup((x *y) * 2),Z[Flsup(2)},
7]

Flsup(y)}
= max{max{Z[Flsup(0), Z[Flsup(2) }, Z[Flsup(y)}
= Z[Flsup(0).
Since Z[Tint(0) < Z[Thint(2), Z[Tlsup(0) = Z[T]sup(w),
I[I]l (O) <I[IL ( ) I[ ]sup(o) > I[ ]sup( ) I[F]mf( ) >
Z[F)ini(z) and Z[Flsup(0) > Z[Flsup(z), it follows that
pmf() = I[Tlne(2), I[Tlsup(0) = ZI[T]sup(),

}lnf( ) [I]inf(ﬁr)sI[I]sup(O) = I[I]sup( ) I[F]mf(o) =
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Z[F)int () and Z[Fsup(0) = Z[Flgup(x). Similarly, we can ver- Jorallx,y,z € X withz*xy < z.
ify that (3.11) is true for (4,7) € {(2,2),(3,2),(3,3)}. O
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Abstract: In this paper we introduce the concept of a new class of
an ordered neutrosophic bitopological spaces. Besides giving some
interesting properties of these spaces. We also prove analogues of

Uryshon’s lemma and Tietze extension theorem in an ordered neu-
trosophic bitopological spaces.

Keywords:Ordered neutrosophic bitopological space; lower(resp.upper) pairwise neutrosophic G s-a-locally 7 -ordered space; pairwise neutrosophic G s-a-
locally 7% -ordered space; pairwise neutrosophic G's-a-locally Th-ordered space; weakly pairwise neutrosophic Gs-a-locally Th-ordered space; almost pairwise

neutrosophic G 5-a-locally T»-ordered space and strongly pairwise neutrosophic G s-a-locally normally ordered space.

1 Introduction and Preliminaries

The concept of fuzzy sets was introduced by Zadeh [17]. Fuzzy sets have applications in many fields such as information theory
[15] and control theory [16]. The theory of fuzzy topological spaces was introduced and developed by Chang [7]. Atanassov
[2] introduced and studied intuitionistic fuzzy sets. On the other hand, Coker [8] introduced the notions of an intuitionistic fuzzy
topological space and some other related concepts. The concept of an intuitionistic fuzzy a-closed set was introduced by B. Krsteshka
and E. Ekici [5]. G. Balasubramanian [3] was introduced the concept of fuzzy G5 set. Ganster and Reilly used locally closed sets [10]
to define LC-continuity and LC-irresoluteness. The concept of an ordered fuzzy topological space was introduced and developed by
A. K. Katsaras [11]. Later G. Balasubmanian [4] introduced and studied the concepts of an ordered L-fuzzy bitopological spaces. F.

Smarandache [[13], [14]

introduced the concepts of neutrosophy and neutrosophic set.
The concepts of neutrosophic crisp set and neutrosophic crisp
topological space were introduced by A. A. Salama and S. A.
Alblowi [12].

In this paper, we introduce the concepts of pairwise neutro-
sophic Gs-a-locally Ti-ordered space, pairwise neutrosophic
Gs-a-locally Ts-ordered space, weakly pairwise neutrosophic
Gs-a-locally Th-ordered space, almost pairwise neutrosophic
Gs-a-locally Ty-ordered space and strongly pairwise neutro-
sophic G5-a-locally normally ordered space. Some interesting
propositions are discussed. Urysohn’s lemma and Tietze exten-
sion theorem of an strongly pairwise neutrosophic Gs-a-locally
normally ordered space are studied and established.

Definition 1.1. [7] Let X be a nonempty set and A C X. The
characteristic function of A is denoted and defined by x4 (z) =

1 if z€A

0 if z&A
Definition 1.2. [13, 14] Let T,I,F be real standard or non standard
subsets of |07, 17 [, with supp = tsup, infr = tiny
Supr = Z'su;m an] = Zznf

SUpp = fsupvian = fznf
n — sup = tsup + isup + fsup
n—inf = tins+iins+ fing . T.LF are neutrosophic components.

Definition 1.3. [13, 14] Let X be a nonempty fixed set. A
neutrosophic set [briefly NS] A is an object having the form
A= {{a, 1 (0),0, (2),7, (@) : & € X where 1, (2), 0, ()
and v, (x) which represents the degree of membership function
(namely i, (x)), the degree of indeterminacy (namely o, (z))
and the degree of nonmembership (namely 7, (z)) respectively
of each element x € X to the set A.

Remark 1.1. [13, 14]

(1) A neutrosophic set A = {{(x, p,(z),0,(x),v,(x)) : = €
X} can be identified to an ordered triple (y,,0,,7v,) in
107,17 [on X.

(2) For the sake of simplicity, we shall use the symbol
A = {u,,0,,7,) for the neutrosophic set A =

{2, s (@), 0,4 (2), 7, (@) = 2 € X

Definition 1.4. [12] Let X be a nonempty set and the neutro-
sophic sets A and B in the form
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A = {<m7/J’A(m)7UA(x)7’YA(x)> T € X}’ B

{z,py(x),0,(x),v,(x)) : @ € X}. Then

v

@ A C Biff 1, (v) < iy (), 0, (2) < 7, () and v, (2)
v, () forall z € X;

(b) A=Biff AC Band B C A4;

©) A= {{z,7,(x),0,(z),1,(x)) : * € X}; [Complement

of A]

(d ANB = {<x7,uA(:L') A MB(I)70-A(x) A O-B(x)’fYA('T) v
75 (@) € X}

() AUB = {<x>/1A(‘T) N /j,B(:E)7JA(l‘) v UB(x)J’YA(x) A

Vs (x)) 1z e X}
O [1A={{z,p,(z),0,(x),1l —p,(z)):x € X};
(2) <>A = {<$a1 _FYA(‘I)70-A('/‘U)’7A(I)> HES X}

Definition 1.5. [12] Let {A; :
neutrosophic sets in X. Then

@ NA; = {2, Aty (), A0, (2), Va1 (2)) 2 € XD
(b) UAi = {<$» v:uAi (CC), vaAi ('75)’ /\’YAi (x» HEGRS X}

Since our main purpose is to construct the tools for developing
neutrosophic topological spaces, we must introduce the neutro-
sophic sets 0, and 1 in X as follows:

i € J} be an arbitrary family of

Definition 1.6. [12] 0, = {(x,0,0,1)
{{z,1,1,0) : z € X }.

cx € Xpand 1, =

Definition 1.7. [9] A neutrosophic topology (NT) on a nonempty
set X is a family 7" of neutrosophic sets in X satisfying the fol-
lowing axioms:

(i 04,1, €T,
(i) Gy NGe € T forany G1,G2 € T,
(iii) UG, € T for arbitrary family {G; | i € A} C T.

In this case the ordered pair (X, 7T') or simply X is called a neu-
trosophic topological space (NTS) and each neutrosophic set in
T is called a neutrosophic open set (NOS). The complement A
of aNOS A in X is called a neutrosophic closed set (NCS) in X.

Definition 1.8. [9] Let A be a neutrosophic set in a neutrosophic
topological space X. Then

Nint(A) = |J{G | G is a neutrosophic open set in X and
G C A} is called the neutrosophic interior of A;

Ncl(A) = ({G | G is a neutrosophic closed set in X and
G D A} is called the neutrosophic closure of A.

Corollary 1.1. [9] Let A,B,C be neutrosophic sets in X. Then
the basic properties of inclusion and complementation:

(a ACBandC C D= AUC C BUDand ANC C BND,

28

b) ACBandACC=ACBNC(C,
) ACCandBCC=AUBCC(C,
d ACBandBC(C=ACC,

() AUB=ANB,

(h) (4) = A,
@ I, =0,.
@ 0y =1y

Now we shall define the image and preimage of neutrosophic
sets. Let X and Y be two nonempty sets and f : X — Y be a
function.

Definition 1.9. [9]

(@ If B = {{y,p,(),0,(y),75(y)) : y € Y} is a neutro-
sophic set in Y, then the preimage of B under f, denoted by

J~1(B), is the neutrosophic set in X defined by

FHB) = {(@, fH ) (@), £ o) (@), f7H () (@) -
z e X}

If A= {(z,pu,(x),0,(x),v,(x)) : © € X} is a neutro-
sophic set in X,then the image of A under f, denoted by
f(A), is the neutrosophic set in Y defined by

f(A) = {{y, fF(ra)(®), flo )W), (1 = f(1 = 7)) :
y € Y}. where

(b)

flu,)(y) = {S“prefwy) pa(z), if [~ (y) #0,

0, otherwise,

flo)(y) = {Squefl(w o,(x), if f7Hy) #0,

0, otherwise,

infmeffl(y) Ya (I), if fﬁl(y) 7& (D,
1, otherwise,

(I=fA =)y = {

For the sake of simplicity, let us use the symbol f_(v,) for
1- f(l - FYA)'

Corollary 1.2. [9] Let A, A;(i € J) be neutrosophic sets in
X, B, B;(i € K) be neutrosophic setsin Yand f : X — Y a
function. Then

(@ A1 C Ay = f(A1) C f(A2),

(b) B1 C By = f~1(B1) C f~!(Ba),

(c) AC fL(f(A)) { If fis injective,then A = f~1(f(A)) },
(d) f(f~Y(B)) C B {Iffis surjective,then f(f~'(B)) = B },
@© fHUB) =Uf (B
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® fHNBy) =N H(By),
(@ f(UA)=UFf(4),

(h) f(NA) € N f(A4;) { If fis injective,then f((A4;) =
Nf(A:)}

i f~1(1y) =1y,
0) f_l(ON) = ON’

(k) f(1,)=1,,if fis surjective,

Q) f(ON) = ON9

(m) f(A) C f(A),if fis surjective,

() f~Y(B) = f~1(B).

Definition 1.10. [1] A neutrosophic set A in a neutrosophic
topological space (X,T) is called a neutrosophic a-open set
(NaOS) if A C Nint(Ncl(Nint(A))).

2 Ordered neutrosophic G;-a-locally bitopologi-
cal Spaces

In this section, the concepts of a neutrosophic Gs set, neutro-
sophic a-closed set, neutrosophic Gs-a-locally closed set, up-
per pairwise neutrosophic Gs-a-locally T’ -ordered space, lower
pairwise neutrosophic G5-a-locally 77-ordered space, pairwise
neutrosophic Gy-a-locally T;-ordered space, pairwise neutro-
sophic Ggs-a-locally Th-ordered space, weakly pairwise neu-
trosophic Gs-a-locally T5-ordered space, almost pairwise neu-
trosophic G5-a-locally T5-ordered space and strongly pairwise
neutrosophic Gs-a-locally normally ordered space are intro-
duced. Some basic properties and characterizations are dis-
cussed. Urysohn’s lemma and Tietze extension theorem of an
strongly pairwise neutrosophic Gs-a-locally normally ordered
space are studied and established.

Definition 2.1. Let (X, 7T") be a neutrosophic topological space.
Let A= (x,u,,0,,7,) be a neutrosophic set of a neutrosophic
topological space X. Then A is said to be a neutrosophic Gy
set (briefly NG4S) if A = ﬂf; A;, where each A; € T and
A; = <‘T7 Ha, 504,074, >

The complement of neutrosophic G set is said to be a neutro-
sophic F, set(briefly N F,S).

Definition 2.2. Let (X, T) be a neutrosophic topological space.
Let A= (z,p,,0,,7,) be aneutrosophic set on a neutrosophic
topological space (X,T'). Then A is said be a neutrosophic G-
a-locally closed set (in short, NGs-a-lcs) if A = B N C, where
B is a neutrosophic G5 set and C' is an neutrosophic a-closed set.

The complement of a neutrosophic Gs-a-locally closed set is
said to be a neutrosophic Gs-a-locally open set (in short, VG-
a-los).
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Definition 2.3. Let (X, T") be a neutrosophic topological space.
Let A= (x,p,,0,,7,) be aneutrosophic set in a neutrosophic
topological space (X,T). The neutrosophic Gs-a-locally clo-
sure of A is denoted and defined by
NGs-a-lcd(A)={B:B = (x, j,,0,,7,) is a neutrosophic
Gs-a-locally closed
setin X and A C B}.

Definition 2.4. Let (X, T') be a neutrosophic topological space.
Let A= (x,u,,0,,7,) be aneutrosophic set in a neutrosophic
topological space (X, 7). The neutrosophic G5-a-locally inte-
rior of A is denoted and defined by
NGs-a-lint(A)=J{B:B =
sophic G5-a-locally open
setin X and B C A}.

(T, phy,05,75) 1S a neutro-

Definition 2.5. Let X be a nonempty set and x € X a fixed
element in X. If r,t € Iy = (0,1] and s € I; = [0,1) are
fixed real numbers such that 0 < r +¢ + s < 3, then z,.; s =
(x,r,t, s) is called a neutrosophic point (briefly NP) in X, where
r denotes the degree of membership of ;. ; s, t denotes the degree
of indeterminacy and s denotes the degree of nonmembership of
Zpt,s and z € X the support of 2, ¢ 5.

The neutrosophic point x,.; ¢ is contained in the neutrosophic
A(xy s € A)ifand only if r < pa(x),t < oa(x),s > ya(z).

Definition 2.6. A neutrosophic set A = (z,p,,0,,7,) in a
neutrosophic topological space (X,T') is said to be a neutro-
sophic neighbourhood of a neotrosophic point z,.; s,z € X, if
there exists a neutrosophic open set B = (x, i, 0,,7;) With
xr,t,s g B g A

Definition 2.7. A neutrosophic set A = (x,u,,0,,7,) in
a neutrosophic topological space (X,T) is said to be a neu-
trosophic Gs-a-locally neighbourhood of a neutrosophic point
Zrt s, 2 € X, if there exists a neutrosophic G5-a-locally open
set B=(x,pi,,0,,7,) Withz,; s C B C A.

Notation 2.1. In what follows, we denote neutrosophic neigh-
bourhood A of a in X by neutrosphic neighbourhood A of a neu-
trsophic point a,.; s for a € X.

Definition 2.8. A neutrosophic set A = (x, u,,0,,7,) in a par-
tially ordered set (X, <) is said to be an

(i) increasing neutrosophic set if © < y implies A(z) C
A(y).That is,
pa(r) < pa(y), oalr) < oaly) andya(z) = va(y).

(ii) decreasing neutrosophic set if z < y implies A(xz) 2
A(y).That is,
pa(r) = pa(y) .oa(r) = oa(y)and ya(z) < va(y).

Definition 2.9. An ordered neutrosophic bitopological space is a
neutrosophic bitopological space (X, 71, 72, <) (where 71 and 75
are neutrosophic topologies on X ) equipped with a partial order
<.
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Definition 2.10. An ordered neutrosophic bitopological space
(X, 71, 72,<) is said to be an upper pairwise neutrosophic 7} -
ordered space if a,b € X such that a %_ b, there exists a decreas-
ing 7, neutrosophic neighbourhood (or) an decreasing 75 neutro-
sophic neighbourhood A of b such that A = (x,pu,,0,,7,) is

not a neutrosophic neighbourhood of a.

Definition 2.11. An ordered neutrosophic bitopological space
(X,71,72,<) is said to be a lower pairwise neutrosophic 7}-
ordered space if a,b € X such that a ﬁ b, there exists an increas-
ing 71 neutrosophic neighbourhood (or) an increasing 7o neutro-
sophic neighbourhood A of a such that A = (x,pu,,0,,7,) is
not a neutrosophic neighbourhood of b.

Example 2.1. Let X = {1,2} with a partial order rela-
tion <. Let ;1 = {On,ln,A} and 72 = {On,1ln,B}
where A = ((0.3,0.3,0.5),(0.7,0.7,0.4)) and B =
((0.5,0.5,0.5), (0.5,0.5,0.5)) be any two topologies on X.
Then (X, 7,72,<) is an ordered neutrosophic bitopological
Space. Let 1(0_2570.3,0.5) and 2(0_2570_25_’0.35) be any two neu-
trosophic points on X. For 1(9.250.3,0.5) 2(0.25,0.25,0.35)>
there exists an increasing 71 neutrosphic neighbourhood A of
1(0.25,0.3,0.5) such that A is not neutrosophic neighbourhood of
2(0.25,0.25,0.35)- Therefore (X, 71, 7o, <) is a lower pairwise neu-
trosophic 77 -ordered space.

Definition 2.12. An ordered neutrosophic bitopological space
(X, 71, 72,<) is said to be a pairwise neutrosophic 7j-ordered

space if and only if it is both upper and lower pairwise neutro-
sophic 71 -ordered space.

Definition 2.13. An ordered neutrosophic bitopological space
(X, 71,72,<) is said to be an upper pairwise neutrosophic G-
a-locally Ty-ordered space if a,b € X such that a £ b, there
exists a decreasing 71 neutrosophic Gs-a-locally neighbourhood
(or) a decreasing 7o neutrosophic Gs-a-locally neighbourhood
A= (x,p,,0,,7,) of bsuch that A is not a neutrosophic G-
a-locally neighbourhood of a.

Definition 2.14. An ordered neutrosophic bitopological space
(X, 71, 72,<) is said to be a lower pairwise neutrosophic G-
a-locally T -ordered space if a,b € X such that a £ b, there ex-
ists an increasing 77 neutrosophic Gs-a-locally neighbourhood
(or) an increasing T neutrosophic Gs-a-locally neighbourhood
A= (x,pu,,0,,7,) of asuch that A is not a neutrosophic G-

a-locally neighbourhood of b.

Definition 2.15. An ordered neutrosophic bitopological space
(X, 71,72, <) is said to be a pairwise neutrosophic Gs-a-locally

Ti-ordered space if and only if it is both upper and lower pairwise
neutrosophic Gs-a-locally T} -ordered space.

Proposition 2.1. For an ordered neutrosophic bitopological
space (X, 71, T2, <) the following are equivalent

(i) X is a lower (resp. upper) pairwise neutrosophic Gs-a-
locally 77 -ordered space.
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(i1) For each a,b € X such that a ﬁ b, there exists an increas-
ing (resp. decreasing) 71 neutrosophic Gs-a-locally open
set(or) an increasing (resp.decreasing) 7o neutrosophic G-
a-locally open set A = (z,u,,0,,7,) such that A(a) > 0
(resp. A(b) > 0) and A is not a neutrosophic Gs-a-locally
neighbourhood of b (resp.a).

Proof:

(i)=-(ii) Let X be a lower pairwise neutrosophic Gs-a-locally
Ti-ordered space. Let a,b € X such that a £ b. There ex-
ists an increasing 71 neutrosophic Gg-a-locally neighbourhood
(or) an increasing 7o neutrosophic Gs-a-locally neighbourhood
A of a such that A is not a neutrosophic Gs-a-locally neigh-
bourhood of b. It follows that there exists a 7; neutrosophic
Gs-a-locally open set (i = 1(or)2), Ai = (@, 4, ,0,, ,74,)
with A; C A and A;(a) = A(a) > 0. As A is an increas-
ing neutrosophic set, A(a) > A(b) and since A is not a neu-
trosophic Gs-a-locally neighbourhood of b, A;(b) < A(b) im-
plies A;(a) = A(a) > A(b) > A;(b). This shows that 4; is an
increasing neutrosophic set and A; is not a neutrosophic G-a-
locally neighbourhood of b, since A is not a neutrosophic Gs-a-
locally neighbourhood of b.

(ii)=-(i) Since A; is an increasing 7, neutrosophic Gg-a-
locally open set (or) increasing 7o neutrosophic G's-a-locally
open set. Now, A; is a neutrosophic Gs-a-locally neighbour-
hood of a with 4;(a) > 0. By (ii), A; is not a neutrosophic
Gs-a-locally neighbourhood of b. This implies, X is a lower
pairwise neutrosophic Gs-a-locally 77 -ordered space.

Remark 2.1. Similar proof holds for upper pairwise neutro-
sophic Gs-a-locally T7-ordered space.

Proposition 2.2. If (X, 71, 72, <) is a lower (resp. upper) pair-
wise neutrosophic G-a-locally T7-ordered space and 7 C
7,172 C 75, then (X, 7%, 72*, <) is a lower (resp.

upper) pairwise neutrosophic Gs-a-locally 77 -ordered space.
Proof:

Let (X, 71,72,<) be a lower pairwise neutrosophic Gs-a-
locally T7-ordered space. Then if a, b € X such that a £ b, there
exists an increasing 71 neutrosophic G s-a-locally neighbourhood
(or) an increasing 7o neutrosophic Gs-a-locally neighbourhood
A=z, p,,0,,7,) of asuch that A is not a neutrosophic Gs-a-
locally neighbourhood of b. Since 7 C 77 and 7o C 75. There-
fore, if a,b € X such that a jé b, there exists an increasing 7 *
neutrosophic Gs-a-locally neighbourhood (or) an increasing 7o *
neutrosophic Gs-a-locally neighbourhood A = (z,p,,0,,7.,)
of a such that A is not a neutrosophic Gs-a-locally neighbour-
hood of b. Thus (X, 71", 72*, <) is a lower pairwise neutrosophic

G s-a-locally T -ordered space.

Remark 2.2. Similar proof holds for upper pairwise neutro-
sophic G5-a-locally T} -ordered space.

Definition 2.16. An ordered neutrosophic bitopological space
(X, 71,72, <) is said to be a pairwise neutrosophic T5-ordered
space if for a, b € X with a £ b, there exist a neutrosophic open
sets A = (x,u,,0,,7,) and B = (x,u,,0,,7,) such that
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A is an increasing 7; neutrosophic neighbourhood of a, B is a
decreasing 7; neutrosophic neighbourhood of b (i, j = 1,2 and
i#j)and AN B =0y.

Definition 2.17. An ordered neutrosophic bitopological space
(X, 71,79, <) is said to be a pairwise neutrosophic G s-a-locally
Ty-ordered space if for a,b € X with a f b, there exist a
neutrosophic Gs-a-locally open sets A = (x,pu,,0,,7,) and
B = (x,u,,0,,7,) such that A is an increasing 7; neutrosophic
Gs-a-locally neighbourhood of a, B is a decreasing 7; neutro-
sophic Gs-a-locally neighbourhood of b (7,5 = 1,2 and i # j)
and AN B =0y.

Definition 2.18. Let (X, <) be a partially ordered set. Let G =
{(z.y) € X x X |

x <y,y= f(x)}. Then G is called a graph of the partially
ordered <.

Definition 2.19. Let X be any nonempty set. Let A C
X. Then we define a neutrosophic set x% is of the form
(z,xa(x), xa(@),1 = xa(2)).
Definition 2.20. Let A = (x,p,,0,,7,) be a neutrosophic
set in an ordered neutrosophic bitopological space (X, 71, 72, <).
Then for i = 1(or)2, we define
I,,-Gs-a-li( A) = increasing 7; neutrosophic Gs-a-locally in-
terior of A
= the greatest increasing 7; neutrosophic Ggs-a-
locally open
set contained in A
D,,-Gs-a-li(A) = decreasing 7; neutrosophic Gs-a-locally
interior of A
= the greatest decreasing 7; neutrosophic Gs-a-
locally open
set contained in A
I;,-Gs-a-lc(A) = increasing 7; neutrosophic Gs-a-locally
closure of A
= the smallest increasing 7; neutrosophic Gjs-a-
locally closed
set containing in A
D.,-Gs-a-lc(A) = decreasing 7; neutrosophic Gs-a-locally
closure of A
= the smallest decreasing 7; neutrosophic Gs-a-
locally closed
set containing in A.

Notation 2.2. (i) The complement of a neutrosophic set xg*,
where G is the graph of the partial order of X is denoted by
X&-

(ii) Ir,-Gs-a-lc(A) is denoted by I;(A) and D,,-Gs-a-lc(A)
is denoted by D;(A), where A = (z,p,,0,,7,) is a neu-
trosophic set in an ordered neutrosophic bitopological space
(X, 71,70,<),fori,j =1,2and i # j.

(iii) Ir,-Gs-a-li(A) is denoted by I;°(A) and D, -Gs-a-li(A)
is denoted by D;°(A), where A = (x, pu,,0,,7,) is a neu-
trosophic set in an ordered neutrosophic bitopological space
(X,71,72,<),fori,j =1,2and i # j.
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Definition 2.21. Let A and B be any two neutrosophic sets of a
nonempty set X. Then a neutrosophic set A x Bon X x X is of
the form A x B = <($, y), HAxB,OCAXB, ’yAX3> where

paxs((x,y) = pa(@) A ps(y),oaxs((z,y)) = oalz) A

op(y) and Yaxp((7,y)) = va(x) V yB(y), for every (z,y) €
X x X

Proposition 2.3. For an ordered neutrosophic bitopological
space (X, 71, T2, <) the following are equivalent

(i) X is a pairwise neutrosophic Ggs-a-locally Th-ordered
space.

(ii) For each pair a,b € X such that a £ b, there exist a 7; neu-
trosophic G's-a-locally open set A = (z, 1, ,0,,7,) and 7;
neutrosophic Gs-a-locally open set B = (x, i, 0,,7,)
such that A(a) > 0,B(b) > 0 and A(z) > 0,B(y) > 0
together imply that 2 £ y.

(iii) The neutrosophic set x¢;, where G is the graph of the par-

tial order of X is a 7*-neutrosophic G s-a-locally closed set,

where 7 is either 71 X 79 or 79 X 71 in X x X.

Proof:

(i)=(ii) Let X be a pairwise neutrosophic Gs-a-locally T5-
ordered space.

Assume that suppose A(x) > 0, B(y) > 0 and z < y. Since A
is an increasing 7; neutrosophic Gs-a-locally open set and B is a
decreasing 7; neutrosophic Gs-a-locally open set, A(z) < A(y)
and B(y) < B(x). Therefore 0 < A(x) N B(y) < A(y) N B(x),
which is a contradiction to the fact that A N B = Op. Therefore
(i)=(@1) Leta,b e X witha £ b, there exists a neutrosophic
sets A and B satisfying the properties in (ii). Since I;°(A) is an
increasing 7; neutrosophic G-a-locally open set and D;°(B)is
decreasing 7; neutrosophic Gs-a-locally open set, we have
I,°(A) N D;°(B)=0y. Suppose z € X is such that I;,°(A)(z)
N D;°(B)(z) >0. Then I,°(A) > 0 and D,°(B)(z) > 0. If
z < z < y, then z < z implies that D;°(B)(x) > D;°(B)(z)
>0 and z < y implies that I;°(A)(y) > I,°(A)(z) >0 then
D;°(B)(z) >0 and I,°(A)(y) >0. Hence by (i), z £ y but
then < y. This is a contradiction. This implies that X is pair-
wise neutrosophic Gs-a-locally T5-ordered space.

()= (iii) We want to show that x¢, is a 7* neutrosophic G-
a-locally closed set. That is to show that Y% is 7* neutrosophic
Gs-a-locally open set. It is sufficient to prove that x% is a neu-
trosophic G's- a locally neighbourhood of a point (z,y) € X x X
such that x:(x,y) > 0. Suppose (z,y) € X x X is such
that xZ(z, CS > 0. We have x}5(z,y) < 1. This means
X&(z,y) = 0. Thus (z,y) ¢ G and hence x £ y. Therefore
by assumption (i), there exist neutrosophic Gs-a-locally open
sets A and B such that A is an increasing 7; neutrosophic Gs-a-
locally neighbourhood of a , B is an decreasing 7; neutrosophic
Gs-a-locally neighbourhood of b (i, = 1,2 and ¢ # j) and
AN B = 0y. Clearly A x B is an IF'7* Gs-a-locally neigh-
bourhood of (x,y). It is easy to verify that A x B C x&. Thus
we find that x is an 7% NG's-a-locally open set. Hence (iii) is
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established.

(iii)=-(i) Suppose z £ y. Then (z,y) & G,where G is a graph
of the partial order. Given that x¢, is 7% neutrosophic Gs-a-
locally closed set. That is x= is an 7* neutrosophic Gs5-a-locally
open set. Now (z,y) ¢ G implies that x%(z,y) > 0. There-
fore X*@ is an 7% neutrosophic Gs-a-locally neighbourhood of
(x,y) € X x X. Hence we can find that 7* neutrosophic G-
a-locally open set A x B such that A x B C % and A is 7;
neutrosophic Gs-a-locally open set such that A(x) > 0 and B
is an 7; neutrosophic G-c-locally open set such that B(y) > 0.
We now claim that 1;°(A) N D;°(B)=0n. For if z € X is such
that (1;°(A) N D;°(B))(z2)> 0, then I,°(A)(z) N D;°(B)(z)
> 0. This means I;,°(A)(z)> 0 and D,°(B)(z)> 0. And if
a < z < b, then z < b implies that I;°(A)(b)> I,°(A)(2)> 0
and a < z implies that D;°(B)(a)> D;°(B)(z)> 0. Then
D;°(B)(a)> 0 and I;,°(A)(b)> 0 implies that a £ b but then
a < b. This is a contradiction. Hence (i) is established.

Definition 2.22. An ordered neutrosophic bitopological space
(X, 71,72, <) is said to be a weakly pairwise neutrosophic T5-
ordered space if given b < « (thatis b < a and b # a), there
exist an 7; neutrosophic open set A = (x, 1 ,,0,,7,) such that
A(a) > 0 and 7; neutrosophic open set B = (, [1,,0,,7,)
such that B(b) > 0 (i,j = 1,2 and ¢ # j) such that if z,y € X,
A(zx) > 0, B(y) > 0 together imply that y < .

Definition 2.23. An ordered neutrosophic bitopological space
(X, 71, 72,<) is said to be a weakly pairwise neutrosophic G-
a-locally Th-ordered space if given b < a (thatis b < @ and
b # a), there exist an 7; neutrosophic G-a-locally open set
A= (z,pu,,0,,7,) such that A(a) > 0 and 7; neutrosophic
Gs-a-locally open set B = (x, f1,,,0,,7,) such that B(b) > 0
(1,7 =1,2andi # j)suchthatifz,y € X, A(z) > 0, B(y) >0
together imply that y < x.

Definition 2.24. The symbol z || y means that z < y and y < z.

Definition 2.25. An ordered neutrosophic bitopological space
(X, 71,72, <) is said to be an almost pairwise neutrosophic T5-
ordered space if given a || b, there exist a 7; neutrosophic open
set A= (x,p,,0,,7,) such that A(a) > 0 and 7; neutrosophic
open set B = (x,u,,0,,7,) such that B(b) > 0 (i,j=1,2 and
i # j)such thatif x,y € X, A(x) > 0 and B(y) > 0 together
imply that z || y.

Definition 2.26. An ordered neutrosophic bitopological space
(X, 71,72, <) is said to be an almost pairwise neutrosophic G-
a-locally Tr-ordered space if given a || b, there exist a 7; neu-
trosophic Gs-a-locally open set A = (x, 1 ,,0,,7,) such that
A(a) > 0 and 7; neutrosophic Gj-c-locally open set B =
(x, g, 04,7, such that B(b) > 0 (i, = 1,2 and i # j) such
that if z,y € X, A(x) > 0 and B(y) > 0 together imply that

z | y.
Proposition 2.4. An ordered neutrosophic bitopological space

(X,71,72,<) is a pairwise neutrosophic Gs-a-locally T5-
ordered space if and only if it is a weakly pairwise neutrosophic
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Gs-a-locally Th-ordered and almost pairwise neutrosophic G-
a-locally T5-ordered space.
Proof:

Let (X, 71, T2, <) be a pairwise neutrosophic G5-a-locally T5-

ordered space. Then by Proposition 3.3 and Definition 3.20, it is
a weakly pairwise neutrosophic Gs-a-locally T5-ordered space.
Leta || b. Thena « band b £ a.Since a £ band X is a
pairwise neutrosophic Gs-a-locally Th-ordered space. We have
7; neutrosophic Gs-a-locally open set A = (x, p,,0,,7,) and
7; neutrosophic Gs-a-locally open set B = (x, i, 0,,7,) such
that A(a) > 0, B(b) > 0 and A(x) > 0, B(y) > 0 together im-
ply that = & y. Also since b £ a,there exist 7; neutrosophic
Gs-a-locally open set A*=(z, pa-,v4-) and 7; neutrosophic
Gs-a-locally open set B*=(x, i+, vp+) such that A*(a) > 0,
B*(b) > 0 and A*(xz) > 0, B*(y) > 0 together imply that
y % x. Thus I;,°(ANA*) is an 7; neutrosophic Gs-a-locally open
set such that I,° (AN A*)(a) > 0and I;°(BNB*) is a 7; neutro-
sophic G'5-a-locally open set such that I;° (BN B*)(b) > 0.Also
I,°(ANA*)(z) > 0and I,°(BNB*)(y) > 0 togetherimply that
2 || y. Hence X is an almost pairwise neutrosophic Gs-c-locally
Ts-ordered space.
Conservely, let X be a weakly pairwise neutrosophic Gs-a-
locally Th-ordered and almost pairwise neutrosophic Gg-a-
locally T5-ordered space. We want to show that X is a pairwise
neutrosophic Gs-a-locally T»-ordered space. Let a # b. Then
either b < a (or) b £ a. If b < a then X being weakly pair-
wise neutrosophic Gs-a-locally Th-ordered space, there exist 7;
neutrosophic G'5-a-locally open set A and 7; neutrosophic G-
a-locally open set B such that A(a) > 0,B(b) > 0 and such
that A(x) > 0,B(y) > 0 together imply that y < z. Thus
x % y. If b £ a, then a || b and the result follows easily since
X is an almost pairwise neutrosophic Gs-a-locally T5-ordered
space. Hence X is a pairwise neutrosophic Gs-a-locally Th-
ordered space.

Definition 2.27. Let A = (x,u,,0,,7,) and B =
(x,1,,0,,7,) be neutrosophic sets in an ordered neutrosophic
bitopological space (X, 71, 72, <). Then A is said to be a 7; neu-
trosophic neighbourhood of B if B C A and there exists 7; neu-
trosophic open set C=(x, i, 0,7, ) suchthat B C C C A,(i =
1(or)2).

Definition 2.28. Let A = (x,pu,,0,,7,) and B =
(x,1,,0,,7,) be neutrosophic sets in an ordered neutrosophic
bitopological space (X,71,72,<). Then A is said to be a
7; neutrosophic G5-a-locally neighbourhood of B if B C A
and there exists 7; neutrosophic Gs-a-locally open set C' =
(@, ey 0y Ye) such that B C C C A,

(1 = 1(or)2).

Definition 2.29. An ordered neutrosophic bitopological space
(X,71,72,<) is said to be a strongly pairwise neutrosophic
Gs-a-locally normally ordered space if for every pair A =
(x,p,,0,,7,) is a decreasing 7; neutrosophic Gs-a-locally
closed set and B = (z,u,,0,,7,) is an decreasing 7;

neutrosophic Gs-a-locally open set such that A C B then
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there exist decreasing 7; neutrosophic Gs-a-locally open set
A1=<$,,U/A1,’YA1> such that A g Al g Dz(Al> g B,(Z7] = 1,2
and ¢ # 7).

Proposition 2.5. An ordered neutrosophic bitopological space
(X, 71, T2, <) the following are equivalent

locally normally ordered space.

(i) (X,71,72,<) is a strongly pairwise neutrosophic Gg-a-

(ii) For each increasing 7; neutrosophic G5-a-locally open set
A=(xz,p,,0,,7,) and decreasing 7; neutrosophic Gs-a-
locally open set B=(z, ui,,0,,7,) with A C B there ex-
ists an decreasing 7; neutrosophic G's-a-locally open set A
such that A C Ay C NGs-a-lcl;, (A1) € By(i,j7 = 1,2
and i # j).

Proof: The Proof is simple.

Notation 2.3. (i) The collection of all neutrosophic set in
nonempty set X is denoted by ¢X.

(ii) Let X be any nonempty set and A € ¢X. Then for z € X,
(pa(z),04(x),v4(x)) is denoted by A™.

Definition 2.30. A neutrosophic real line R;([) is the set of all
monotone decreasing neutrosophic A € (¥ satisfying U{A(?) :
t € R} = 1~ and N{A(¢) : ¢ € R} = 0~ after the iden-
tification of neutrosophic sets A, B € Ry(I) if and only if
A(t—) B(t—) and A(t+) = B(t+) for all ¢ € R where
A(t—) =Nn{A(s) : s <t} and A(t+) = U{A(s) : s > t}.

The neutrosophic unit interval Iy(7) is a subset of Ry(7) such
that [4] € Ty(I) if the membership , indeterminancy and non-
membership of A are defined by

t<0;
t>1.

t<0;
t>1.

L,
0,

L
0,

0,

pa(t) = { 1,

oa(t) = { and y4(t) = {

respectively. The natural neutrosophic topology on Ry(7) is gen-
erated from the subbasis {L%;, RY; : t € R} where L}, R} :
Ry(I) — Iy(I) are given by Li[A] A(t—) and Ri[A]
A(t+), respectively.

Definition 2.31. Let (X, 71,72, <) be an ordered neutrosophic
bitopological space. A function f : X — Ry(I) is said to be a
7; lower™ (resp.upper*) neutrosophic Gs-a-locally continuous
function if f~(R";) (resp.f~1(L';)) is an increasing (or)an de-
creasing 7;(resp.7;) neutrosophic G's-a-locally open set, for each
teR(G,j=1,2and i # j).

Proposition 2.6. Let (X, 71, 72, <) be an ordered neutrosophic
bitopological space. Let A = (x,uu,,0,,7,) be a neutrosophic
setin X and let f : X — Ry(7) be such that

1~ if t<0
flx)t)=< A~ if 0<t<1
0~ if t>1
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forallz € X and t € R. Then f is a 7; lower™ (resp.Tjupper”)
neutrosophic Gs-a-locally continuous function if and only if A
is an increasing (or) a decreasing 7; (resp. 7;) neutrosophic G's-
a-locally open (resp. closed) set (i, 7 = 1,2 and i # j).

Proof:

1~ if t<0
fTHRY) =4 A if 0<t<1
0~ if t>1

implies that f is 7; lower™ neutrosophic Gs-a-locally continu-
ous function if and only if A is an increasing (or) a decreasing 7;
neutrosophic G5-a-locally open set in X.

1~ if t<0
L) =<¢ A~ dif 0<t<l1
0~ if t>1

implies that f is 7; upper* neutrosophic G'5-a-locally continu-
ous function if and only if A is an increasing (or) a decreasing
7; neutrosophic Gs-a-locally closed set in X (i,7 = 1,2 and
i # J).

Uryshon’s lemma

Proposition 2.7. An ordered neutrosophic bitopological space
(X, 71,72,<) is a strongly pairwise neutrosophic Gs-ca-locally
normally ordered space if and only if for every A
(x,p,,0,,7,) is decreasing 7; neutrosophic closed set and
B (x,ptp,0,,75) s an increasing 7, neutrosophic closed
set with A C B, there exists increasing neutrosophic function
f: X — Ij(I) such that A C f~Y(L;) € f~*(Ry) € B
and f is a 7; upper™ neutrosophic G s-a-locally continuous func-
tion and 7; lower™ neutrosophic Gs-a-locally continuous func-
tion (i,j = 1,2 and i # j).
Proof:

Suppose that there exists a function f satisfying the given con-
ditions. Let C = (x, i, 0, Ve )
=do.' (L) and D = (2, 1,05, 7,)=f " (R';) for some 0 <
tt§11.' Then C € 7;and D € 75 and suchthat AC C C D C B.
It is easy to verify that D is a decreasing 7; neutrosophic G-
a-locally open set and C'is an increasing 7; neutrosophic G5-a-
locally closed set. Then there exists decreasing 7; neutrosophic
Gs-a-locally open set C; such that C C Cy C D;(Cy) C D,
(i,7 = 1,2 and i # j). This proves that X is a strongly pairwise
neutrosophic G5-a-locally normally ordered space.
Conversely, let X be a strongly pairwise neutrosophic Gs-a-
locally normally ordered space. Let A be a decreasing 7; neu-
trosophic G's-a-locally closed set and B be an increasing 7; neu-
trosophic Gs-a-locally closed set. By the Proposition 3.6, we
can construct a collection {C; | t € I} C 7, where C' =
(x, ney,,ve,)s t € Tsuch that A C Cy € B, NGs-a-lcl,, (Cs) C
C; whenever s < t, A C Cy C; = B and C; = Oy for
t < 0,0y = 1y fort > 1. We define a function f : X — Iy(I)
by f(x)(t) = Ci_¢(x). Clearly f is well defined. Since A C
Cy_¢ C B,fort € I. Wehave A C f~1(Ll;) C f~Y(R%) C B.
Furthermore f~'(R';) = {J,.,_, Cs is a 7; neutrosophic Gs-a-
locally open setand f~1(L!;) = Nss1-: Cs = Nyn1_y NGs--
lcl;, (Cs) is an 7; neutrosophic Gs-a-locally closed set. Thus f is
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a 7; lower™ neutrosophic Gs-a-locally continuous function and
7; upper™ neutrosophic G s-a-locally continuous function and is
an increasing neutrosophic function.

Tietze extension theorem

Proposition 2.8. Let (X, 71, 72, <) be an ordered neutrosophic

bitopological space the following statements are equivalent.

(i) (X, 71,72, <) is a strongly pairwise neutrosophic Gs-a-
locally normally ordered space.

(ii) If g, h : X — Ry(I),g is an 7; upper* neutrosophic Gs-a-
locally continuous function, & is a 7; lower™ neutrosophic
G s-a-locally continuous function and g C h, then there ex-
ists f : X — Ij(I) suchthat g C f C hand fisaT;
upper™® neutrosophic Gg-a-locally continuous function and
7; lower™ neutrosophic Gs-a-locally continuous function
(4,7 = 1,2 and i # j).

Proof:
(i)=(@1) Let A=(z,pu,,0,,v,) and B=(z, 1, ,0,,7,) be a
neutrosophic G5-a-locally open sets such that A C B. Define
g, h: X — Ry(I) by

1~ if t<0

g(x)(t) = A~ if 0<t<1 and h(z)(t) =
0~ if t>1

1~ if t<0

B~ if 0<t<1

0~ if t>1

for each x € X. By Proposition 3.6, g is an 7; upper™® neutro-
sophic Gs-a-locally continuous function and h is an 7; lower”
neutrosophic Gs-a-locally continuous function. Clearly, g C h
holds,so that there exists f : X — Ry(I) such that g C f C h.
Suppose ¢t € (0,1). Then A = g~ (RY) C f~Y(RY) C
f~Y(I%,) € h~'(L%,) = B. By Proposition 3.7, X is a strongly
pairwise neutrosophic G'5-a-locally normal ordered space.

(i)=(ii) Define two mappings A, B : Q — I by A(r) = A, =
h=Y(RL) and B(r) = B, = g Y(L',), forall r € Q (Q is
the set of all rationals). Clearly, A and B are monotone in-
creasing families of a decreasing 7; neutrosophic Gs-a-locally
closed sets and decreasing 7; neutrosophic G'5-c-locally open
sets of X. Moreover A, C B, if r < r’. By Proposition 3.5,
there exists an decreasing 7; neutrosophic G5-a-locally open set
C = {(x, i, 04, 7.) such that A, C NGs-a-lint,, (C,), NGs-
a-lel, (Cr) € NGs-a-lint,,(Cy), NGs-a-lel,(Cr) C By
whenever r < ¢/ (r,r’ € Q). Letting V; = ,_,C, for
t € R, we define a monotone decreasing family {V; | t € R} C
I. Moreover we have NGs-a-lcl;, (Vi) € NGs-a-lint,, (Vs)
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whenever s < t. We have,

Uv-une

teR teRr<t

>UNs:

teRr<t

=UNg '@k

teRr<t

=g 'zh)

Similarly, ﬂte rV: = On. Now define a function f
(X, 71,72, <) — Ry(I) satisfying the required conditions. Let
f(z)(t) = Vi(z), forall z € X and t € R. By the above
discussion, it follows that f is well defined. To prove f is a ;
upper® neutrosophic G's-a-locally continuous function and 7;
lower™ neutrosophic Gs-a-locally continuous function (i,j=1,2
and i # j). Observe that J,, Vi = U o, NGs-a-lint,, (V5)
and N2, Vs = Nyoy NGs-a-lcl,, (V). Then f~H(R;) =
Usst Vs = Uysy NGs-a-lint,, (V) is an increasing 7; neutro-
sophic Gs-a-locally open set. Now f~'(L;) = o, Vi =
Ny>¢ NGs-a-lcl (Vi) is a decreasing 7; neutrosophic Gs-o-
locally closed set. So that f is a 7; upper™® neutrosophic Gs-a-
locally continuous function and 7; lower™ neutrosophic Gs-a-
locally continuous function. To conclude the proof it remains to
show that g C f C h. Thatis g~ (LL,) C f~1(LY) C h=1(LY,)
and g~ (RY) C f~YRY) € hY(RY) foreach t € R. We
have,

g (I%) = g (@T)

s<t

BRI

s<tr<s

-NNE

s<tr<s

c( &

s<tr<s

:ﬂvs

s<t

= 7 )
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and

Similarly, we obtain

g (R =Jg (R
-JUg @)
-Uus

cyuye

s>tr>s

=UJw

s>t
= ' (R

and

Hence the proof.

Proposition 2.9. Let (X, 71, 72, <) be a strongly pairwise neu-
trosophic G's-a-locally normally ordered space. Let A € 7
and A € 75 be crisp and let f : (A,71/A,7/A) — Tz(I)
be a 7; upper® neutrosophic Gs-a-locally continuous function
and 7; lower™ neutrosophic Gs-c-locally continuous function
(i,j=1,2 and 7 # j). Then f has a neutrosophic extension over
(X, 71,72, <) (thatis, F': (X, 711,72, <) = Li(1).

Proof:

Neutrosophic Sets and Systems, 18/2017

Define g : X — I;(I) by

glx) = f(z) if zeA
=[Ao] if xz¢A
and also define h : X — Ty(I) by
h(z)=f(x) if z€A
=[A] if z¢A

where [Ag] is the equivalence class determined by Ag : Ry(I) —
I;(I) such that

Aolt) =1~
pr— ON

if t<0
if t>0

and [A;] is the equivalence class determined by A; : Ry(/) —
Iy (1) such that

Ag(t) =17
= ON

if t<1
if t>1

g is a 7; upper™ neutrosophic Gs-a-locally continuous function
and h is a 7; lower™ neutrosophic Gs-a-locally continuous func-
tion and g C h. Hence by Proposition 3.8, there exists a function
F : X — Ty(I) such that F is a 7; upper™® neutrosophic G-
a-locally continuous function and 7; lower™ neutrosophic G's-
a-locally continuous function and g(z) C F(z) C h(zx) for all
x € X.Hence forallz € A, f(z) C F(x) C f(x). So that F'is
a required extension of f over X.
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1. Introduction

In 2000, G.B. Navalagi [4] presented the idea of
semi-o.-open sets in topological spaces. The concept of

"neutrosophic set" was first given by F. Smarandache [2,3].

A.A. Salama and S.A. Alblowi [1] presented the concept of
neutrosophic topological space (briefly NTS ). The
objective of this paper is to present the concept of
neutrosophic semi-a-open sets and study their fundamental
properties in neutrosophic topological spaces. We also
present neutrosophic semi- o -interior and neutrosophic
semi-o.-closure and obtain some of its properties.

2. Preliminaries

Throughout this paper, (U, T) (or simply U) always
mean a neutrosophic topological space. The complement
of a neutrosophic open set (briefly N-OS) is called a neu-
trosophic closed set (briefly N-CS) in (U, T). For a neutro-
sophic set A in a neutrosophic topological space (U, T),
Ncl(A), Nint(A) and A€ denote the neutrosophic clo-
sure of A, the neutrosophic interior of A and the neutro-
sophic complement of A respectively.

Definition 2.1:

A neutrosophic subset A of a neutrosophic topological
space (U, T) is said to be:

(1) A neutrosophic pre-open set (briefly NP-0S) [7] if A S
Nint(Ncl(A)). The complement of a NP-OS is called a
neutrosophic pre-closed set (briefly NP-CS) in (U, T). The

family of all NP-OS (resp. NP-CS) of U is denoted by
NPO(U) (resp. NPC(U)).

(i1)) A neutrosophic semi-open set (briefly NS-0S) [6] if
A S Ncl(Nint(A)). The complement of a NS-O0S is
called a neutrosophic semi-closed set (briefly NS-CS) in
(U, T). The family of all NS-OS (resp. NS-CS) of U is
denoted by NSO(U) (resp. NSC(U)).

(iii) A neutrosophic a-open set (briefly Na-0S) [5] if A S
Nint(Ncl(Nint(A))). The complement of a No-OS is
called a neutrosophic a-closed set (briefly Na-CS) in
(U, T). The family of all Na-OS (resp. Na-CS) of U is
denoted by NaO(U) (resp. NaC(U)).

Definition 2.2:

(1) The neutrosophic pre-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
NP-OS contained in A and is denoted by PNint(A)[7].

(i1) The neutrosophic semi-interior of a neutrosophic set A
of a neutrosophic topological space (U, T) is the union of
all NS-0S contained in A and is denoted by SNint(A)[6].

(ii1) The neutrosophic a-interior of a neutrosophic set A of
a neutrosophic topological space (U, T) is the union of all
Na-0S contained in A and is denoted by aNint(A)[5].

Definition 2.3:

(1) The neutrosophic pre-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection
of all NP-CS that contain A and is denoted by PNcl(A)[7].
(i1) The neutrosophic semi-closure of a neutrosophic set A
of a neutrosophic topological space (U,T) 1is the
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intersection of all NS-CS that contain A and is denoted by
SNcl(A)[6].

(iii) The neutrosophic a-closure of a neutrosophic set A of
a neutrosophic topological space (U, T) is the intersection

of all Na-CS that contain A and is denoted by aNcl(A)[5].

Proposition 2.4 [5]:

In a neutrosophic topological space (U,T), then the
following statements hold, and the equality of each
statement are not true:

(i) Every N-OS (resp. N-CS) is a Na-0OS (resp. Na-CS).

(i1) Every Na-0S (resp. Na-CS) is a NS-0OS (resp. NS-CS).
(ii1) Every Na-0S (resp. Na-CS) is a NP-OS (resp. NP-CS).

Proposition 2.5 [5]:
A neutrosophic subset A of a neutrosophic topological
space (U, T) is a Na-OS iff A is a NS-0OS and NP-OS.

Lemma 2.6:

(1) If K is a N-0S, then SNcl(X) = Nint(Ncl(¥)).

(i) If A is a neutrosophic subset of a neutrosophic
topological space (U,T), then SN int(Ncl(rﬂ)) =
Ncl(Nint(Ncl(A))).

Proof: This follows directly from the definition )2.1) and
proposition (2.4).

3. Neutrosophic Semi-a-Open Sets

In this section, we present and study the neutrosophic
semi-a-open sets and some of its properties.

Definition 3.1:

A neutrosophic subset A of a neutrosophic topological
space (U,T) is called neutrosophic semi-a-open set
(briefly NSa-0S) if there exists a Na-OS H in U such that
H S AC Ncl(H) or

equivalently if A € Ncl(aNint(A)). The family of all
NSa-0S of U is denoted by NSaO(U).

Definition 3.2:

The complement of NSa-0S is called a neutrosophic semi-
a-closed set (briefly NSa-CS). The family of all NSa-CS of
U is denoted by NSaC(U).

Proposition 3.3:

It is evident by definitions that in a neutrosophic
topological space (U, T), the following hold:

(1) Every N-OS (resp. N-CS) is a NSa-0S (resp. NSa-CS).
(i1)) Every Na-0S (resp. Na-CS) is a NSa-0S (resp. NSa-
CS).

The converse of the above proposition need not be true as
seen from the following example.

Example 3.4:
LetU = {u}, A ={{u,0.5,0.5,0.4):u € U},

38

B = {{u,0.4,0.5,0.8):u € U},C = {{,0.5,0.6,0.4): u €
UL, D = {(u,0.4,0.6,0.8): u € U}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

() Let # = {(,0.5,0.1,0.3):u € U}, A S H < Ncl(A)
= (u, 0.6, 0.4, 0.2), the neutrosophic set H is a NSa-0S but
is not N-0S. It is clear that H¢ = {{u,0.5,0.9,0.7): u € U}
is a NSa-CS but is not N-CS.

(i) Let X = {(,0.5,0.1,0.2): u € U}, A € K S Ncl(A)
= (u,0.6,0.4,0.2), the neutrosophic set K is a NSa-0S,
K & Nint(Ncl(Nint (X)) =
Nint(Ncl((s,0.5,0.5,0.4))) = Nint((u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4), the neutrosophic set X is not Na-0S. It is
clear that K¢ = {(u,0.5,0.9,0.8): u € U} is a NSa-CS but
is not Na-CS.

Remark 3.5:
The concepts of NSa-OS and NP-OS are independent, as
the following examples shows.

Example 3.6:

In example (3.4), then the neutrosophic set H =
{(u,0.5,0.1,0.3):u € U} is a NSa-0S but is not NP-0S,
because H & Nint(Ncl(}[)) = Nint({u, 0.6,0.4,0.2)) =
(u,0.5,0.5,0.4).

Example 3.7:

Let U ={a, b}, A = {{0.4,0.8,0.9),(0.7,0.5,0.3)}, B =
{{0.5,0.8,0.6),(0.8,0.4,0.3)}, C =
{(0.4,0.7,0.9),(0.6,0.4,0.4)}, D =
{(0.5,0.7,0.5),(0.8,0.4,0.6)}.

Then T = {Oy,A,B,C,D, 1y} is a neutrosophic topology
onU.

Then the neutrosophic set X = {(1,1,0.3),(0.7,0.3,0.6)}
is a NP-0OS but is not NSa-0S.

Remark 3.8:

(1) If every N-OS is a N-CS and every nowhere neutrosoph-
ic dense set is N-CS in any neutrosophic topological space
(U, T), then every NSa-0S is a N-OS.

(i1) If every N-OS is a N-CS in any neutrosophic topologi-
cal space (U, T), then every NSa-0S is a No-OS.

Remark 3.9:

(1) It is clear that every NS-OS and NP-OS of any
neutrosophic topological space (U,T) is a NSa-OS (by
proposition (2.5) and proposition (3.3) (ii)).

(i) A NSa-OS in any neutrosophic topological space
(U, T) is a NP-OS if every N-OS of U is a N-CS (from
proposition (2.4) (iii) and remark (3.8) (ii)).

Theorem 3.10:

For any neutrosophic subset A4 of a neutrosophic
topological space (U,T), A € NaO(U) iff there exists a
N-0S # such that H € A S Nint(Ncl(H)).
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Proof: Let A be a Na-0S. Hence A S
Nint(Ncl(Nint(A))), so let H = Nint(A), we get
Nint(A) € A < Nint(Ncl(Nint(A))). Then there exists
a N-0S Nint(A) such that H € A S Nint(Ncl(H)),
where H = Nint(A).

Conversely, suppose that there is a N-OS H such that H <
A S Nint(Ncl(H)).

To prove A € NaO(U).

H € Nint(A) (since Nint(A)
contained in A).

Hence Ncl(H) € Nint(Ncl(A)), then Nint(Ncl(H)) <
Nint(Ncl(Nint(A))).

But H € A € Nint(Ncl(H)) (by hypothesis). Then A S
Nint(Ncl(Nint(A))).

Therefore, A € NaO(U).

is the largest N-OS

Theorem 3.11:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(i) A € NSaO(U).

(i) There exists a N-OS say H such that H S A C
Ncl(Nint(Ncl(H))).

(iii) A S Ncl(Nint(Ncl(Nint(A)))).

Proof:

(i) = (ii) Let A € NSaO(U). Then there exists K €
NaO(U), such that X € A S Ncl(X). Hence there exists
H N-OS such that ' € K € Nint(Ncl(H)) (by theorem
(3.10)). Therefore, Ncl(H) S Ncl(X) <
Ncl(Nint(Ncl(H))), implies that Ncl(K) S
Ncl(Nint(Ncl(3))). Then 5 € K S A S Nel(K) S
Ncl(Nint(Ncl(#))). Therefore, H € A <
Ncl(Nint(Ncl(H))), for some H N-OS.

(i) = (iii) Suppose that there exists a N-OS H such that
H < A S Ncl(Nint(Ncl(H))). We know that

Nint(A) € A. On the other hand, H € Nint(A) (since
Nint(A) is the largest N-OS contained in A). Hence
Ncl(H) € Ncl(Nint(A)), then Nint(Ncl(H)) €
Nint(Ncl(Nint(A))), therefore Ncl(Nint(Ncl(H))) <
Ncl(Nint(Ncl(Nint(A)))).

But A S Ncl(Nint(Ncl(#))) (by hypothesis). Hence
A S Ncl(Nint(Ncl(H))) € Ncl(Nint(Ncl(Nint(A)))),
then A S Ncl(Nint(Ncl(Nint(A)))).

(iii) = (i) Let A S Ncl(Nint(Ncl(Nint(A)))).

To prove A € NSaO(U). Let K = Nint(A); we know
that Nint(A) € A. To prove A S Ncl(Nint(A)).

Since Nint(Ncl(Nint(A))) € Ncl(Nint(A)) . Hence,
Ncl(Nint(Ncl(Nint(A)))) < Ncl(Ncl(Nint(A)))) =
Ncl(Nint(A)). But A S Ncl(Nint(Ncl(Nint(A))))

(by hypothesis). Hence, A S Ncl(Nint(Ncl(Nint(A))))
C Ncl(Nint(A)) = A < Ncl(Nint(A)). Hence, there
exists a N-OS say X, such that KX € A S Ncl(A). On the
other hand, X is a Na-0S (since K is a N-OS). Hence A €
NSaO(W).

Corollary 3.12:
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For any neutrosophic subset A of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) A € NSaC(UW).

(ii) There exists a N-CS F such that Nint(Ncl(Nint(F)))
CACEF.

(iii) Nint(Ncl(Nint(Ncl(A)))) € A.

Proof:

(i) = (ii) Let A € NSaC(U), then A° € NSaO(U).
Hence there is H N-OS such that H S A€ C
Ncl(Nint(Ncl(H))) (by theorem (3.11)). Hence

(Ncl(Nint(Ncl(#))))¢ € A € K€,

ie., Nint(Ncl(Nint(H€))) S A S HE. Let HC=F,
where F is a N-CS in U. Then Nint(Ncl(Nint(F))) ©
A S F, for some F N-CS.

(ii) = (iii) Suppose_that there exists F N-CS such that
Nint (Ncl(Nint(F))) € A S F , but Ncl(A) is the
smallest N - CS containing A . Then Ncl(A) € F, and
therefore: Nint(Ncl Jl)) C Nint(F) =

Ncl Nint(Ncl(cA)b S Ncl(Nint(F)) =
Nint(Ncl(Nint(Ncl(A)))) € Nint(Ncl(Nint(F))) <
A = Nint(Ncl(Nint(Ncl(A)))) € A.

(iii) = (i) Let Nint(Ncl(Nint(Ncl(A)))) € A.

To prove A € NSaC(U), i.e., to prove A€ € NSaO(U).
Then A€ € (Nint(Ncl(Nint(Ncl(A)))))¢ =
Ncl(Nint(Ncl(Nint(A°)))), but
(Nint(Ncl(Nint(Ncl(A)))))¢ =
Ncl(Nint(Ncl(Nint(A°)))).

Hence A€ € Ncl(Nint(Ncl(Nint(A°)))), and therefore
A€ € NSaO(U), i.e., A € NSaC(U).

Proposition 3.13:

The union of any family of Na-OS is a Na-0S.

Proof: Let {A;};ca be a family of Na-0S of U.

To prove U;ep A; 1s a Na-0S,

i.e., UiEA‘ﬂi c Nlnt(Ncl(Nmt(Uler‘ll)))

Then A; € Nint(Ncl(Nint(A;))), Vi € A.

Since U;ep Nint(A;) € Nint(U;ep A;) and

Uiea Ncl(A;) S Ncl(Ujep A;) hold for any neutrosophic

topology.

We have Ujep A; € Ujep Nint(Ncl(Nint(A;)))
C Nint(U;ep Ncl(Nint(A;)))
C Nint(Ncl(U;ea(Nint(A;)))
C Nint(Ncl(Nint(U;ep A;))).

Hence U;cp A; is a Na-0S.

Theorem 3.14:

The union of any family of NSa-0S is a NSa-0S.

Proof: Let {A;};cp be a family of NSa-OS. To prove
Uiea A; is a NSa-0S. Since A; € NSaO(U). Then there is
a Na-OS B; such that B; € A; S Ncl(B;), Vi € A. Hence
UieaBi € Uiea A € Uiea Ncl(B;) S Ncl(Uiea By)-

But U;ep B; € NaO(U) (by proposition (3.13)).

Hence Ujep A; € NSaO(U).
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Corollary 3.15:

The intersection of any family of NSa-CS is a NSa-CS.
Proof: This follows directly from the theorem (3.14).

Remark 3.16:

The following diagram shows the relations among the
different types of weakly neutrosophic open sets that were
studied in this section:

NP-0S
NS-0S
N-0S < I Na-0S
y Y T
every nowhere N-dense
set is a N-CS A
O
every N-OS is a N-CS <+>
y

NSa-0S

A

Diagram (3.1)

4. Neutrosophic Semi-a-Interior and Neutrosophic
Semi-a-Closure

We present neutrosophic semi- o -interior and
neutrosophic semi- o -closure and obtain some of its
properties in this section.

Definition 4.1:

The union of all NSa-0S in a neutrosophic topological
space (U, T) contained in A is called neutrosophic semi-
o -interior of A and is denoted by SaNint(A) ,
SaNint(A) = U{B: B < A, Bis a NSa-0S}.

Definition 4.2:

The intersection of all NSa - CS in a neutrosophic
topological space (U,T) containing A is called
neutrosophic semi- o -closure of A and is denoted by
SaNcl(A), SaNcl(A) = N{B: A < B, B is a NSa-CS}.

Proposition 4.3:

Let A be any neutrosophic set in a neutrosophic
topological space (U, T), the following properties are true:
(i) SaNint(A) = A iff A is a NSa-0S.

(ii) SaNcl(A) = A iff A is a NSa-CS.

(iii) SaNint(A) is the largest NSo-0S contained in A.
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(iv) SaNcl(A) is the smallest NSa-CS containing A.
Proof: (i), (ii), (iii) and (iv) are obvious.

Proposition 4.4:

Let A be any neutrosophic set in a neutrosophic

topological space (U, T), the following properties are true:

(1) SaNint(1y — A) = 1y — (SaNcl(A)),

(i) SaNcl(1y — A) = 1y — (SaNint(A)).

Proof: (i) By definition, SaNcl(A) = N{B: A S B,Bis a

NSa-CS}

1y — (SaNcl(A)) = 1y — N{B: A € B, B is a NSa.-CS}
= U{1ly —B:A € B,BisaNSoa-CS}
=U{H:H S 1y — A, H isa NSa-0S}
= SaNint(1y — A).

(i1) The proof is similar to (i).

Theorem 4.5:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNint(0y) = Oy, SaNint(1y) = 1.

(il) SaNint(A) < A.

(ili) A € B = SaNint(A) € SaNint(B).

(iv) SaNint(ANB) € SaNint(A)NSaNint(B).

(v) SaNint(A)USaNint(B) < SaNint(AUB).

(vi) SaNint(SaNint(A)) = SaNint(A).

Proof: (i), (i), (iii), (iv), (v) and (vi) are obvious.

Theorem 4.6:

Let A and B be two neutrosophic sets in a neutrosophic
topological space (U, T). The following properties hold:

(i) SaNcl(0y) = 0y, SaNcl(1y) = 1y.

(i) A € SaNcl(A).

(i) A € B = SaNcl(A) S SaNcl(B).

(iv) SaNcl(ANB) € SaNcl(A)NSaNcl(B).

V) SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) SaNcl(SaNcl(A)) = SaNcl(A).

Proof: (i) and (ii) are evident.

(iii) By part (ii), B € SaNcl(B). Since A S B, we have
A S SaNcl(B) . But SaNcl(B) is a NSa - CS. Thus
SaNcl(B) is a NSa-CS containing A. Since SaNcl(A) is
the smallest NSa.-CS containing A, we have SaNcl(A) <
SaNcl(B). Hence, A € B = SaNcl(A) € SaNcl(B).
(iv) We know that ANB € A and ANB < B.

Therefore, by part (iii), SaNcl(ANB) < SaNcl(A) and
SaNcl(ANB) € SaNcl(B).

Hence SaNcl(ANB) < SaNcl(A)NSaNcl(B).

(v) Since A € AUB and B € AUB, it follows from part
(iii) that SaNcl(A) € SaNcl(AUB) and SaNcl(B) c
SaNcl(AUB).

Hence SaNcl(A)USaNcl(B) € SaNcl(AUB).

(vi) Since SaNcl(A) is a NSa-CS, we have by proposition
(4.3) part (ii), SaNcl(SaNcl(A)) = SaNcl(A).

Proposition 4.7:
For any neutrosophic subset <A of a neutrosophic
topological space (U, T), then:

Qays Hatem Imran, F. Smarandache, Riad K. Al-Hamido and R. Dhavaseelan, On Neutrosophic Semi Alpha Open Sets.



41

(i) Nint(A) € aNint(A) € SaNint(A) S SaNcl(A) <
aNcl(A) € Ncl(A).

(ii) Nint(SaNint(A)) = SaNint(Nint(A)) = Nint(A).
(iii) aNint(SaNint(A)) = SaNint(aNint(A)) =
aNint(A).

(iv) Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).

(v) aNcl(SaNcl(A)) = SeNcl(aNcl(A)) = aNcl(A).
(vi) SaNcl(A) = AUNint(Ncl(Nint(Ncl(A)))).

(vii) SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

(viii) Nint(Ncl(A)) € SaNint(SaNcl(A)).

Proof: We shall prove only (ii), (iii), (iv), (vii) and (viii).
(ii) To prove Nint(SaNint(A)) = SeNint(Nint(A)) =
Nint(A). Since Nint(A) is a N-OS, then Nint(A) is a
NSa.-0S. Hence Nint(A) = SaNint(Nint(A))

(by proposition (4.3)). Therefore:

Nint(A) = SaNint(Nint(A))ceovvveerereeennee. (1)

Since Nint(A) € SaNint(A) = Nint(Nint(A)) S
Nint(SaNint(A)) = Nint(A) < Nint(SaNint(A)).
Also, SaNint(A) € A = Nint(SaNint(A)) <
Nint(A). Hence:

Nint(A) = Nint(SaNint(A)).e.covevveerreonece. )
Therefore by (1) and (2), we get Nint(SaNint(A)) =
SaNint(Nint(A)) = Nint(A).

(iii)To prove aNint(SaNint(cﬂ)) = SaNint(aNint(cﬂ))
= aNint(A). Since aNint(A) is Noa-0S, therefore
aNint(A) is NSa-0S. Therefore by proposition (4.3):
aNint(A) = SaNint(aNIint(A))...c.cowvvrereeres (1)

Now, to prove aNint(A) = aNint(SaNint(cﬂ)). Since
aNint(A) € SaNint(A) = aNint(aNint(A)) <
aNint(SaNint(A)) =

aNint(A) € aNint(SaNint(A)).

Also, SaNint(A) € A = aNint(SaNint(A)) S
aNint(A). Hence:

aNint(A) = aNint(SaNInt(A) )eeeereerereernennes ()
Therefore by (1) and (2), we get aNint(SaNint(A)) =
SaNint(eNint(A)) = aNint(A).

(iv) To prove Ncl(SaNcl(c/l)) = SaNcl(Ncl(c/l)) =
Ncl(A). We know that Ncl(A) is a N-CS, so it is NSa.-CS.
Hence by proposition (4.3), we have:

Ncl(A) = SaNcl(Ncl(A)) v (1)

To prove Ncl(A) = Ncl(SaNcl(c/l)).

Since SaNcl(A) < Ncl(A) (by part (i)).

Then Ncl(SaNcl(A)) € Ncl(Ncl(A)) = Nel(A) =
Ncl(SaNcl(A)) € Ncl(A). Since A S SaNcl(A) <
Ncl(SaNcl(A)), then A S Ncl(SaNcl(A)). Hence
Nel(A) € Nel (Nel(SaNcl(A)) ) = Nel(SaNcl(A))
= Ncl(A) S Ncl(SaNcl(A)) and therefore: Ncl(A) =
Ncl(SaNCL(A)) v )
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Now, by (1) and (2), we get that Ncl(SaNcl(c/l)) =
SaNcl(Ncl(A)).
Hence Ncl(SaNcl(A)) = SaNcl(Ncl(A)) = Ncl(A).

(vii) To prove SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

Since SaNint(A) € NSa.0(U) = SaNint(A) S
Ncl(Nint(Ncl(Nint(SaNint(A)))))

= Ncl(Nint(Ncl(Nint(A)))) (by part (ii)).

Hence SaNint(A) € Ncl(Nint(Ncl(Nint(A)))), also
SaNint(A) € A. Then:

SaNint(A) € ANNcl(Nint(Ncl(Nint(A))))..oovevenrn. (1
To prove ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S
contained in A.

It is clear that ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))) and also it is clear that
Nint(A) € Ncl(Nint(A)) = Nint(Nint(A)) S
Nint(Ncl(Nint(A))) = Nint(A) <
Nint(Ncl(Nint(A))) = Ncl(Nint(A)) <
Ncl(Nint(Ncl(Nint(A))) and Nint(A) € Ncl(Nint(A))
= Nint(A) € Ncl(Nint(Ncl(Nint(A)))) and Nint(A)
€ A = Nint(A) € ANNcl(Nint(Ncl(Nint(A)))).
We get Nint(A) € ANNcl(Nint(Ncl(Nint(A)))) <
Ncl(Nint(Ncl(Nint(A)))).

Hence ANNcl(Nint(Ncl(Nint(A)))) is a NSa-0S (by
proposition (4.3)). Also, ANNcl(Nint(Ncl(Nint(A))))
is contained in A. Then ANNcl(Nint(Ncl(Nint(A))))
c SaNint(A) (since SaNint(A) is the largest NSa-0S
contained in A). Hence:

ANNcl(Nint(Ncl(Nint(A)))) S SaNint(A)............. )

By (1) and (2), SaNint(A) = ANNcl(Nint(Ncl(Nint(A)))).

(viii) To prove that Nint(Ncl(A)) S SaNint(SaNcl(cﬂ)).
Since SaNcl(A) is a NSa-CS, therefore
Nint(Ncl(Nint(Ncl(SeNcl(A))))) € SaNcl(A) (by
corollary (3.12)). Hence N int(Ncl(a‘l)) c
Nint(Ncl(Nint(Ncl(A))) € SaNcl(A) (by part (iv)).
Therefore, SaNint (Nint(Ncl(a‘l))) c
SaNint(SaNcl(A)) =

Nint(Ncl(A)) € SeNint(SaNcl(A)) (by part (ii)).

Theorem 4.8:

For any neutrosophic subset A of a neutrosophic
topological space (U,T). The following properties are
equivalent:

(1) A € NSa0(U).

(i) H € A S Ncl(Nint(Ncl(H))), for some N-OS H'.
(iii) H € A S SNint(Ncl(H)), for some N-OS H .

(iv) A € SNint(Ncl(Nint(A))).

Proof:

(i) = (ii) Let A € NSoO(U), then A <
Ncl(Nint(Ncl(Nint(A)))) and Nint(A) S A. Hence

H < A S Ncl(Nint(Ncl(H))), where H = Nint(A).
(it) = (iii) Suppose H S A S Ncl(Nint(Ncl(H))), for
some N-OS H.
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But SNint(Ncl(#)) = Ncl(Nint(Ncl(3))) (by lemma
(2.6)).

Then H € A € SNint(Ncl(H)), for some N-OS H .

(iii) = (iv) Suppose that H < A < SNint(Ncl(H)),
for some N-OS H. Since H is a N-OS contained in A.
Then I € Nint(A) = Ncl(H) € Ncl(Nint(A))

= SNint(Ncl(#)) < SNint(Ncl(Nint(A))).

But A € SNint(Ncl(H)) (by hypothesis), then

A S SNint(Ncl(Nint(A))).

(iv) = (i) Let A € SNint(Ncl(Nint(A))). But
SNint(Ncl(Nint(A))) = Ncl(Nint(Ncl(Nint(A))))
(by lemma (2.6)). Hence A € Ncl(Nint(Ncl(Nint(A))))
= A € NSaO ().

Corollary 4.9:

For any neutrosophic subset B of a neutrosophic
topological space (U,T), the following properties are
equivalent:

(i) B € NSaC(W).

(ii) Nint(Ncl(Nint(F))) € B < F, for some F N-CS.

(iii) SNcl(Nint(F)) € B < F, for some F N-CS.

(iv) SNcl(Nint(Ncl(B))) € B.

Proof:

(i) = (ii) Let B € NSaC(U) =
Nint(Ncl(Nint(Ncl(B)))) S B (by corollary (3.12))

and B € Ncl(B). Hence we get
Nint(Ncl(Nint(Ncl(B)))) € B < Ncl(B).

Therefore Nint(Ncl(Nint(F))) € B S F, where F =
Ncl(B).

(it) = (iii) Let Nint(Ncl(Nint(F))) € B € F, for some
F N-CS. But Nint(Ncl(Nint(F))) = SNcl(Nint(F)) (by
lemma (2.6)). Hence SNcl(Nint(F)) € B € F, for some
F N-CS.

(iii) = (iv) Let SNcl(Nint(F)) € B € F, for some F
N-CS. Since B € F (by hypothesis), hence Ncl(B) & F
= Nint(Ncl(B) < Nint(F) = SNcl(Nint(Ncl(B)))

C SNcl(Nint(F)) € B = SNcl(Nint(Ncl(B))) < B.
(iv) = (i) Let SNcl(Nint(Ncl(B))) € B.

But SNcl(Nint(Ncl(B))) = Nint(Ncl(Nint(Ncl(B))))
(by lemma (2.6)). Hence Nint(Ncl(Nint(Ncl(B)))) €
B = B € NSaC(U).

42

5. Conclusion

In this work, we have defined new class of neutro-
sophic open sets called neutrosophic semi-a-open sets and
studied their fundamental properties in neutrosophic topo-
logical spaces. The neutrosophic semi-a-open sets can be
used to derive a new decomposition of neutrosophic continuity,
neutrosophic compactness, and neutrosophic connectedness.
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Abstract. Cross entropy measure is one of the best way to
calculate the divergence of any variable from the priori one
variable. We define a new cross entropy measure under interval
neutrosophic set (INS) environment, which we call IN-cross
entropy measure and prove its basic properties. We also develop
weighted IN-cross entropy measure and investigats its basic
properties. Based on the weighted IN-cross entropy measure, we
develop a novel strategy for multi attribute group decision

making (MAGDM) strategy under interval neutrosophic
environment. The proposed multi attribute group decision
making strategy is compared with the existing cross entropy
measure based strategy in the literature under interval
neutrosophic set environment. Finally, an illustratative example
of multi attribute group decision making problem is solved to
show the feasibility, validity and efficiency of the proposed

MAGDM strategy.

Keywords: Interval neutrosophic set, IN-cross entropy measure, MAGDM strategy.

1. Introduction
In our daily life we frequently meet with the quantitative
measure to take appropriate decision for solving many
problems. Entropy measure provides us a quantitative
measure of two variables. In 1968, Zadeh [1] introduced
fuzzy entropy measure. According to Liu [2], under fuzzy
environment, entropy should meet at least three basic fol-
lowing requirements: the entropy of a crisp number is ze-
ro; the entropy of an equipossible fuzzy variable is max-
imum and the entropy is applicable not only to finite and
infinite cases but also to discrete and continuous cases.
Shang and Jiang [3] proposed a cross entropy measure
and symmetric discrimination measure between fuzzy
sets. Atanassov [4] introduced intuitionistic fuzzy set
(IFS) in 1989, which is the extension of fuzzy set. Some
recent applications of IFS are found in [5-11] in the liter-
ature. Vlachos and Sergiadis [12] defined cross entropy
measure in [FS environment and showed a mathematical
connection between the notions of entropy for fuzzy sets
and IFSs in terms of fuzziness and intuitionism. In 1998,
Smarandache [13] introduced the concept of neutrosophic

set (NS) by introducing truth membership, falsity mem-
bership and indeterminacy membership functions as in-
dependent components and their sum lies ("0, 3%). There-
after, Wang et al. [14] introduced single valued neutro-
sophic set (SVNS) as a subclass of NS. Thereafter, many
researchers paid attention to apply NS and SVNS in
many field of research such as conflict resolution [15],
clustering analysis [16, 17], decision making [18-47], ed-
ucational problem [48, 49], image processing [50, 52],
medical diagnosis [53], optimization [54-59], social prob-
lem [60, 61]. Ye [62] introduced cross entropy measure
in SVNS and applied it to multi criteria decision- making
(MCDM) problems. Ye [63] defined an improved cross
entropy measure for SVNS to overcome drawbacks in
[62]. In 2005, Wang et al. [64] introduced interval neu-
trosophic set (INS) considering truth membership, inde-
terminate membership and falsity membership as interval
number in [0, 1]. Broumi and Smarandache [65] defined
correlation coefficient of INS and proved its basic prop-
erties. Zhang et al. [66] defined correlation coefficient for
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interval neutrosophic number (INN) and applied it iv.

MAGDM problems. Zhang et al. [67] presented an out-
ranking approach for INS and applied its MCDM prob-
lems. Recently, Yu et al. [68] use VIKOR method to
solve MAGDM problem with INN. Ye [69] defined sim-
ilarity measure in INS environment and applied to solve
MCDM problem. Pramanik and Mondal [70] extended
the single valued neutrosophic grey relational analysis
strategy to interval neutrosophic environment and applied
it to multi-attribute decision-making (MADM) problems.
Zhao et al. [71] proposed a MADM strategy based on
generalized weighted aggregation operator with INS.
Zhang et al. [72] proposed a MCDM strategy based on
two interval neutrosophic number aggregation operators.
Sahin [73] defined two cross entropy measures with INS

based on fuzzy cross entropy measure and single valued 2.

neutrosophic cross entropy measure and applied for solv-

ing MCDM problem. Tian et al. [74] proposed a cross en- 3.

tropy measure with INS and TOPSIS for solving MCDM
problems.

Sahin [73], Tian et al. [74] proposed cross entropy
measures under the interval-valued neutrosophic set envi-
ronment, which is suitable for single decision maker on-
ly. So multiple decision maker cannot participate in their
strategies in [73, 74].

The aforementioned applications of cross entropy

[63, 73, 74] can be effective in dealing with neutrosophic 1.

MADM problems. However, they also bear some limita-

tions, which are outlined below: 2.

The strategies [63, 73, 74] are capable of solving
neutrosophic MADM problems.

In the strategies [73, 74], interval-valued neutrosophic 3,

set are transformed to SVNS by suitable transform
operators.

The strategies [63, 73, 74] have a single decision-making 4

structure, and not enough attention is paid to improving

robustness when processing the assessment information. g

Research gap:
MAGDM strategy based on cross entropy measure.
This study answers the following research ques-
tions:
Is it possible to define a new cross entropy measure under
interval-valued neutrosophic set environment that is free
from asymmetrical phenomena?
Is it possible to define a new weighted cross entropy
measure under interval-valued neutrosophic set that is
free from asymmetrical phenomena?
Is it possible to develop a new MAGDM strategy based
on the proposed cross entropy measure under interval-
valued neutrosophic set environment?
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Is it possible to develop a new MAGDM strategy based
on the proposed weighted cross entropy measure under
interval-valued neutrosophic set environment?
Motivation:

The above-mentioned analysis describes the motiva-
tion behind proposing a novel IN-cross entropy-based
strategy for tackling MAGDM under the interval-valued
neutrosophic environment. This study develops a novel
IN-cross entropy-based MAGDM strategy that can deal
with multiple decision-makers and free from the draw-
backs that exist in [63, 72, 73].

The objectives of the paper are:

i. To define a new cross entropy measure under interval-
valued neutrosophic set environment without using any
transformation operator and prove its basic properties,

ii. To define a new weighted cross measure and prove
its basic properties.

iii. To develop a new MAGDM strategy based on
weighted cross entropy measure under interval-valued
neutrosophic set environment.

To fill the research gap, we propose IN-cross entropy-
based MAGDM, which is capable of dealing with multi-
ple decision-makers.

The main contributions of this paper are summa-
rized below:
i. We define a new IN-cross entropy measure and prove
its basic properties. It is straightforward symmetric.
ii. We define a new weighted IN-cross entropy measure
in the single-valued neutrosophic set environment and
prove its basic properties. It is straightforward symmetric
iii. In this paper, we develop a new MAGDM strategy
based on weighted IN cross entropy to solve MAGDM
problems.
iv. In this paper, we solve a MAGDM problem based on
the proposed MAGDM strategy.

The paper unfolds as follows: In section 2, we describe
the basic definitions and operations of SVNS, INS. In
section 3, we present the definition of proposed IN-cross
entropy measure, weighted IN-cross entropy measure and
their basic properties. In section 4, we develop a
MAGDM strategy with the proposed weighted IN-cross
entropy measure. In section 5, we solve a MAGDM prob-
lem to show the feasibility, validity and efficiency of the
proposed strategy. In section 6, we present conclusion
and future direction of this study.
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2. Preliminaries

2.1 Definition: Single valued neutrosophic

set (SVNS) [14]
Assume that U be a space of points (objects) with generic
elements u € U. A SVNS H in U is characterized by a
truth-membership function Ty(u), an indeterminacy-
membership function Iy(u), and a falsity-membership
function Fu(u), where Twu(u), Iu(u), Fu(u) € [0, 1] for each
point u in U. Therefore, a SVNS A can be expressed as H
={u, Tu (u), [ u (v), Fu (u) | u€ U}, whereas, the sums of
Tu(w), Iu(u) and Fu(u) satisfy the condition

0 <Tu(u)+ In(u) + Fu(u) < 3.

2.2 Definition: Interval neutrosophic sets (INSs)
[64]

Assume that U be a space of points (objects) with generic
elements u € U. An INSs J in U is characterized by a truth-
membership measure Tj(u), an indeterminacy-membership
measure [j(u), and a falsity-membership measure Fj(u),
where,

T, @) =[T,w).T5], I; (W) =[I; W, W],

F,w)=[F; ), )] for each point u in U. Therefore, a
INSs J can be expressed as J = {u, [T;w),T;w)],

;). [;@)], [F;w),F;w] | u€ U}. Where,

T3, T3, [;).[5w) , Fy W, Fy @ <[0,1].

2.3 Definition: Inclusion of two INSs [64]
Let J,= {u, [T;, ). Ty, 1, [, W.I3; ], [Fy, W,Fj @] |
ué U} and j, = {u, [T;,.T5, W], [I,@.I,w] ,
(Fj, (u),F]'2 ()] | u€ U} be any two INSs in U, then j,cJ,
iff T, W<T,@, TjW<T,M® ,

I;, W= I, (W), Fy, W=F;, (W, Fj, (W) Fj, (v) for all ue U.
2.4 Definition: Complement of an INS [64]
The complement j° of an INS J = {u, [T;.T;@]I,

L,2T, @

[ (W), Iy (W1, [F;(),F;(w] | u€ U} is defined as follows:

¥o= {u, I-T/@I-Ty@] , [-F@l-Lwl ,
[1-F;(u),1-F, W] |u€ U}.

2.5 Definition: Equality of two INSs [64]
Let J,= {u, [T;, (. Ty, ], [T, @.I;; ], [Fy, W.Fj, @] |
ue U} and j, = {u, [T;,. Ty, I, [Ij, .5, W],
[Fy, (W), Fy, ] | u€ U} be any two INSs in U, then j=J,
iff  T;,W=T,W, T,W=T,w , I,wW=I,w ,

I, =T}, (W, Fj @=F;, ) ,F W=Fj, @ for all ue U.
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3. Definition: IN-cross-entropy measure
Let J; and J; be any two INSs in U = {u;,u,,u;,....,u
Then, the interval neutrosophic cross-entropy measure of
Ji and J» is denoted by CEx (J1, J») and defined as follows:

2 ‘TJ’] (u)) =15, (ui)

5 2
\/1+‘le (ui) +\/1+‘T}2 (ui)
1) *
CEn (1d2)=792 2115, () = (1= 15, ()
2 2
\/l +‘(1 -1y, (ui)) +\/1 +‘(1‘TJ_2 (ui))
2T}, (W)= T, (w) 2}0-1} @) -0- 5, w))
+
2 2 2
‘/1+ ), (wy) +‘/1+ T, (w) ‘/H\(l ~Thw| +\/1+\(1 -, )
2‘131 () ~I;, () 2‘(1 L, )= (-1, (W)
B P B 2 - 2 - 2 ’
1+‘1]1(ui) + 1+‘112(u;) JH‘(I—II} )| + 1+‘(1—IJ2 (uy)
2‘1471 () _I}z (1)) 2‘(1_131 (u,-))—(l—ljz (ur))
+ +
2 2 2
\/1+ I, ) +\/1+ I3 w) ‘/1+\(1— Lyw)f +‘/1+\(1—Ij2 W)
2|75 @)= Fry ) 2| F5 -0 Fr, )
4 +
2 2 2
\/1+\F;1 (wy) +‘/1+\F;2 w) ‘/H\a -Fo )| +‘/l+\<l—F;2 @)
2 ‘F}] (ui) —F}z (ui) N 2 ‘(I’FL () =1~ Fy, (ui))
2 2 2 2
N e B Y T R e )

(1
Theorem 1.

Interval-valued neutrosophic cross entropy CEy (J;,75)
for any two INSsJ, andJ, of U, satisfies the following

properties:

1) CEy (J;,75)>0 .

ii) CEy (J;,J,)=01f and only if

Ty, (W) =Ty, (W), Ty (ui) =Ty, (), I, @)=y, (u),

Hl (uj)= Hz W), Fy, (wp)=F, (), Ffl (uj)= F]+2 (u;) for all
Vu; eU.

iii) CEy (3}, 75)=CEn (J1,73)

iv) CEqy (J1,72)=CE(J5,J))

Proof: i)
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For all values of u, eU, |T}l (wy) |20, |T}2 (ui)|20 5

T3, (W)~ T, (] 20, \/1+|T;, w)| =2o. \/1+|T;2 w)| =20,

=T, w20 A= T5, (wfz0

-1, @p-a- T, @20 m o
mzo

=

> >

2‘(1 =T, w)-0-T,, (u,-))\

.
2 2 .
NS ) +‘/1+‘(1—T‘,2(u,'))

T[>0 o [T @) -Ti, w20 ,

2[5, )= T, )|

‘/H‘T}, w| +‘/1+\T;2 @)

= 7

and

Ty, (u) |20 )

2 2
\/1+|T;1 w| >0, ‘/1+ 5 @) 20,

- W)

>0, |0- T}, )]0,

2
20, 1j-T; | 20,

[0-T;, @)= T}, (W)

2
Vi+la= T3 @y =0

=

2

T )T, )| 21=T, @)= - 7, )|
+
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ii). For all values of u, U,
2|3, (u) = T, (w))
Y1 @+, o
2|(1-75, (@)= (1= T, ()
il =T @ 1o
), ) =T, W)
2[5}, (w) =17, ()
\/1+|T}'1 (ui) |2 +\/1+|ij2 (ui)|2
2/}, ()) = (1= 15, ()
_\/1+ (-5, )| +\/1+|(17T;2 @[
<Ti (w)=T;, (u) .
2|15, (w) ~ 15, (u))
\/l+\1}1 (w) [ +\/l+\132(ui)
201, @)= 0= 1, )

=g @)l 1, @)

T, ) =T, (W)

2

2 2 2 2
e A e R TR AP

Similarly, we can show that

2|1, ) 15, )| 2|11, (w)) =1 Ty, ()

2 2 * 2 2
\/1+|1;1<ui)| +‘/1+|1;2<ui)| S0, @) +,/1+|<1—I;2(ui»|

2115 -0 1 )

>

2

I, () ~ 5, (u)

I

>

2‘(1—F}1 @) -1~ Fy, )

2 _ 2
. 1+‘(1—sz )

2|(1-F}, (w))— (1= Fi, ()

2|3, ()~ Fr, )

2 2
+\/1+\F;2 ()

\/1+ Fs, ()

1+[0-F5, )

and

e

2[F;, ()= F, (w)

2
i ] +1+

2 2 i 2 2 .
T, ) | +\/1+|1;2<ui>| 1+]a-15, ) +,/1+|(1—I}2<ui»|

Hence, we can conclude that CEy (J;,J,)>0.

. >
B 1= @ 1405 @ |

vV
{=1

2

5y w) =15, )

2
+4/1+

2\(1—1}l w))=(0= 15, (um\

I

2 2
Jefa- 15, ) +\/1+‘(1—I;2(u,»))‘

2
132 (u,)|

1;1 (M,)

[\

QHI (ui) = Hz (ui)

2|F3, )= F o, )

2 2
\/1+|F}l(u,-)| +\/1+|F;2<u,-)|
2JA=F @)= (= F 3, )

> 2
\/1+|(1—F}1(u1-))| +\/1+\<1—F;2(ui)>\

& F, w)=Fi, W)

I

2 2
\/1+|(1—F§1 w))| +‘/1+‘(1 -F), (u,.))‘

2

Fy @)= F), )

2
Fy @)

2
Fjl (ul.)| +‘/1+
2‘(1 ~F w)-0-FJ, (ui»\
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< Fj, (w)=Fy, ()
So, CEn (J;,3,)=0if and only if
Ty, W)=Ty, (W), Ty, (@) =Ty, W), Ij, @)=T5, W),
I, ()= TIp, (W), Fy, (@) =Fy, W), Fj, W) =Fj, (u;) Vu; €U.
Hence complete the proof.

iii).Using definition (2.4), we obtain the following
expression:

2115, () = (1= 15, (u)
\/1 =15, @10, @)
2 ‘T}l (ui)— Ty, (ui)

2

c c 1 D
CEn(1.d3)=—7X
4 i=1

2 2
J1+‘T;1 (ui) +\/1+‘T;2 (ui)
24T, )= 75, ) 2| )Ty )
+
2 N 2 . 2 N 2
\/”‘(I’TZ(M)) +\/1+‘(1—sz(“,)) ‘/H‘le(u,») +‘/l+‘TJ2(ui)
2“(1_[;1 w))- 1= I;Z () 2‘]}, (uy) —[}2 ()
2 _ 2 B 2 - 2
Vo= =, w1 @ [, e
2H(1—I}1 W) == I}, W) X 2015, )~ I, )
5 R 2 . 2 R 2
w15, @] e fa=1, | @ [, e
2|A=F, @)~ £ w)) 2|, wo- o )
2 ' 2 2
1o £, +\/1+‘(17F;2 ) ‘/1+\F;] w) +‘/1+\F;2 w)

2 ‘F]’l (ui) — Fj, (lli)‘

2 2
B, ()| +\/1+\F_,+Z ()|

2|(1-F;, (u)) —(1- 7, (u)
\/1+\(1—p;1 @[ + 1o, @ |
. i)t 20T @)= (- T ) .
S35\ @ i@l il @ + /o=t

+
i

275, W) =T, W) 2‘(1_T;1 @)= 0= T3, )
N +

N 2 " 2 N 2 + 2
‘/1+‘le(u[) +J1+sz(uf) 1+a-775 @) n/”\ﬂ—T 7 W)

2|15, ) ~ 17 ) a1, wn-0- 17,00

- 2 _ : 2 - N
1+‘l</1(uf) + 1+‘[J2(ui) 1+‘(171;1(u,-)) + 1+‘(l—1J2(u1))

2/, w) 13, @) 2fo—r wn-0- 15,0

+ 2 + 2 I 2 * ’ )
1+‘1/1(ui) i 1+‘[J2(ui) 1+‘(l—]}1(u;)) + 1+‘(l—ljz(u[))
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2‘(1 —F, @) -0 F7, @)

2|5 )= o )

\/l+\F;l w)

+

2

2 ‘l 2 _
o= 70 +‘/1+\(1—FJZ(M,->>

2
+‘/1+\F;2 w)

2 |F}1 (ui)—Fj, (ui)|
\/l+|F}] @) +\/1+|F;2 ()
2|15, (@)= (1= F}, ()

2 2
o-m @ o ol |
Hence complete the proof.

iv).
CEn(),),)=

2

=CEn (T2 -

2‘TI1 (ui)— Ti, (u;)‘ 2‘(1 _TII (Ui))* (1 —Ti, (u.))

1w + +
n izl<{\/1+TJ|(U|)Z+\/1+T_lz(ui)z ‘/1+(1—T11(u,))2+\/1+(1TJZ(u;))Z}

2|7, )T, ) 2T, == 75, w))
+ +
2 2 2
‘/1+ 7 ) +,/1+ T3, ) ‘/l+\<l 75| +‘/1+ (A-T", @)
2115, ) ~ I3, ) 241, @)= 17, w))
+ +
_ 2 _ 2 2 _ 2
JlJr‘ljl(Mi) +‘/l+‘112(u,-) ‘/]“"(l_[;] (u‘)) +‘/]+‘(1—1.,2(u[))
2|5, ) - 15, ) 2015, @)= 15, )
+ +
2 2 2
‘/1+‘1j1 W) +‘/1+ I, ) ‘/1+‘(1_[;] Wl +‘/1+‘(17132 D)
2|F3, @) Fy ) 2/1-F, - 0- 7,00
N
2 2 2
P o vela- £, @ +‘/1+ 1-F, )
2 ‘FL (u) —Fy, (Ui)‘ 2 ‘(] *F}l (u)) = (1= Fy, (w))
+
2 2 2 2
JH‘F}I (u,)‘ +\/1+ F}, (ui)‘ \/H‘(FFL (ua))‘ +\/l+‘(l—F}z (ui)

2|17, ()= 15, (u1) | 2[(1- 15, ()~ (1-T5, ()| }

1| n +
=2 ,Z,<{ \/1+\sz W’ +\/1+\n, W)’ \/1+\(17ng @) +\/1+\(1—T;1 W)l

2|7, @)= 15, ) 2/ 77, - 0-T5, @)
| +
2 2 2
Pelr o il efa-r,wof -7
2|15, w1, 2= 17, @) -A-1, )
t +
_ 2 _ 2 _ 2 2
‘/H‘I,/z(u,) +‘/1+\1,,]<u,> ‘/H‘(l—]h(ui)) +‘/1+\(1—1;1(u,>)
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2|15, )~ 15, ) 2= 75, -1, )
+ +
2 2 2
‘/1+[;l(ui) +J1+132(M1) Jl‘*"(l_];z(u,-)) +Jl+‘(l_I;](L{j))2
2\F 5, () =F , w) 2= Fr @) -0-F , @)
+ +
2 2 2
\/1+\F;2(u,> +\/1+\F;1<u,> \/1+‘(1—F;2(u,-)) 0= R |
2[F, (@)= Fj, (w) 2[(1- i, ()= (1-F;, ()|
2 2 + 2 2
\/1+‘F}2 ] +\/1+\F;1 () \/1+‘(1—F}z (w)) +\/1+\(17F;1 ()|
=CE (J,.7)).
Hence complete the proof.
3.1 Definition: Weighted IN-cross-entropy
measure

We consider the weight w; (i=1,2,3,...,n)of 4, (i=1,2,

n
3, ...,n) with w; €[0,]and 3" w; =1.

i=1
Then the weighted cross entropy measure between
J, and J, can be defined as follows:

2|75, )~ T3, @)
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i). CEVin(Jy,7,)>0.

il). CE¥in(J,,J,)=0, if and only if

Ty, (W) =Ty, (uy), Tfl (u;)= sz (), I, () =1y, (),

Hl (uj)= Ifz i), Fy, (wp)=Fy, @), FJ+1 (ui):Ffz (u;) for all
Vu; eU.

iil). CEVin(J;.J5)= CE¥iv (J5,J5)

iv). CEVmw (J;,J,)= CEV N (J5,7))

Proof:

i). For all values of u; eU, |le () |20 , |T32 (up) |20 ,

|TJ_1 (u)—Tr, (ui)|20 , "1+|le (ui)|2 >0,
‘/1+|T32(Ui)|2 >0 ,|(1—T;1(ui))|zo, ja- 75, )0,

|0-T5, ()= (= T3, )20,

N 2
‘/1+|(17le(ui))| >0, J1+]d-Ti, ()| 20

2 ‘(14;] () (1- Ty, ()

2[T5, ()= T, (w)

+ ‘/1+‘T’( »)2+‘/1+‘T’( ’)2 1+‘1— 7 ( v)2+‘/1+‘1—T’( v)z
- > 3 2 3y \uj I (Ui ( TJ] ui) ( I uj)
o \/1+|le W) +\/1+|T12(uf)|
CE}){\I(J]sJ2):Z 2w - _ +
= 24T, @)= 75, ) and [rj@) [0 w0 [ @) w20
P13 wof +‘/1+|<1—T’ | : ?
_ 7 nud| | ey | 20, 1+, w20,
+ +
2|7, )T, @) =T, == 75, w)) |(1‘TJ1 (ui))|20’ (1= Tj, (ui>)|20 ; |(1—T11(ua))—(1— ), @) 20,
+ +
N 2 2 2 2 2
el el -z, @l o=, @ ‘/1+|<1—T}1 @) 20, \/1+|<1—T;2 @] >0
2|15, ) - 17, ) 2\(1—1 57 @)= A= L ) N Z‘T}l ()= T}, (w) 2\(1—T}1 ()= (=T, ()
B 2 B 2 - 2 B 2 = +
‘/H\]Jl ) +‘/1+\1,2 ) \/1+\<1—111 ) +‘/1+‘(l—lj2 ) \/“‘TE W +‘/1+‘sz w| ‘/1+‘(1—T;] | +‘/1+‘(1—T}2 |
. . Similarly, we can show that
2115, ) - 15, ) 2415, G- 15, )
+ +
. 2 . 2 . 2 2|15, (wp) —17, (uj 2|(1-15, (uy))— (1= 17, (u)))|
‘/1+‘1J1 (uy) +‘/1+ 17, W) ‘1+‘(1—Ijl (u[))2 \ 1+‘(1—1‘/2 ) |IJ1 (W) —I5, (u )| + |( 1 (ui)) iy | >
L J 2 2 2
Yl [ oyifn @l ool +‘/1+|<1—1;2 W)
2|75 - i ) A-F, w))-0- 3, ) -
+ + >
2 2 2 2
‘/1+F' w) +‘/1+ Fi ) ‘/1+<1— ) +\/1+(1—F‘ W)
| ‘ J1 ‘ J2 ‘ Fo ‘ s 2|I;] (up) —Ifz(ui) 2|(1—1j1 (up))—-(01- 1}2 (uy)) .
[ . . 2 T 2 2 |
2w Fryw| 0 w)-0- Fiw) vl o [+ |- wf - |
2 2 2 - -
\/H\F}l(u,») +\/1+F32(u,-) ,/H\(l—p}l (u,»))2+‘/1+‘(1—F;2(u,»)) ,
2) 2[F5, ()~ F, () 2[1-Fy, ()= Fi, )
Theorem 2. ‘/ INE \/ BUENE 2 _ > [
Interval neutrosophic weighted cross-entropy measure | e, |+ 145 () \/“‘“‘Fi (ui) +\/1+‘(1’FJ2(‘“))

CEY, (1,.1,) satisfies the following properties:
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and
2F, ) 3, () 2Ja-F3, D) - @ £, ()
+ >
2 2 2 2
‘/1+‘|:J+1(ui) +‘/1+ F, () ‘/1+‘(17|:J+1(ui)) +‘/1+‘(1—F}2 (W)
n
Since w;e[0,1], Y w; =1, we have, CE}) (3;,,)>0. Hence
i=1
complete the proof.

i),

273, ()~ T3, (w) 2Ja-T;, (W) - - T3, @)

2

Jefraf i@l ifo-ra @l o, )

< T3 (u) =T, (up)

2|a-T3, D)~ - T3, W)
. -

el [+ fefars, @l

275, ()~ T, (wi)

2
ol -

Ty (u)= T3, (ui)

2

T, ()

2‘(1—|;1(ui))—(17 13, ()

2|15, (u) =15, ()]

Sl [+ i@l fiela- g waf +‘/1+\(1—|32 @[

<y (ui) = 13, (up)

2

15, () =13, (i)

2
‘/l+‘|jl(ui) +‘/l+

1y, (i) =15, (ui)

ety - w) |

+

2 2
15, (i ‘/1+\<1—|;1(ui»\ +‘/1+\(1—|}2(ui))

2

2|, w))- @ F3, (W)

2|3, (u) — Fi, ()|

.
‘/1+\F31 (W)’ +\/1+\F32 W)’ ‘/1+\(1—F31(ui))\2 +‘/1+\(1—F32 (i)

= F\Tl (Ui): FEZ (Ui)

2

2

2[5, ()~ @ B, (i)

Fow-F,w)]

=0

2

2 2 2
‘/1+\F;1(ui)\ +‘/1+\F32(ui)\ ‘/1+\(1—F31(ui)) +‘/1+\(1-F;Z(ui))

< Fy, (u)=Fj, (u) , For all values of u; U .

n
Since, w;€[0,1], > w; =1, w; > 0, we can show that
i-1

CEIN (1, 32) =0 iff T3 (i) =T3, (i), T3, (i) ="T3, (ui)

13 W) =15, (Ui) 13, (ui) =13, (ui)

Fy (i) =Fy, (ui), By (Ui)=F, (ui) and

Ty (Ui)= Ty (Ui) 1y (U) =13, (U;), Fyy (i) =Fa, (uy) Forall u; eu.
iii).

Using definition (2.4), we obtain the following expression:

1/ n
CEIN (LD == Zw;
4\ i1
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2 2

T )T () (T )= (4 T )

+
2 2 2
J1+ +\/1+ \/14- +J1+

TJ’f (ui) TJ’% (ui) 1- TJ’f (u)) (14';g (ui)

2T () =T (ui) 2T (ui) - @= T (D)
el 32 , el 5 +
2 2 2 2
‘]H T*, (ui) +Jl+ T+, (Ui) ‘/l+ (1-T7 (u) +Jl+ (1—T*C (ui))
I 2 I 2
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Hence complete the proof.

4. Multi attribute group decision making strat-
egy using IN-cross entropy measure in in-

) terval neutrosophic set environment

iv).
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In this section we develop a novel MAGDM strategy based
on proposed IN- cross entropy measure.

The MAGDM problem can be consider as follows:

13w =13, )| = {13, (w15, (w)]

[F2 ) = Fi, ()] = [Fa, ) — Fp )| 5

|- T3 W) - @-T3, )] = |25, W) - @-T5 W)
|2 13 () = @ 15, ()| = @ 15, (i) - @15, W) »
|- F5 W)~ @ F, i) = @ F3, (i) - A= Fyp (wi))] -
Then, we obtain

et [ e = e [ + et
Y R Y iy R
Tl [+ el = 1 s [+l
T3 1T ) [F = LT @ LT

2

2
1

: +‘/1+‘|31(Ui)

2
’

O T o T TR e e A PR

Let A={A A, A;... A} and G={G,,G,,Gs,...G,} be the

discrete set of alternatives and attribute respectively. Let
W ={w;,w,,ws,..,w,} be the weight vector of attributes G;

n
..., n), where w;>0 and Yw;=1. Let
j=1

E ={E.,E,Es.....E,} be the set of decision makers who are

G=123,

employ to evaluate the alternative. The weight vector of
the decision makers Ex(k=123,....p) is

determined according to the decision makers expertise,
judgment quality and decision making knowledge.
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Now, we describe the steps of the proposed MAGDM
strategy (See Figure 1.) using weighted IN-cross entropy
measure.

MAGDM strategy using IN-cross entropy measure
Step: 1. Formulate the decision matrices

For MAGDM with INSs information, the rating values of
the alternatives A, (i=1,2,3,...,m) on the basis of

critera G;(j=1,2,3....n) by the k-th decision maker can be
expressed in INN as o= < [T, "Tf LTS, LIRS B> (i=
1,2,3,...mj=1,2,3, ...nk=1,2,3,...,p) . We
arrange these rating values of alternatives provided by the
decision makers in matrix form as follows:

G, G, .. G,

kK k k
A apn ap- an

k kK k k
M=l Ay azan an

k k k
Am Aml Am2 Amn

Step: 2. Formulate the weighted aggregated decision
matrix

For obtaining one group decision, we aggregate all
individual decision matrices (M*) to an aggregated

decision matrix (M) using interval-valued neutrosophic
weighted averaging (INNWA) operator ([72]) as follows:
a;=INNWA, (a},a,a}

2 9ijo “’a}? =

ijor ]

(ha; @ hja; Ohya; ©..OL )=
<[1= T Q=TS 1= [ A="TY [ CI)™, 11T,
k=1 d k=1 v k=1 ! k=1 !

LACEY™, [ CF)™] > (4)
i=123,...mj=12,3,...,n;k=1,2,3,..., p).
Therefore, the aggregated decision matrix is defined as
follows:
G, G,..G,
Ap ap ap.. apy
M=|A, a3 ay

o
AL A Amoe- gy

Step: 3. Formulate priori/ ideal decision matrix

In the MAGDM processes, the priori decision matrix is
used to select the best alternatives among the set of
collected feasible alternatives. In this decision making
processes we use the following decision matrix as priori
decision matrix.

Neutrosophic Sets and Systems, 18/2017

G, G, ...G,

* * *

Al ap ap- an

* * *

P=1Ay asan amn

* * *

Am Am1 Am2 Amn

Where, aj= < [1,1],[0,0],[0,0]> for benefit type attributes
and aj=<[0,0],[1,1],[1,1] > for cost type attributes, (i=1, 2,
3,..,m;j=1,2,3 ..., n).

Step: 4. Formulate the weighted IN-cross entropy
matrix

Using equation (2), we calculate weighted cross entropy
value between aggregate matrix and priori matrix. The

cross entropy value can be present in matrix form as
follows:

CEp (A)
CEY\ (A)

INS LS = e | e (7
CEY (An)

Step: 5. Rank the priority

Smaller value of the cross entropy reflect that an
alternative is closer to the ideal alternative. Therefore, the
priority order of all the alternatives can be determined
according to the increasing order of the cross entropy

values CE\ (A)) (1= 1, 2,3, ..., m). Smallest cross entropy

value indicates the best alternative and greatest cross
entropy value indicates the worst alternative.
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Multi attribute group decision making problem <~ Start

Decision making analysis phase

Formulate the decision matrices — Step-1

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
:
Formulate the weighted |
aggregated decision matrix :
|
:

A
Formulate priori/ ideal decision ¢ @ |
matrix :
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

!

Calculate the weighted IN-cross
entropy matrix Step-4

A Step-5

Rank the priority < 1

N

P e —————————————_—_—_—_—_—_—_—_—_—_—_—_—

Figure.1 Decision making procedure of proposed MAGDM method

5. lustrative example 4) Food enterprises (As)

In this section, we provide an illustrative example of 5) Computer software company (As)

MAGDM problems to reflect the validity and efficiency of  On the basis of four attributes namely:

our proposed strategy under INSs environment. 1) Social and political factor (G3)

Now, we solve an illustrative example adapted from [9] for 2) The environmental factor (G2)

cultivation and analysis. A venture capital firm intends to 3) Investment risk factor (Gs)

make evaluation and selection to five enterprises with the 4) The enterprise growth factor (Ga).

investment potential: The investment firm makes a panel of three decision
1) Automobile company (A:) makers E={E;E, E;} having their weights vector

2) Military manufacturing enterprise (A)
3) TV media company (As)
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A {0.42,0.28,0.30} and weight vector of attributes We represent the rating values of alternatives A, (i =
is W ={0.24, 0.25, 0.23, 0.28} . 1, 2, 3, 4, 5) with respects to the attributes G, (j = 1, 2, 3,

The steps of decision making strategy to rank alternatives 4) provided by the decision-makers E, (k =1, 2, 3) in ma-
are presented below:

- . trix form as follows:
Step: 1. Formulate the decision matrices

Decision matrix for E; decision maker
G, G, G, G,
A; <[7,91.[3.4],[.3,4]> <[6,.71.[3,.4],[4,5] > <[6,.71.[2..3],[.2,.4] > <[4,.5],[.3,.4],[.7, .8]>
Mi A, <[6.71.[1.2].[2.3]> <[.7..8].[2,.41.[2..3]> <[7,.9].[5..6],[4,.5]> <[.7,.9],[.1,.2].[.1, .3] > @)
A; <[6,8][2.4][3.4]> <[5,.7],[.3,.41.[.1.2] > <[8,9],[5,.71,[.3,.6]> <[6,.7],[.1,.3],[.2,.3]> | "~~~
A, <[4,5].07,81[6.7]> <[.3.6].[2,.3],[.3,4]> <[6,.7].[.1, .2],[4,.5] > <[4,.5],[.3,.4],[.6,7]>
As <[.7.8],[3.41.[2,.3]> <[4,5],[2.4][3.5]> <[5,.6],[.2.4].[3.4]> <[.7,.9].[.6..7],[.4,.5] >

Decision matrix for , decision maker

Gy G, Gy G4
Ay <[6,71[.1.21[2,.3] > <[.3,.5],[.2,.4].[4.5]> <[.7,.91,[.3,41.[.3,.5] > <[4,.6],[.4,.5],[.2, .3] >
vz | Az <[4.70[2.41[3 41> <[.6,71[2,.3).[3,.4]> <[5, 7111 3] [3 4> <[4,6].[3.4][2 3] > )
A; <[3.6][2,41[.3.4]> <[4,5][2,3],[.3.5]> <[8,9],[2,51,[.3 41> <[5,.6],[3.5],[3.6]>| """
A, <[5.70.03.5].[1.3]> <[5,.6].[1.3],[4,.6]> <[4.7],[.1 41.[3.4] > <[6,.8],[.3,.5],[.3,4] >
A <[6,91,[3.41,[2.3]> <[.3.6].[.3.4],[.2,.5] > <[6,.8],[.3,.5].[.4.6]> <[.3,.5],[.3..4].[4, 5] >
Decision matrix for g, decision maker

G, G, G, G,
A; <[4.71,[1.21,[3.5]> <[3,.6].[2,.4],[.3.4]> <[6,.7],[.2,.41.[3,5]> <[8,.9],[.2,.41.[1 .3]>
vio|Az <[3.6104,51[4 5> <[7.9][1.3][3 4> <[5,7].[2.4][2.3] > <[6,.8].[2,4].[3, 5] > (10)
A; <[7,8],[.1.3],[4,.5]> <[8,.9].[.1.3].[3.4]> <[6,8],[2.31.[3.4]> <[6,.7],[.2.3.[3,4]> | "
A, <[6.91[2,.31[24]> <[5.6],[1.3],[.2.4]> <[3,5],[.1 .2],[.2,.4]> <[5,.7],[.2..3],[.3,5] >
As <[7,8],[.1.31,[2,3]> <[5,.6],[.2,.4],[.1.3] > <[4,.6].[.1.3],[2,4]> <[5,.71,[2,.3].[.3,.5] >
Step: 2. Formulate the weighted aggregated decision matrix
Using equation (4), the aggregated decision matrix is presented below:
Aggregated decision matrix
G, G, Gy Gy
A, <[6,81,[231.[3,.4]> <[5.6],[2 4],[4.4]> <[6,.8],[.2,.3],[2,4]> <[6,7].[3,4].[3, 4]>
A, <[5.71.02,31.[3,.4]> <[.7,.8],[.2,.31,.[.2,.4] > <[6,.8].[2,.4],[.3,.4]> <[6,.8].[2.3],[.2 3]> (11)
A; <[6,.8],[2.41,[3,.4]> <[6.8],[.2.3].[2,.3]> <[8,.9],[.3,5].[.3,.5] > <[6,.7].[.2..3],[.2,.4]> | =~
A, <[5,.71.[4,51[3.5]> <[4,.6],[.1.3],[.3,4] > <[5,.6].[.1, .2].[.3,.4]> <[5,.71.[3..4],[.4,.5] >
As <[7,.8],[.2,41,[2,.3]> <[4,6],[2.4],[.2,.4]> <[5.7,[.2,4][3,4] > <[6,.8].[4,.5],[.4,.5]>
Step: 3. Formulate priori/ ideal decision matrix
Priori/ ideal decision matrix
G, G, G; G,
A, <[11,[0,0],[0,0] > <[1,1],[0,0],[0,0] > <[1,1],[0,0],[0,0]> <[L1],[0,0],[0,0]>

mio| Az <[L[0,01[0,0]> <[L1}[0,0],[0,0]> <[1.1],[0,0],[0,0]> <[1,1],[0,0],(0,0] > (12)
A; <[11,[0,01,[0,0]> <[11,[0,0],[0,0]> <[L1],[0,01,[0,0]> <[14],[0,00,[0,0]>| ~—  TTTTTUTTY
A, <[11],[0,01,[0,0]> <[1],[0,0],[0,0] > <[1,1],[0,0],[0,0] > <[L1],[0,0],[0,0]>
As <[11],[0,01,[0,0] > <[1,1],[0,0],[0,0] > <[1,1],[0,0],[0,0]> <[41],[0,0],[0,0]>
Step: 4. Calculate the weighted IN-cross entropy matrix 0.86
Using equation (2), we calculate the interval neutrosophic 0.77
weighted cross entropy values between ideal matrixes (12) INM B =10.78.envenen (13)
and weighted aggregated decision matrix (11). 0.95
0.90
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Step: 5. Rank the priority

The position of cross entropy values of alternatives
arranging in increasing order is

0.77 < 0.78 < 0.86 < 0.90 < 0.95. Since, smallest
values of cross entropy indicate the alternative is closer to

54

the ideal alternative.  Thus the ranking priority of
alternatives is Az > Az > A; > As > As. Hence, military
manufacturing enterprise (Az) is the best alternative for
investment.

In Figure 2, we draw a bar diagram to represent the cross
entropy values of alternatives which shows that A; is the

1.0 0.95
0.9
0.86
0.8 0.78
o}
=
€ 064
>
Q.
e
=
D 04
(2]
w
o
(&}
0.2 4
0.0 - T T
A1 A2 A3 A4 A5
Alternatives

Figure.2. Bar diagram of alternatives versus cross entropy values of alternatives

2. Conclusion
In this paper we have defined IN-cross entropy measure
in INS environment which is free from all the drawback
of existence cross entropy measures under interval
neutrosophic set environment. We have proved the
basic properties of the cross entropy measures. We have
also defined weighted IN- cross entropy measure and
proved its basic properties. Based on the weighted IN-
cross entropy measure, we have proposed a novel
MAGDM strategy. Finally, we solve a MAGDM
problem to show the feasibility and efficiency of the
proposed MAGDM making strategy. The proposed IN-
cross entropy based MAGDM strategy can be employed
to solve a variety of problems such as logistics center
selection, teacher selection, renewable energy selection,
fault diagnosis, etc.
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Abstract.Neutrosophic set is a generalization of classical set,
fuzzy set, and intuitionistic fuzzy set by employing a degree of
truth (T), a degree of indeterminacy (I), and a degree of
falsehood (F) associated with an element of the dataset. One of
the most essential problems is studying set-theoretic operators in
order to be applied to practical applications. Developing Matlab
toolboxes for computing the operational matrices in neutrosophic
essential to gain more widely-used of
neutrosophic algorithms. In this paper, we propose some
computing procedures in Matlab for neutrosophic operational

environments is

matrices, especially i) computing the single-valued neutrosophic

matrix; ii) determining complement of a single-valued
neutrosophic matrix; iii) computing max-min-min and min-max-
max of two single-valued neutrosophic matrices; v) computing
power of a single-valued neutrosophic matrix; vi) computing
additional operation and subtraction of two single-valued
neutrosophic matrices; and ix) computing transpose of a single-
valued neutrosophic matrix. Numerical examples are given to

illustrate their applicability.

Keywords: Matlab toolbox; Neutrosophic set; Single valued neutrosophic matrices; Set-theoretic operators

1 Introduction

There are many evidences in complex systems that an
event or phenomenon cannot be modeled by a classical set
[11,18]. For instance, the Schrodinger’s Cat Theory says
that the quantum state of a photoncan basically be in more
than one place in the same time, which means that an
element (quantum state) belongs and does not belong to a
set (one place) inthe same time; or an element (quantum
state) belongs to two different sets (two different places)in
the same time [24]. Again, it is hard to judge the truth-
value of a metaphor, or of an ambiguous statement, or of a
social phenomenon which is positive from a standpoint and
negative from another standpoint [24]. The classical
mathematics does not practice any kind ofuncertainty in its
tools, excluding possibly the case of probability, where it
can handle a particular kind of uncertainty called
randomness [11]. Therefore techniques  and
modification of classical tools arerequired to model such
uncertain phenomena [9]. Neutrosophic set (NS) [33] is a
generalization of classical set, fuzzy set, and intuitionistic

new

fuzzy set by employing a degree of truth (T), a degree of

indeterminacy (I), and a degree of falsehood (F) associated
with an element of the dataset proposed in 1998 by
Smarandache. It has been successfully applied to many
fields such as control theory[1], databases [4,5], medical
diagnosis [7], decision making [23],topology [27]and
graph theory [12-21].

NS has many advantages over other preceding sets.
Specifically, triangular fuzzy numbers (TFNs) and
neutrosophic numbers (NNs) are both generalizations of
fuzzy numbers that are each characterized by three
components [33]. TFNs and NNs have been widely used to
represent uncertain and vague information in various areas
such as engineering, medicine, communication science and
decision science. However, NNs are far more accurate and
convenient to be used to represent the uncertainty and
hesitancy that exists in information, as compared to TFNs.
NNs are characterized by three components, each of which
clearly represents the degree of truth membership,
indeterminacy membership and falsity membership of a
NN with respect to an attribute. Therefore, we are able to
tell the belongingness of the NN to the set of attributes that
are being studied, by just looking at its structure. This
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provides a clear, concise and comprehensive method of
representation of the different components of the
membership of the number. This is in contrast to the
structure of the TFN which only provides us with the
maximum, minimum and initial values of the TFN, all of
which can only tell us the path of the TFN, but does not
tell us anything about the degree of non-belongingness of
the TFN with respect to the set of attributes that are being
studied. Furthermore, the structure of the TFN is not able
to capture the hesitancy that naturally exists within the user
in the process of assigning membership values. These
reasons clearly show the advantages of NNs compared to
TFNs.

One of the most essential problems in NS is studying set-
theoretic operators (or operational matrices) in order to be
applied to practical applications. Smarandache [33] and
Wang et al.[41]proposed the concept of single-valued
neutrosophic set and provided its set-theoretic operations
and properties. Broumi and Smarandache [10] proposed
some operations on interval neutrosophic sets (INSs) and
studied their properties. Ye [43] defined the similarity
measures between INSs on the basis of the hamming and
Euclidean distances. Some set theoretic operations such as
union, intersection and complement have also been
proposed by Wang et al. [42].Broumi and Smarandache [8]
also defined the correlation coefficient of interval
neutrosophic set.Liu and Tang [26] presented some new
operational laws for interval neutrosophic sets and studied
their properties. More recent works on operational law and

applications can be retrieved in [9, 24-26, 34, 44-45,47-50].

In practical point of view, developing Matlab toolboxes for
computing the operational matrices in neutrosophic
environments is essential to gain more widely-used of
neutrosophic algorithms and methods. Zahariev [46]
presented a new software package for fuzzy calculus in
MATLAB environment whose main feature is solving
fuzzy linear systems of equations and inequalities in fuzzy
algebra. Peeva and Kyosev[30] developed a library for
fuzzy relational calculus over the fuzzy algebra([0,1],
max,min). The library includes various operations and
compositions with fuzzy relation and intuitionistic fuzzy
solving direct and inverse problem. Recently, Mumtaz et al.
[3] implemented some functions in MATLAB for
computing algebraic neutrosophic measures in medical
diagnosis. Ashbacher [6] analyzed and developed some
computing procedures for neutrosophic operations. Albeanu
[2] described some neutrosophic computational models in

Neutrosophic Sets and Systems, 18/2017

order to identify a set of requirement for software
implementation. Salama et al. [32] developed an Excel
package for calculating neutrosophic data and analyzed
them. Karunambigai and Kalaivani [22] developed a
MATLAB program for computing power of an
intuitionistic fuzzy matrix, strength of connectedness and
index matrix of intuitionistic fuzzy graphs with suitable
examples.

However, the existing Fuzzy Toolboxes in MATLAB does
not propose options to evaluate the operations in
neutrosophic environments. Thus, in this paper, we
propose some computing procedures in Matlab for
neutrosophic operational matrices, especially i) computing
the single-valued neutrosophic matrix; ii) determining
complement of a single-valued neutrosophic matrix; iii)
computing  max-min-min  of single-valued
neutrosophic matrices; iv) computing min-max-max of two

two

single-valued neutrosophic matrices; v) computing power
of a single-valued neutrosophic matrix; vi) computing
additional operation of two single-valued neutrosophic
matrices; vii) computing subtraction of two single-valued
neutrosophic matrices; and viii) computing transpose of a
single-valued neutrosophic matrix. In order to illustrate
their applicability, numerical examples are given and
discussed.

The rest of this paper is organized as follows. Section 2
recalls some basic concepts of Neutrosophic Set. Section 3
presents the computing procedures in Matlab. Section 4
describes the numerical examples. Section 5 delineates
conclusions and further studies of this research.

2 Fundamental and Basic Concepts
Definition 1[31]. Neutrosophic Set(NS)

Let X be a space of points and let x€X . A

neutrosophic set S in X is characterized by a truth
membership function TE , an indeterminacy membership

function [E’ and a falsehood membership function FE L.,
IE and FE are real standard or non-standard subsets of

]0_ . 1+|: . The neutrosophic set can be represented as

Sz{(x,TE(x),IE (x),Fg(x)):xeX}
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The sum of T§ (x),lg (x) and Fg (x) is
0 <T; (x)+1§ (x)-i—Fg (x) <3,
To wuse neutrosophic set in the real life

applications such as engineering and scientific problems, it

is necessary to consider the interval [0,1] instead of

:IO_ 7 [ for technical applications.

Definition 2 [31].Let 4 =(T;,1,,F) and 4, =(T5,1,,F,)

betwo single-valued neutrosophicnumbers. Then, the

operations for NNs are defined as below:

() 4 ® 4, =(T, +T, -1y, L1, §F,)

(i) 4 ® 4 =TT, 1+ 1L, =11, F+F-FF)

(iii) A4 =(1-(1-T)"),I{, )

(iv) 4 =T 1-(1-1)*1-(1-F)") where 1> 0

Definition3[31]. Let 4 =(7,.1,F) be a single-valued
neutrosophic number. Then, the score function s(z;il) , the
accuracy function a(zil) and the certainty function c(;éi] ) of
SVNN are defined as follows:

. ~ 24+T -1, — K
() s(4) = =A==

(i) a(4) =T, F,
(iii) a(4)=1;

Definition 4[31].Let 121 =(1.1,F) and 212 =(1,.1,,E)
betwo single-valued neutrosophic numbers then

(i) A < Ayifs(4) < s(4)

(i) 4 = Ay ifs(4) > s(4)

(iii) 4, = Ayif s(4) = s(4,)

Definition 5 [31]. The unit 0, is defined by one of the
four types:

(0,) Type 1.0, ={<x,(0,0,1) > x e X}

(0,) Type 2.0, = {<x,(0,1,1) > x e X}

(0;) Type 3.0, ={< x,(0,1,0) > x € X}

(04) Type 4.0, = {<x,(0,0,0) > x € X}

Definition 6 [31]. The unit 1, is defined by one of the four

types:
1) Type 1.1, = {<x,(1,0,0) > x € X}

(1,) Type 2.1, ={< x,(1,0,1) > x € X}
(1;) Type 3.1, ={<x,(1,1,0) > x e X}

60

(1,) Type 4.1, ={<x,(1,1,]) > x e X}
lll. Computing procedures for set-theoretic opera-
tions

For the sake of brevity, we use the following
notations to denote the following types of matrices:

° a.m: Membership matrix.
° a.i: Indeterminacy membership matrix.
° a.n: Non-membership matrix.

3.1.Computing the single-valued neutrosophic matrix

The procedure is described as follows.

Function nm out=nm(varargin); S%single
valued neutrosophic matrix class con-
structor.

%A = nm(Am,Ai,An) creates a single val-
ued neutrosophic matrix

% with membership degrees from matrix
Am

% indeterminate membership degrees from
matrix Ai

o

% and non-membership degrees from Ma-
trix An.

% If the new matrix is not neutrosophic

i.e. Am(i,J)+Ai(i,j+An(i,5)>3

o)

% appears warning message,
object will be constructed.

but the new

If

length (varargin) ==

Am = varargin{l}; % Cell array indexing
Al = varargin{2};

An = varargin{3};

end

nm .m=Am;
nm .i=Ai;

nm .n=An;

nm out=class(nm , 'im');

if ~checknm(nm_ out)
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disp('Warning! The created new object
is NOT a Single valued neutrosophic ma-
trix"')

end

3.2. Determining complement of a single-valued
neutrosophic matrix

In the literature, there are two definitions of complement of
neutrosophic sets. They are implemented in this extended
software package. To obtain the complement of a type 1
and type 2 of a single-valued neutrosophic matrix, simple
call of the function named “complement]l.m” or “comple-
ment2.m”.

% maxminmin of two single valued neu-
trosophic matrix A and B

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

%$"B" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=max (A.m,B.m) ;
a.i=min(A.i,B.1i);
a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=complementl (A) ;

[

% complement of typel single valued
neutrosophic matrix A

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=A.n;
a.i=A.1i;
a.n=A.m;

At=nm(a.m,a.i,a.n);

3.4. Computing min-max-max of two single-valued neu-
trosophic matrices

To obtain the min-max max of two single-valued neutro-
sophic matrices, simple call of the following function

named “minmaxmax.m” is needed:

Function At=complement2 (A);

o)

% complement of type2 single valued
neutrosophic matrix A

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=1-A.m;
a.i=1-A.1i;
a.n=1-A.n;

At=nm(a.m,a.i,a.n);

Function At=minmaxmax (A,B) ;

% minmaxmax of two single valued neu-
trosophic matrix A and B

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

%$"B" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=min(A.m,B.m);
a.i=max(A.i,B.1i);

a.n=max (A.n,B.n);

At=nm(a.m,a.i,a.n);

3.3. Computing max-min-min of two single-valued neu-
trosophic matrices

To obtain the max-min min of two single-valued neutro-
sophic matrices, simple call of the following function

named “maxminmin.m” is needed:

3.5. Computing power of a single-valued neutrosophic
matrix

To obtain the power of single-valued neutrosophic matrix,
simple call of the following function named “power.m” is

needed:

Function At=power (A, k);

Function At=maxminmin (A,B);
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$power of single valued neutrosophic
matrix A

[

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

for 1 =2 :k

a.m=(A.m)."k;
a.i=(A.1).%k;
a.m=(A.m)."k;

At=nm(a.m,a.i,a.m);

end

o)

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=min(A.m,B.n);
a.i=(A.1+B.1)/2;
a.n=max(A.n,B.m);

At=nm(a.m,a.i,a.n);

3.6. Computing additional operation of two single-
valued neutrosophic matrices

To obtain the additional operation of two single-valued
neutrosophic soft matrices, simple call of the following

function named “softadd.m” is needed:

3.8. Computing transpose of a single-valued neutro-
sophic matrix

To obtain the power of single-valued neutrosophic matrix,
simple call of the following function named “transpose.m”

is needed:

Function At=softadd(A,B);

[

% addition operations of two single
valued neutrosophic soft matrix A and
B

o)

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=max (A.m,B.m);
a.i=(A.1+B.1)/2;
a.n=min(A.n,B.n);

At=nm(a.m,a.i,a.n);

Function At=transpose (A);

[

% transpose Single valued neutrosophic
matrix A

o

% "A" have to be single valued neutro-
sophic matrix - "nm" object:

a.m=(A.m)"';
a.i=(A.1)"';
a.n=(A.n)"';

At=nm(a.m,a.i,a.n);

3.7. Computing subtraction of two single-valued neu-
trosophic matrices

To obtain the subtraction operation of two single-valued
neutrosophic soft matrices, simple call of the following

function named “softsub.m” is needed:

VI. NUMERICAL EXAMPLES

In this section, we give several examples to illustrate solv-
ing some operations of the single-valued neutrosophic ma-
trices.

Example 1. Input a neutrosophic matrix by a given struc-
ture in the toolbox.

%Enter the degree of membership of A in the variable a.m

>>am=[0.5.5;30.1;3.10;.1.2.1];

Function At=softsub (A,B);

o)

% function st=disp intui (A);

[o)

% substraction operations of two single
valued neutrosophic soft matrix A and
B

%Enter the degree of indterminate-membership of A in
the variable a.i

>>ai=[1.3.2;314;.1.51;1.5.7];

%Enter the degree of non-membership of A in the variable
a.n
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>>an=[0.2.3;40.5;6.10;.3.5.5];
%Enter the degree of membership of Bin the variable b.m
>bm=[0.4.2;40.1;3.20;.3.3.1];

%Enter the degree of indterminate-membership of Bin the
variable b.i

>>bi=[0.5.4:30.5;8.10;.3.2.4];

%Enter the degree of non-membership of Bin the variable
b.n

>>bn=[0.54;30.5;8.10;.3.2.4];
>>A=nm(a.m,a.i,a.n)

%This command returns a matrix A with degree of mem-
bership a.m,degree of indeterminate-membership a.i and
degree of non-membership a.n%

A=

<0.00, 1.00, 0.00><0.50, 0.30, 0.20><0.50, 0.20, 0.30>
<0.30, 0.30, 0.40><0.00, 1.00, 0.00><0.10, 0.40, 0.50>
<0.30, 0.10, 0.60><0.10, 0.50, 0.10><0.00, 1.00, 0.00>
<0.10, 0.10, 0.30><0.20, 0.50, 0.50><0.10, 0.70, 0.50>
>>B=nm(b.m,b.i,b.n)

%This command returns a N matrix B with degree of
membership b.m, degree of indeterminate-membership b.i
and degree of non- membership b.n %

B=

<0.00, 0.00, 0.10><0.40, 0.50, 0.40><0.20, 0.40, 0.30>
<0.40, 0.30, 0.30><0.00, 0.00, 1.00><0.10, 0.50, 0.40>
<0.30, 0.80, 0.10><0.20, 0.10, 0.60><0.00, 0.00, 1.00>

<0.30, 0.30, 0.10><0.30, 0.20, 0.30><0.10, 0.40, 0.60>

Neutrosophic Sets and Systems, 18/2017

>>complement1(A)

% This command returns the complementlof N matrices A

ans =

<0.00, 1.00, 0.00><0.20, 0.30, 0.50><0.30, 0.20, 0.50>
<0.40, 0.30, 0.30><0.00, 1.00, 0.00><0.50, 0.40, 0.10>
<0.60, 0.10, 0.30><0.10, 0.50, 0.10><0.00, 1.00, 0.00>

<0.30, 0.10, 0.10><0.50, 0.50, 0.20><0.50, 0.70, 0.10>

Example 3. Evaluate the complement type 2 of matrix
above

>>complement2(A)

% This command returns the complement2

ans =

<1.00, 0.00, 1.00><0.50, 0.70, 0.80><0.50, 0.80, 0.70>
<0.70, 0.70, 0.60><1.00, 0.00, 1.00><0.90, 0.60, 0.50>
<0.70, 0.90, 0.40><0.90, 0.50, 0.90><1.00, 0.00, 1.00>

<0.90, 0.90, 0.70><0.80, 0.50, 0.50><0.90, 0.30, 0.50>

Example 2. Evaluate the complement type 1 of the follow-

ing matrix:

A=

< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

Example 4. Evaluate the min-max-max and max-min-min
of these matrices:

A=
< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

< 0.00,0.00,0.10 >
< 0.40,0.30,0.30 >
< 0.30,0.80,0.10 >
< 0.30,0.30,0.10 >

< 0.40,0.50,0.40 >
< 0.00,0.00,1.00 >
< 0.20,0.10,0.60 >
< 0.30,0.20,0.30 >

< 0.20,0.40,0.30 >
< 0.10,0.50,0.40 >
< 0.00,0.00,1.00 >
< 0.10,0.40,0.60 >

>>minmaxmax(A,B)
% This command returns the min-max-max

ans =
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<0.00, 1.00, 0.10><0.40, 0.50, 0.40><0.20, 0.40, 0.30>
<0.30, 0.30, 0.40><0.00, 1.00, 1.00><0.10, 0.50, 0.50>
<0.30, 0.80, 0.60><0.10, 0.50, 0.60><0.00, 1.00, 1.00>

<0.10, 0.30, 0.30><0.20, 0.50, 0.50><0.10, 0.70, 0.60>

>>maxminmin(A,B)

% This command returns the max-min-min

ans =

<0.00, 0.00, 0.00><0.50, 0.30, 0.20><0.50, 0.20, 0.30>
<0.40, 0.30, 0.30><0.00, 0.00, 0.00><0.10, 0.40, 0.40>
<0.30, 0.10, 0.10><0.20, 0.10, 0.10><0.00, 0.00, 0.00>

<0.30, 0.10, 0.10><0.30, 0.20, 0.30><0.10, 0.40, 0.50>

<0.10, 0.45, 0.60><0.10, 0.30, 0.20><0.00, 0.50, 0.00>

<0.10, 0.20, 0.30><0.20, 0.35, 0.50><0.10, 0.55, 0.50>

Example 6. Return the transpose of the matrix below:
A=

< 0.00,1.00,0.00 >
< 0.40,0.30,0.30 >
< 0.60,0.10,0.30 >
< 0.30,0.10,0.10 >

< 0.20,0.30,0.50 >
< 0.00,1.00,0.00 >
< 0.10,0.50,0.10 >
< 0.50,0.50,0.20 >

< 0.30,0.20,0.50 >
< 0.50,0.40,0.10 >
< 0.00,1.00,0.00 >
< 0.50,0.70,0.10 >

Example 5. Evaluate the additional and subtraction opera-
tions of the matrices in Example

>>transpose(A)

% This command returns the power of matrix A .

ans =

<0.00, 1.00, 0.00><0.30, 0.30, 0.40><0.30, 0.10, 0.60><0.10, 0.10, 0.30>

<0.50, 0.30, 0.20><0.00, 1.00, 0.00><0.10, 0.50, 0.10><0.20, 0.50, 0.50>

<0.50, 0.20, 0.30><0.10, 0.40, 0.50><0.00, 1.00, 0.00><0.10, 0.70, 0.50

>>softadd(A,B)

% This command returns the addition of two neutrosophic
matrices A and B

ans =

<0.00, 0.50, 0.00><0.50, 0.40, 0.20><0.50, 0.30, 0.30>
<0.40, 0.30, 0.30><0.00, 0.50, 0.00><0.10, 0.45, 0.40>
<0.30, 0.45, 0.10><0.20, 0.30, 0.10><0.00, 0.50, 0.00>

<0.30, 0.20, 0.10><0.30, 0.35, 0.30><0.10, 0.55, 0.50>

>>softsub(A,B)

% This command returns the substraction of two neutro-
sophic matrices A and B

ans =
<0.00, 0.50, 0.00><0.40, 0.40, 0.40><0.30, 0.30, 0.30>

<0.30, 0.30, 0.40><0.00, 0.50, 0.00><0.10, 0.45, 0.50>

Note: The functions described above enables us to com-
pute the operations on fuzzy matrices and intuitionistic
fuzzy matrices

Fuzzy matrix:

<05,0,0> <0200> <040,0>
Aom <0.3,0,0> <0.3,0,0> <0.8,0,0>
1 <04,00> <0600> <1,0,0>

<0.6,0,0 >

Intuitionisticfuzzy matrix:

<050,0> <0.200>

Aps=
<0.5,0,02> <0.2001> <04,00.4 >
<0.3,0,02> <03,0,04> <0.8,003>
<04,003> <0.6,008> <0.3,00.5>
<0.6,0,05> <0.5,009> <0.200.2>
CONCLUSION

This paper aimed to propose some new computing
procedures in Matlab forset-theoretic operations in the
neutrosophic set. The toolbox consists of 8 operations
including forming the single-valued neutrosophic matrix,
computing complement, power and transpose of a single-
valued neutrosophic matrix, calculating the max-min-min,
min-max-max, additional and subtraction operations of two
single-valued neutrosophic matrices.The neutrosophic
software package gives the ability for easy calculation of
operations in associated problems.The high level of user-
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friendliness of the programs and functions also makes it
very convenient to be used, and gives it a higher level of
computational efficiency compared to the existing software
packages for fuzzy calculus. We hope that they will
support researches who are working in the field of
neutrosophic decision making and neutrosophic graph
theory.
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Abstract. The paper presents selection of transportation
companies and their mode of transportation for interval valued
neutrosophic data .The paper focuses on the application of
distance measures to select mode of transportation for
transportation companies. The paper also presents the application
of multi-criteria decision making method using weighted
correlation coefficient and extended TOPSIS for transportation
companies. The multi-criteria decision making problem
(MCDM) is taken in which there are different criteria and
different modes. The selection is done among different modes

and then it is done among four transportation companies in which
data is taken as Interval Valued Neutrosophic Set (IVNS). The
first method is concerned with a multi-criteria fuzzy decision
making method based on weighted correlation coefficients under
interval valued neutrosophic fuzzy environment. The second
method utilizes the extended TOPSIS method to solve the
problem with data as [IVNS and given attribute weights. The
ranking is done and the most appropriate transportation company
with the most appropriate mode is selected. The methods are
illustrated with numerical examples.

Keywords: multi-criteria decision making problem ; Interval Valued Neutrosophic Set (IVNS); weighted correlation coefficients;

TOPSIS; positive ideal solution (PIS).

1 Introduction

Multi criteria decision making (MCDM) problems are
focussed at selecting the best alternative among different
available alternatives with different criteria. There are
different classical methods for different MCDM problems.
In real life due to uncertainties and lack of time and
knowledge decision makers’ preferences are provided as
fuzzy data. Fuzzy set theory was introduced by Zadeh [27].
Intuitionistic fuzzy set (IFS) was introduced as a
generalization of fuzzy set (FS). IFS was introduced by
Atanassov [23] including two membership functions -
membership (or called truth-membership) ( 7( x))and non-
membership (or called falsity-membership) (F( x)), and
satisfying the conditions 7( x), F( x)e[0,1] and 0<T (x) + F
(x) <I.

Atanassov & Gargov [24] introduced the concept of
interval-valued intuitionistic fuzzy sets (IVIFSs) as a
further generalization of IFS. Atanassov [25] also defined
some operational laws of IVIFSs. De et al. [39] applied the
max-min-max composition to medical diagnosis via IFSs.
By following their reasoning, Szmidt & Kacprzyk [6]

applied the distance measures to IFSs in the medical
diagnosis.

The concept of neutrosophic set was introduced as a
generalization of crisp set, fuzzy set [27], IFS [23] by
Smarandache ([7],[9]) .The Indeterminacy function (I) was
added to the two available parameters: Truth (T) and
Falsity (F) membership functions. In neutrosophic set, the
indeterminacy is quantified explicitly and truth-
membership, indeterminacy membership and false-
membership are completely independent. In intuitionistic
fuzzy sets, and the indeterminacy is 1-T (x)-F (x) i.e.
hesitancy or unknown degree by default. In neutrosophy,
the indeterminacy membership (Ia(x))is introduced as a
new subcomponent so as to include the degree to which the
decision maker is not sure. This type of treatment of the
problem was out of scope of IFSs. The single valued
neutrosophic set (SVNS) was introduced for the first time
by Wang et al. [15] in 1998. Wang et al. [15] introduced
the concept of interval valued neutrosophic set (IVNS) and
provided the set-theoretic operators and various properties
of SVNS and IVNS. SVNS and IVNS present uncertainty,
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imprecise, inconsistent and information
existing in real world.

Bustince & Burillo[13] proposed the concept of correlation
and correlation coefficient of IVIFSs along with their
properties. They also introduced two decomposition
theorems — one in terms of the correlation of interval
valued fuzzy sets and entropy of IFS and the other theorem
is in terms of correlation of IFSs. Luo et al.[44] proposed
a multi-criteria fuzzy decision-making method based on
weighted correlation coefficients under interval-valued
intuitionistic fuzzy environment with known criterion
weight information. Wang et al. [47] proposed an approach
to MADM with incomplete attribute weight information
where individual assessments are provided as IVIFSs.
Elhassouny, and Smarandache[1] used simplified TOPSIS
for neutrosophic MCDM problems. Bausys et al. [35] and
Bausys et al. [36]) used COPRAS and  VIKOR
respectively to solve neutrosophic MCDM problems. Ye
[20] proposed MADM method with completely unknown
weight information. Based on the correlation coefficient
studied by Gerstenkorn & Manko [42], Ye [18],[19]) of
IVIFSs, Park et al. ([3],[17]) investigated the group
decision making problems in which the information about
attribute weights is partially known. Ye [20] developed the
MCDM method using the correlation coefficient under
single-valued neutrosophic environment. Ye [22] also de-
veloped an extended TOPSIS method for MADM based on
single valued neutrosophic linguistic numbers. Entropy
based grey relational analysis method was used for
MADM under single valued neutrosophic assessments by
Biswas et al. [30]. An MCDM method based on single-
valued trapezoidal neutrosophic preference relations with
complete weight information was applied by Liang, et al.
[37]. Neutrosophic MADM problems with unknown
weight information was solved by Biswas et al. [31]. Mon-
dal and Pramanik [26] Pramanik et al. [41] investigated
neutrosophic tangent similarity measure and hybrid vector
similarity measures respectively and their application to
MADM. Sahin [38] also observed cross-entropy measure
on interval neutrosophic sets and its applications in
MCDM. Xu et al. [5] extended TODIM method for single-
valued neutrosophic MADM. Z. Zhang and C. Wu [51]
also developed a novel method for single-valued
neutrosophic MCDM with incomplete weight information.

incomplete

The technique for order of preference by similarity to ideal
solution (TOPSIS) is a well-known method for solving de-
cision making problems proposed by Hwang & Yoon [2].
Lai et al. [46] applied the concept of TOPSIS on multiple
objective decision making (MODM) problems. Abo- Sinha
& Amer [28] extended TOPSIS method for solving multi-
objective large-scale nonlinear programming problems.
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Opricovic & Tzeng [40] conducted a comparative analysis
of TOPSIS and VIKOR. Many researchers (Chi & Liu
[33], Jahanshaloo et al. [10], [11], Kour et al. [4] ; Wang
& Lee[47], Opricovic & Tzeng [40] extended TOPSIS ap-
proach to fuzzy environment as a natural generalization of
TOPSIS models. Chen & Tsao [43] extended the concept
of TOPSIS to develop a method for solving MADM prob-
lems with interval-valued fuzzy data. Xu [49] developed
some geometric aggregation operators, such as the inter-
val-valued intuitionistic fuzzy geometric (IIFG) operator
and interval-valued intuitionistic fuzzy weighted geometric
(IIFWG) operator and applied them to multiple attribute
group decision making (MAGDM) with interval-valued in-
tuitionistic fuzzy information. Xu & Chen [50] and Wei &
Wang[12] respectively developed some geometric aggre-
gation operators, such as the interval-valued intuitionistic
fuzzy ordered weighted geometric (IIFOWGQG) operator and
interval-valued intuitionistic fuzzy hybrid geometric
(IIFHG) operator and applied them to MAGDM with in-
terval-valued intuitionistic fuzzy information. However,
they used the IIFWG, IIFWOG and ITFHG operators in the
situation where the information about attribute weights is
completely known. Chi & Liu [33] extended TOPSIS to
IVNS environment in which the attribute weights are un-
known and the attribute values are presented in terms of
IVNS.

Kulak & Kahraman [29] studied a transportation company
selection problem using axiomatic design and analytic
hierarchy process (AHP) with partially known weight
information in fuzzy environment. Kour et al. [4] applied
the two methods on multi-criteria fuzzy decision making
problems with IVIFS - the first one using correlation
coefficient with unknown weights and the second one
using TOPSIS method with known weights for the
selection of transportation companies. TOPSIS method for
MADM under single-valued neutrosophic environment
was applied by Biswas et al. [32].

The present paper introduces the relation between the
different criteria and different modes of transportation to
select mode using distance measures for transportation
companies for interval valued neutrosophic data. The
present paper also extended the application of multi-
criteria fuzzy decision making method with IVNSs to
selection of transportation companies with given weights.
A transportation company selection problem is taken with
four different transportation companies and the data for the
different criteria ad modes are taken as IVNSs.

The application of distance measures is done to select the
best mode of transportation for transportation companies
for interval valued neutrosophic data after calculating the
minimum distance between the transportation companies
and the modes. Then the selection is done for the best
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transportation company. The first method involves
determining correlation coefficient between an alternative
and the ideal alternative. The ranking is then done using
this coefficient and the best alternative is selected. The
second method focuses the extended TOPSIS method. The
weighted collective interval valued neutrosophic decision
matrix is constructed. Then the interval valued
neutrosophic PIS and NIS are determined using a defined
score function. The distance measures are used to calculate
the relative closeness of each alternative to the interval
valued neutrosophic PIS. The alternatives are ranked and
the best one is selected.

No other authors till date have considered the concept
of correlation coefficient for IVNSs. Further to find the
PIS and NIS for TOPSIS, a new score function has been
introduced. And both the methods have been applied to
solve a new type of transportation company selection
problem in which mode selection is also introduced which
has not been done by any other author before.

2 Basic Concept
2.1 Neutrosophic Set

Let X be a space of points (objects), with a
generic element in X denoted by x. A neutrosophic set A in
X is characterized by a truth-membership function 77, (x) ,

an indeterminacy-membership function / (x) , and a

falsity-membership function /,(x) as by Smarandache

[7].

A={xT,(x),1,(x),F,(x)|,xe X}
The functions 7°,(x) , /,(x) , and F,(x) are real
1* [. That
"1, (x): X €0, 1"[,and F,(x):

standard or non-standard subsets of]0" ,
is7,(x): Xel0,
Xelo, 1"
There is no restriction on the sum of 77, (x), 7 ,(x) , and
F,(x),so 0 <sup 7,(x) +sup [ ,(x) + sup F,(x)
<3".

2.2 Complement of Neutrosophic set

The complement of a neutrosophic set A is denoted by
¢ A) and is defined by Smarandache[7] as 7 (x) = {17}

—T,(x),1(x) ={1"} - 1,(x),and F(x)={I"} -
F,(x) forevery x in X.

2.3 Subset of Neutrosophic set

A neutrosophic set A is contained in the other
neutrosophic set B, A ¢ B if and only if inf 7', (x) <

inf 7, (x), sup 7,(x) < sup7,(x), inf [ (x) >

Neutrosophic Sets and Systems, 18/2017

inf 7,(x), sup 7 ,(x) > sup /,(x), inf F (x) >
inf F(x), and sup F,(x) = sup Fj(x) for every
x in X (Smarandache[7]).

2.4 Single Valued Neutrosophic Set (SVNS)

A SVNS [15] A in X is characterized by a truth-
membership  function 7,(x) , an indeterminacy-

membership function / ,(x) , and a falsity-membership
function F,(x) for each point x in X, 7,(x), I ,(x),
F,(x) €[0,1].

When X is continuous, an SVNS A can be written as

4= [LOLWOLEGD

X
When X is discrete, an SVNS A can be written as
A :Zn:<TA(xi)9IA(xi)DFA(xi)> X
i=1 X

1

2.5 Interval Valued Neutrosophic Set (IVNS)

eX

i

Let X be a universe of discourse, with a generic
element in X denoted by x. An interval neutrosophic set A

defined by Wang et al[l4].
as  A={x,T,(x),!,(x),F,(x)],xe X}

in X s
where,
T,(x),I ,(x),F  (x)are the truth-membership function,

indeterminacy-membership function, and the falsity

membership function, respectively. For each point x in X,
T,(x),1,(x),F,(x)=[0.1]
0<sup(7,(x))+sup({,(x))+sup(f,(x)<3

we have and

For convenience, we take an interval-valued neutrosophic
set (IVNS), 4 =([a,b],[c,d][e, f]) where
[a.b].[c.d].[e, f1<[01].0<b+d + [ <3

2.6 Algebraic Rules of IVNS (Wang et al.[14])
Let

A=(a,,b,)[c,.d, e, /1)

E:([az,bz],[czad2]9[€29f2])
be two IVNS,then

and
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The complement of

A= ([a11 bl]: [C1- dl]! [el’ fl])
is given by
A° =([e,, f,],[1—c,1—d,].[a,.b])

A®B =([a, +a, —a,a,,b, +b, —b,b,],
[C1C2’d1d2]1[e162’ fl fz])
A®B =([a,a,,bb,],[c, +¢c, —c,C,,

2. d,+d,—d,d,][e +e, —ee,,
f,+f,— £, £,]
nA=(1-(@1-a)"1-(@1-b)"][c,",d,"]
J[e", f,"),n>0

s A"=([a" b1~ L-¢)"1-(1-d,)"]
L-@-e)"'1-@2-1)"]),n>0
2.7 Score of IVNS
Let R =(F; ), Where
ﬁj :[aij’bij]’[cij’dij]l[eij’ fij]the
interval - valued neutrosophic decision matrix be.
Then S =(S;),, is defined as the score matrix of

collective

R = (I ) . where
s; = 5(1) = 1(2+ a,—C;—e +b,—d, - f,).i=12... n)
3

M
And S(F,J) is called the score of Fij
Example2.7.1Let

A = ([0.3,0.4], [0.1,0.2], [0.5,0.7])
B = ([0.4,0.5], [0.2,0.3], [0.5,0.6])
Then by Definition 2.7,

be two INVSs.

s(Z\j)=;(2+0.3—0.1—0.5+0.4—0.2—0.7))=0.4

s(B,) = ;(2+O.4—O.2—O.5+O.5—O.3—O.6)
~0.433

Hence, S(;\ij) < 5(§ij)

70

Properties2.7.2 Let I, =[ay,b;1.[c;,d; L.[e;, ;]
be an INVS. Then the score of Fij has some properties as

follows:
(i) s(r;) =0 ifand only if

aq; +b; =c; +d; +¢; +f; -2
(i) s(F;)=1ifand only if

a; +b; =c; +d;; +e; + f;; +1.
(iii) s(I;) =—1 ifand only

ifa; +b; =c; +d; +e; + f; —1.

2.8 Distance between two IVNS
Let X = ([ail’ bil]i [Cil' dil]! [eil fil]) and
Y =([a;,,b;,1,[c;,,d;, 1, [€;, f;,]) be two IVNSs. The

normalized Hamming distance between X and Y is defined
by Chi & Liu [33] as

l d,—ad,|+ b —b. +|C, —C., |+
dH(X,Y):_Zq 1= 3 [+by =Dy [ +1, =Gy
6nZld, —d, [+e, -6, 4] f, - fi, ]

@

3. Problem description and methodology
3.1Problem Description

The present paper deals with the selection of transpor-
tation company and their mode of transportation in interval
valued neutrosophic environment. At first the neutrosophic
relation Q from a set of different transportation
companies T to a set of different criteria C like transporta-
tion cost, defective rate, tardiness rate, flexibility, etc. is
considered. Then it follows the second relation R from the
set of different criteria C to a set of different mode M of
transportation like roadways, railways, waterways and air-
ways. The composition of the two neutrosophic relation Q
and R is the relation S from the set of transportation com-
panies to the set of different modes which gives the best
mode of transportation for each of the transportation com-
panies. Finally, the best transportation company is to be
selected among the given different companies. The prob-
lem can be solved by different methods available in this
context taking into account the different criteria. The pre-
sent paper focuses on two methods. The first one involves
weighted correlation coefficient method. The second one
involves extended TOPSIS method. The different weights
are given for different criteria.
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3.2 Methodology

A. Application of normalized hamming distance
for interval valued neutrosophic set

Let there be a neutrosophic relation X: A; ->B;
and Y: Bj ->Cyx. Using the distance between two IVNSs in
Definition 2.8 the normalized Hamming distance for all the
elements of the A; from the Cy is equal to

(mm) ﬂJL( DI+ g (A) = 1 (€[ +
zm Cl+v (A) v, )]+
P A) - ( DI+ (A) -y (€)) )

B. Multi-criteria decision making method based on
weighted correlation coefficients in interval valued
neutrosophic environment

Let A ={A,A A, A Jbe a set of alternatives
and letC ={C,,C,,C;,........ , C,}be a set of criteria.
An alternative A, is represented by the following IVNS:

A :{(Cj![:uAiL(Cj)huAiU (Cj)]’[UAiL(Cj)YUAiU (Cj)]
[rAiL(Cj)!rAiU (Cj)]:cj eC}
where 0< z2,, (C;) +0,, (C;) <1 p, (C;) 20

UAL(CJ-) >0j=1;2;...;nand i=1,2,...m

The IVNS that consists of Inter-
Va|5,UA(C') :[aij ’bij] Up, (Cj) :[Cij’dij]

r, (C;)=I[e;, f;]for C,; eCis denoted
by a; = ([8;,0; ] [C;;, d; 1. [, ;1) for  conven-
ience.

We can express an interval-valued neutrosophic decision
matrix D = (¢;)

Ye ([18],[19]) established a model for weighted correlation
coefficient between each alternative and the ideal
alternative for single valued neutrosophic sets (SVNSs)
using known weights of the criterion. Though the ideal
alternative does not exist in real world, it does provide a
useful theoretical construct against which to evaluate
alternatives. Ye ([18], [19]) defined the ideal alternative for

SUNSsasa = (aIJ 0y C;) =(1,0,0).

Neutrosophic Sets and Systems, 18/2017

If the information about weight w; of the criterion Cj (j=
1,2,...,n) is completely known, for determining the criterion
weight from the decision matrix D we can establish an
exact model for the weighted correlation coefficient
between an alternative Ai and the ideal alternative A*
represented by the IVNS as in Equation (4).We define the

ideal alternative A as the
IVNS
= ([a;,b;1.[cy, d; 1 [y, ;D = ([L4,[0,0], [0,0])
z”:w[aual+b b+, +d, 0] e+ 0]
Wi(AA)= -
JZW[a” b re v ve 4 f \/Zw[a bl 4ot +d7 el 417
4)

Then the bigger the value of the weighted correlation
coefficient W, is, the better the alternative A is. Therefore

all the alternatives can be ranked according to the value of
the weighted correlation coefficients so that the best
alternative can be selected.

C. TOPSIS method to solve the multi-attribute decision
making problem with the given information about attribute
weights in interval valued neutrosophic environment

In the situations where the information about weights is
completely known, that is, the weights wi = (w1, Wy, ...,
Wm)T of the C; (j =1,2,...,n) can be completely determined

in advance, then we can construct the weighted collective
interval-valued neutrosophic decision matrix

R™ = (F;) py where

ﬁj*zwiﬁj ={[1_(1_a ) ( ) ][CU ’du ][elj U] ]}

®)

is the weighted IVNS, i=1,2,..m;j=12,..,n, and w; is

weight of the attribute u; such that W; 2 Oand Zwi =1.
i=1
Now we denote by
—([a”, Ij] [c”,d”] [e”, fIJ Jwhere i=1; 2;..
i=12;...; (6)
LetJ, be a collection of benefit attributes (i.e., the larger
ui, the greater preference) and J, be a collection of cost
attributes (i.e., the smaller u; , the greater preference). The
and the

are de-

interval-valued neutrosophic PIS, denoted by A*,
interval-valued neutrosophic NIS, denoted by A™,
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fined as follows:

A ={{c,, (m?x rije Jl),(miin rije Jz)}:m
i=12..,n} =@F 6, T

A" ={{c;,(minT; :ied,),(maxT; :ie Jz)}:(s)
i=12,..,n} =, e, )T

where [, = ([a",b],[c;",d." ][e;", ;" Jand
r-=(la ,b 1[c ,d 1e , f," 1.i=1,2,.m

Burillo & Bustince [13] method has been extended to find
the separation measures for interval valued intuitionistic
fuzzy numbers in Park et al. [17] and in Kour et al, [4]. The
extension of this in IVNS has been used here to find sepa-
ration measures based on the Hamming distance.

+

1 ‘a;—af+b;—bi*+ci*j—ci +
Sidfz z X X i €))
65| |d; —df | +]e; —er|+|f —
“_ 1ol @ —a|+ bij —b |+ C;i —Cr 10)
o BT| [d] - | +[es —e] +|f -

The relative closeness of an alternative A, with respective

to interval-valued neutrosophic PIS A" is defined as the
following:

b =——" wherei=1,2,....m
ST +S;

+

(11)

The bigger the closeness coefficientcr, the better the al-
ternative A, will be, as the alternative A, is closer to the

interval-valued neutrosophic PIS A ,. Therefore, the alter-
natives Ai (i = 1, 2 ,..., m) can be ranked according to the
closeness coefficients so that the best alternative can be se-
lected.

3.3 Solution Procedure:

A. Algorithm for the method based on normalized
hamming distance

LetT ={T,,T,,T;,...., T }be a set of transportation
companies, C ={C,,C,,C,,........ , C,} be a set of cri-
teria and M ={M;,M,,M;,...., M }be a set of
modes of transportation where each of the C j of T, and
M  is represented by IVNS.
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C(m) = ([.ujL(Ti)a/—lju (-ri)]1[UjL(—ri)YUjU (-ri)]v[rLj(ri)’rUj(-ri)])

M, :([ﬂjL(Mk)hujU(Mk)]r[UjL(Mk)lUjU(M )]r[rLj(Mk)vruj(Mk)])
Using the distance between two IVNSs in Definition 2.8

the Normalized Hamming distance for all the criteria of the
i-th transportation company from th?sli_th modes is equal
to

(‘”jL(Ti)_ﬂjL(Mk)|+|ﬂju(Ti)_/uju(Mk)|+|UjL(Ti)_UjL(Mk)|+

1 5
d“(CU‘)‘M“):30§|um—um(Mk)|+|ru(ri)—riL(Mk>|+\rUj(ri)—r,-U(Mk)D

(12)
The minimum distance determines the appropriate mode of
each transportation company.

B. Algorithm for the method based on weighted corre-
lation coefficients using given weights

Step 1: Calculate the weighted correlation coefficient
W (A", A) (i =1,2,...m) by using Eq. (4).

Step 2: Rank the alternatives according to the obtained cor-
relation coefficients, and then obtain the best choice.

C. Algorithm for TOPSIS method with the given in-
formation about attribute weights

Stepl. Calculate the weighted collective interval-valued
neutrosophic decision matrix R™ = (F;j*)mn

of the

collective interval-valued neutrosophic decision matrix R
using Equation(1 ) from Definition 2.7.

Step 2: Calculate the score matrix S = (S;;) 1,

Step3. Determine the interval-valued neutrosophic PIS A*,

and interval-valued neutrosophic NIS A™using Equa-
tions(7) , (8) and score matrix S obtained above in Step 2 .

Step 4.Calculate the separation measures S. andS. of
each alternative A, (i = 1,2,..,m) from interval-valued
neutrosophic PIS A" and interval-valued neutrosophic
NIS A", respectively using Equations (9) and (10).

Step 5: Calculate the relative closeness C;” of each alter-
native A, (i =1,2,..m) to the interval-valued neutrosophic

PIS A using Equation(11).
Table 1. Data of transportation companies and their criteria in
form of interval valued neutrosophic fuzzy numbers

Step 6. Rank the alternatives A, (i = 1,2,...,m), according
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to the relative closeness to the interval-valued neutrosophic
PIS A" and then select the most desirable one (s).

4. Numerical lllustration:
4.1 Example

An international company needs a freight transporta-
tion company to carry its goods. The company determined
four possible transportation companies. The criteria con-
sidered in the selection process are transportation costs, de-
fective rate, tardiness rate, flexibility and documentation
ability. Transportation cost is the cost to carry one ton
along one kilometre. Tardiness rate is computed as ‘‘the
number of days delayed/the number of days expected for
delivery. In Kulak & Kahraman [29], Transportation costs,
defective rate and tardiness rate are taken to be crisp varia-
bles and the other criteria ‘‘flexibility’’ and ‘‘documenta-
tion ability’” are taken as linguistic variables just to find
only the best transportation company. In Kour et al. [4], the
problem is taken in Interval valued Intuitionistic fuzzy en-
vironment in which each element of the decision matrix is
taken as interval valued intuitionistic fuzzy numbers and
the best appropriate transportation company is selected.

In the present paper, the problem is modified as the best
transportation company and also their mode of transporta-
tion is selected under interval valued neutrosophic

Neutrosophic Sets and Systems, 18/2017

Let the set of transportation companies be T = {TC1, TC2,
TC3, TC4}. Let the set of different criteria of the transpor-
tation companies be denoted by C = {Transportation cost
(TC), Defective rate (DR), Tardiness rate (TR), Flexibility
(F), Documentation ability (DA)}. The data of degree of
satisfaction, indeterminacy and rejection of each criterion
by each transportation company is represented by an VNS
in Table 1. The IVNS is denoted by a set of Inter-
ValsTi =(C, 7[:uTiLhuT,U ]7[UTiL1UTiU ][rT,L1 Iru It

Cj € C) = ([aijlbij]V[Cij ) dij]v[eijv fij])

Table 2. Data of criteria of transportation companies and their
mode of transportation in form of interval valued neutrosophic

fuzzy numbers

The IVNS is usually elicited from the evaluated score to
which the alternative TC; satisfies the criterion Cj by
means of a score law and data processing or from
appropriate membership functions in practice. Therefore,

Alter- Criteria Alter- Mode of transportation
native [Transporta- |Defective Tardiness |Flexibility |Documenta- na'tiVGf Road- Railways Water- Airways
Trans [tion Rate Rate tion Criteria ways ways
porta- |Gost Abilty Trans- | ([0.7,0.85 | ([0.8,0.9], | ([0.5,0.6], | ([0.3,0.4],
' porta- | ], [0.02,0.03] | [0.1,0.2] , | [0.2,0.3] ,
fon tion [0.02,0.03 |, [0.3,0.35]) | [0.4,0.5])
Com- Cost 1, [0.01,0.04]
pa- [0.1,0.15] |)
nies Defec- | ([0.3,0.4], | ([0.6,0.7], | ([0.65,0.75 | ([0.8,0.9],
Trans.|([0.7,0.8],[0. |((0.8,0.85], |([0.3,0.4],[ |([0.6,0.8],[ [([0.4,0.5], tive [0.1,0.2], |[0.03,0.04] |1, [0.01,0.02]
Comp[01,0.02],[0.2,[0.02,0.03] ,0.2,0.4] |0.01,0.02], [0.1,0.3] Rate [05.08]) |, [0.02,0.08] | ,
[0.2,0.25]) |, [0.01,0.1])
A |04) [0.3,05)  |[0.1,0.2]) [0.2,0.3]) [[0.1,0.2]) 0.1,0.2)
Trans.|([0.8,0.85],[0 |([0.01,0.03],[ [([0.8,0.92], [((0.01,0.02[([0.85,0.9], || Tardi- | ([0.3,0.5], | ([0.5,0.65], | ({0.4,0.5], | ([0.75,0.85
Comp|.01,0.03],[0.20.8,0.9],  |[0.01,0.04] [},[0.4,0.6],[ [0.01,0.02] || Ness [0.02,0.04 | [0.01,0.02] | [0.01,0.09] | I,
Rate ] . , [0.02,0.03]
2 103) [0.3,05)  |[0.20.3]) [0.2,0.3]) [0.2,0.4]) 04045 | 102025) | [02.03) |,
Trans.|([0.85,0.89],[ [([0-4,0.6], _ |([0.9,0.95],([0.9,0.92], |(10.7,0.8], ) [0.1,0.15])
Comp|0.02,0.051,[0./[0.1,0.3],  |{0.01,0.02]|[0.01,0.03]|[0.02,0.04], || Flexibil- | ([0.8,0.9], | ([0.6,0.7], | ([0.5,0.6], | ([0.4,0.5],
ity [0.2,0.3], |[0.1,0.2] , | [0.01,0.02] | [0.02,0.04]
3 [3,05) [0.2,04])  |[0.3,0.4]) | [0.3,0.5]) [[0.2,0.4]) [0.01.008 | [0.2025) | . ,
Trans.[([0.8,0.9], [(0.2,04],  |(0.2,0.3[ ([0.5,0.6],[ [[0.7,0.8], ) [0.15,0.2]) | [0.2,0.3])
Comp [[0.01,0.02],[0[[0.6,0.7],  |0.3,0.6],[0. [0.1,0.2],[0. [[0.3,0.4], Docu- | ([0.6,0.7], | ([0.65,0.8], | ([0.7,0.8], | ([0.75,0.85
menta- | [0.01,0.02 | [0.03,0.05] | [0.2,04], |],
4 |2,05) [0304]) [304) [203)  [0.020.1) | tion 1 , [0.10.15]) | [0.03,0.04]
environment. Ability | [0.2,0.25] | [0.15,0.2]) :
) [0.05,0.1])
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we can express an interval-valued neutrosophic decision
matrix D = (Otij)

Similarly let the set of different transportation modes is
denoted by M = {Roadways, Railways, Waterways, Air-
ways}. The data of degree of satisfaction, indeterminacy
and rejection of each criterion for each mode is represented
by an IVNS in Table 2.

Ci =W, Lac i tiul [og, L 0 u IlTe Lo e u ]

Mk € M) = ([ajkabjk]v [Cjk'djk]! [ejk! fjk])
And it can be denoted by an interval-valued neutrosophic

mxn *

decision matrix D’ = (ﬂjk ) o -

The weights are taken as w1=0.38, w»=0.17, w3=0.21,
w,=0.24, ws=0.00
4.2 Solution

The given problem is a multi criteria decision making
problem in interval valued neutrosophic environment and
is solved in two sections. The first section follows up with
selecting the best mode of transportation for each transpor-
tation company using distance measures. The second sec-
tion includes the selection of the most appropriate trans-
portation company by the two above mentioned methods.
The results are obtained as follows:

A Solution with method based on Applica-
tion of Normalized Hamming Distance for Inter-
val valued neutrosophic set

The Equation (3) is used to find the distance for all the cri-
teria of the i-th transportation company from the k-th
modes using the normalised Hamming distance as in Table
3. In the definition 2.8, the normalized hamming distance
between X and Y (defined by Chi & Liu [33]) is given in
Equation (2) which means the distance between any two
IVNS. This definition is utilized to calculate the minimum
distance between two IVNS in two different but related ta-
bles with IVNS as in Equation (3). Then the Equation (3)
is utilized to find the Normalized Hamming distance for all
the criterion of the i-th transportation company from the k-
th modes as in Equation (12) taking data from the related
tables Table 1 and Table 2. The minimum distance deter-
mines the appropriate mode of each transportation compa-
ny. For Example - The minimum distance for all the crite-
ria of the transportation company TC2 is 0.2337 from
the Railways mode. That means the appropriate mode for
transportation companyTC2 is Railways. Similarly, the ap-
propriate mode for each transportation company is given in
Table 4.

74

Table 3. Data of distances for each transportation company

from the considered set of their possible modes of transporta-

tion

Alternative Mode of transportation

Transportation Roadways | Rail- Waterways Airways
Companies ways

Trans.Comp.1 0.1737 0.1333 0.1283 0.1847
Trans.Comp.2 0.2393 0.2337 0.361 0.292
Trans.Comp.3 0.172 0.1303 0.1727 0.2087
Trans.Comp.4 0.194 0.1923 0.1887 0.2743

Table 4. Appropriate Mode for each transportation company

Transportation | Minimum Dis- | Appropriate
companies tance Mode
Trans.Comp.1 0.1283 Waterways
Trans.Comp.2 0.2337 Railways
Trans.Comp.3 0.1303 Railways
Trans.Comp.4 0.1887 Waterways
B. Solution with method based on weighted

correlation coefficients

The attribute weights are taken as w;=0.38, w.=0.17,
w3=0.21, w4=0.24, ws=0.00

Step 1: The weighted correlation coefficient between an al-
ternative Ai and the ideal alternative A* represented by the
IVNS

Is given by Equation (4).

Then taking weight attributes as w:i=0.38, w.=0.17,
w3=0.21, w4=0.24, ws=0.00, the weighted correlation coef-
ficient can be calculated for the data mentioned in Table 1
by applying Equation (4).

By applying Equation (4), we can compute W, (A A)
=1,2,3,4)as

W,(A",A)=06737 ; W,(A",A)=0.4811
W, (A", A,)=0.8942; W, (A", A,)=0.7076

Step 2: From the weighted correlation coefficients between
the alternatives and the ideal alternative, the ranking order

is Ay <A, <A <A,
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which is given in Table 5.

Table 5 Ranking based on Weighted Correlation Coefficient

Alternatives Value of | Rank
W (A", A)
Trans.Comp.1 0.6737 3
Trans.Comp.2 0.4811 4
Trans.Comp.3 0.8942 1
Trans.Comp.4 0.7076 2

Therefore, we can see that the alternative TC 3 is the best
choice, which is the same result as Kulak & Kahraman
[29] and by method of weighted correlation coefficient in
Kour et al.[4].

C. Solution with TOPSIS method with the
given information about attribute weights

The attribute weights are taken as w;=0.38, w.=0.17,
w3=0.21, w4=0.24, ws=0.00
Step 1. The weighted collective interval-valued neutro-

sophic decision matrix R™ = ("), is calculated (Table
6) applying Equation (5).

Step 2: The score matrix S =(S of the collective

interval-valued neutrosophic decision matrix R is calculat-
ed using Equation (1) from Definition2.7 as in Table 7.

i')mxn
]

Step 3: Using Equations. (7), (8) and score matrix obtained
above , the interval-valued neutrosophic PIS A" and in-

terval-valued neutrosophic NIS A~ is determined as in Ta-
ble 8.

Step 4: The separation measures Si+ andS; of each alter-
native A, (i = 1, 2, 3, 4) are calculated from interval-

valued neutrosophic PIS A" and interval-valued neutro-

sophic NIS A™, respectively, based on the Hamming dis-
tance using Equations. (9) - (10) (Table 9).

Step 5: The relative closeness C;" of each alternative A, (i

=1, 2, 3, 4) to the interval-valued neutrosophic PIS Alis
calculated with the different separation measures, based on
the Hamming distance, using Eq. (11) (Table 10).

Step6. Rank the preference order of alternatives A, (i =1,
2, 3, 4) (Table 6), according to the relative closeness to the

Neutrosophic Sets and Systems, 18/2017

interval-valued neutrosophic PIS A* and the ranking or-
deris A, < Ay <A <A,

Therefore, we can see that the alternative TC4 is the
best choice and then the most desirable alternative is

Transportation company 1C4 as by TOPSIS in Kour et
al. [4].
Table 6 Weighted collective interval valued neutrosophic fuzzy

decision matrix

Alternative |Criteria

Transpor- [Transpor- |Defective [Tardi- |Flexibilty |[Documen-
tation tation Rate ness tation
Compa- |Cost Rate Ability
nies

Trans.Co |([0.37,0.46|([0.24,0.28] |([0.07,0. |([0.2,0.32],|([0,0],

mp. 1 1, , 10],
[0.17,0.22]([0.51,0.55]

[0.33,0.39][1,1]
[0.7,0.83], [1,1])
, , I [0.68,0.75]
[0.54,0.71]([0.81,0.89]) [0.62,0.7)

) 1)

Trans.Co |([0.46,0.51(([0.0017,0. [([0.29,0. |({0.002,0.0|([0,0],

mp.2 1, 005], 41],  |o5], [1,1]
[0.17,0.26]|[0.963,0.98 [[0.38,0.5([0.8,0.88], [[1,1])
, 2], 1], [0.68,0.75]
[0.54,0.63]|[0.815,0.88 [0.71,0.7])
) 8l) 3])

Trans.Co |([0.51,0.57|([0.08,0.14] [([0.38,0. |([0.42,0.45(([0,0],

mp.3 1, , 471, |l [1,1]
[0.23,0.32]][0.68,0.81], [0.38,0.4|[0.33,0.43][[1,1])
, [0.76,0.86]) [4] |
[0.63,0.77] [0.78,0.8/[0.75,0.85]

) 31) )

Trans.Co |([0.46,0.58([0.04,0.08]|([0.05,0. |([0.15,0.2],[([0,0],
mp.4 1, , 07,  |(0.58,0.68]|[1,1]

[0.17,0.23]|[0.92,0.94] |[0.78,0.9], [1,1])
, , 1, [0.68,0.75]
[0.54,0.77]([0.81,0.86]) [0.78,0.8)

) 31)

Table 7 Score matrix of the Weighted collective interval val-

ued neutrosophic fuzzy decision matrix

Alternative |Criteria

Minimize Maximize

Transporta-
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tion Transporta- |Defec- [Tardi- [Flexi- [Documenta-
companies |tion tive ness bilty  [tion
Cost Rate Rate Ability

Trans.Comp.| 0.3967 -0.08 [-0.2333 |0.1233 |-0.6667

1

Trans.Comp.|0.45667 -0.5473 (0.1067 |[-0.3677[-0.6667

2
Trans.Comp.|0.3767 -0.2967 |0.14 0.17 -0.6667
3
Trans.Comp.|0.4433 -0.47 -0.39 -0.1133]-0.6667
4

Table 8 Interval valued PIS and NIS

Minimize Maximize
Transporta- [Defective Tardiness |Flexibilty Docu-
tion Rate Rate menta-
Cost tion
Ability

PI[([0.51,0.57], [{0.0017,0.005], [0.05,0.07], | ([0.42,0.45], | ([0,0],

S [[0.23,0.32], [[0.963,0.982],[ [0.78,0.9], |[0.33,0.43], |[1,1],

[0.63,77]) [0.815,0.888]) [[0.78,0.83])|[0.75,0.85]) |[1,1])
NI[([0.46,0.51], [ ([0.24,0.28], [([0.38,0.47]|([0.002,0.00 | ([0,0],
S [0.17,0.26], [0.51,0.55],  |,[0.38,0.44]|5],[0.8,0.88], |[1,1],

[,0.54,0.63]) [[0.81,0.89])  |,[0.78,0.83]][0.68,0.75])

)

(1.10)

Table9 Separation measures based on Hamming distance

Alternatives S i+ S i_
Trans.Comp.1 | 0.4997 0.5688
Trans.Comp.2 | 0.6505 0.29073
Trans.Comp.3 | 0.39033 | 0.5372
Trans.Comp.4 | 0.287 0.6372

Table 10 Relative closeness Ci+ based on Hamming Distance
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Alternatives Value of C i+ Rank
Trans.Comp.1 | 0.53234 3
Trans.Comp.2 | 0.30888 4
Trans.Comp.3 | 0.57917 2
Trans.Comp.4 | 0.68946 1

5. Results and comparison

In this paper, the distance measures on interval valued neu-
trosophic set using the normalized hamming distance help
to find the best modes of transportation for each transporta-
tion company as in Table 4. The paper helps to find the ap-
propriate transportation company. It follows with two
methods. The first method which is based on weighted cor-
relation coefficient gives the best transportation company
as TC3. The result is same as in the Kour et al. [4] for the
method to find the best transportation company based on
weighted correlation coefficient under interval valued intu-
itionistic fuzzy environment. The second method which is
the extended TOPSIS gives the best transportation compa-
ny as TC4. The result is same as in the Kour et al. [4] for
the extended TOPSIS method to find the best transporta-
tion company under interval valued intuitionistic fuzzy en-
vironment. In addition, this paper also helps to find the
best mode of transportation for the selected transportation
companies. In the first result, the selected transportation
company TC3 opt for Railways whereas in the second re-
sult, the selected transportation company TC4 chooses Wa-
terways as their mode of transportation. The present paper
also deals with degree of indeterminacy along with the de-
gree of acceptance and rejection of the different attributes
as in Kour et al. [4]. The results can be compared with the
help of the below mentioned tables (Table 11, Table 12,
Table 13 and Table 14).

Tablell Solution as in [4] under interval valued intuitionistic

fuzzy environment

Alternatives Rank with | Rank with Ex-
Weighted Corre- | tended TOP-
lation Coefficient | SIS(known
Method(unknown | weights)
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Tablel2 Appropriate Transportation Company in [4] under in-

terval valued intuitionistic fuzzy environment

Weighted
Coefficient

Correlation
Meth-

od(unknown weights)

Extended TOPSIS(known
weights)

Trans Comp 3

Trans Comp 4

Tablel3 Solution as in the present paper under interval val-

ued neutrosophic environment

Alternatives Rank with | Rank with Ex-
Weighted Cor- | tended TOP-
relation Coef- | SIS(known
ficient Meth- | weights)
od(known
weights)

Trans.Comp.1 | 3 3

Trans.Comp.2 | 4 4

Trans.Comp.3 | 1 2

Trans.Comp.4 | 2 1

Tablel4 Appropriate Transportation Company and their mode

in the present paper under interval valued neutrosophic envi-

weights) weights)
Trans.Comp.1 | 3 3 Best Trans Comp 3 Trans Comp 4
Trans.Comp.2 | 4 4 Transportation
Trans.Comp.3 | 1 2 Company
Trans.Comp.4 | 2 1 Best Railways Waterways

Transportation

Mode

ronment

Methods Weighted Corre- | Extended TOPSIS
lation Coefficient | (known weights)
Method
(unknown

6. Conclusion

A new type of transportation company
selection problem is constructed in which the
mode of transportation is also selected along with
the best transportation company which gives a
greater scope of its application in real life circum-
stances to achieve better requirements of the
transportation companies.

The method for the application of nor-
malized hamming distance on interval valued
neutrosophic set helps the users to relate the given
two different relational tables consisting of trans-
portation companies, their criteria and their mode
of transportation and thus to find the appropriate
mode of each transportation companies for the
first time.

The weighted correlation coefficient
method helps the users to solve the multi-criteria
decision making problems with given weight in-
formation which has been done for the first time
in Interval valued neutrosophic environment

The extended TOPSIS method provides
us an effective and practical way to solve the
same type of problems, where the data is charac-
terized by IVNSs and the information about
weights is completely known. A score function
has been defined for interval valued neutrosophic
sets for the first time and is used to find the inter-
val valued neutrosophic PIS and NIS.

The interval valued neutrosophic set data
can be seen as real life uncertainties and so repre-
sents more practical solutions of the problem
where the degree of acceptance, indeterminacy
and rejection of the different attributes are taken
into account.
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Abstract:

In this paper, we present the use of single-valued neutrosophic
sets in medical diagnosis by using distance measures and similar-
ity measures. Using interconnection between single-valued neutro-
sophic sets and symptoms of patient, we determine the type of dis-

ease. We define new distance formulas for single valued neutro-
sophic sets. We develop two new medical diagnosis algorithms under
neutrosophic environment. We also solve a numerical example to il-
lustrate the proposed algorithms and finally, we compare the obtained
results.

Keywords: Single-valued neutrosophic sets, distance, similarity measures, medical diagnosis.

1 Introduction

The notion of fuzzy set was introduced by Zadeh [1] to deal
with ambiguity, vagueness and imprecision. Atanassov [2]
popularized the concept of intuitionistic fuzzy set, as a gener-
alization of fuzzy set. Adlassnig [3] employed fuzzy set theory
to formalize medical relationships and fuzzy logic to model
the diagnostic process and developed a computerized diagnosis
system. Important developments and applications of some
medical expert systems based on fuzzy set theory were reported
in the literature [ 4-8]. De et al. [9] first proposed an application
of intuitionistic fuzzy sets in medical diagnosis. Davvaz and
Sadrabadi [10] discussed an application of intuitionistic fuzzy
sets in medicine. Several authors [10-15] employed intuitionistic
fuzzy sets in medical diagnosis and cited De et al. [9]. However,
Hung and Tuan [16] pointed out that the approach studied in [9]
contains questionable results that may lead to false diagnosis of
patients’ symptoms.

It is widely recognized that the information available to the
medical practitioners about his/her patient and about medical
relationships in general is inherently uncertain. Even infor-
mation is incomplete as it continually becomes enlarged and
gets changed. Heisenberg’s Uncertainty Principle [17] reflects
that nature possibly is fundamentally indeterministic. It is
widely accepted that knowledge may differ according to culture,
education, religion, social status, etc., and therefore information
derived from different sources may be inconsistent. We may
recall Godel’s Theorem [18] which clearly reflects that contra-
dictions within a system cannot be eliminated by the system
itself. So uncertainty, incomplete and inconsistency should be
addressed in medical diagnosis problem which can be dealt with
neutrosophic set [19] introduced by Florentin Smarandache.
Neutrosophic set [19] consists of three independent objects
called truth-membership (@), indeterminacy-membership (o)

and falsity-membership (v) whose values are real standard or
non-standard subset of unit interval [0~,17[. In 1998, the idea
of single-valued neutrosophic set was given by Smarandache
[19] and the term “‘single valued neutrosophic set” was coined in
2010 by Wang et al. [20].

Yang et al. [21] presented the theory of single-valued neu-
trosophic relation based on single-valued neutrosophic set. In
almost every scientific field, the idea of similarity is essentially
important. To measure the degree of similarity between fuzzy
sets, many methods have been introduced [22-25]. These
methods are not suitable to deal with the similarity measures of
neutrosophic sets (NSs). Majumdar and Samanta [26] presented
several similarity measures of single valued neutrosophic sets
based on distances, a matching function, membership grades,
and then proposed an entropy measure. Several studies dealt
with similarity measures for neutrosophic sets and single-valued
neutrosophic sets [27-31]. Salama et. al. [32] defined the
neutrosophic correlation coefficients which are another types of
similarity measurement. Ye [33] discussed similarity measures
on interval neutrosophic set [34] based on Hamming distance
and Euclidean distance and showed how these measures can be
used in decision making problems. Furthermore, on the domain
of neutrosophic sets, Pramanik et al. [35] studied hybrid vector
similarity measures for single valued neutrosophic sets as well
as interval neutrosophic sets. In medical diagnosis, Ye [36]
presented the improved cosine similarity measures of single
valued neutrosophic sets as well as interval neutrosophic sets
and employed them to medical diagnosis problems. Mondal and
Pramanik [37] propose tangent similarity measure and weighted
tangent similarity measure for single valued neutrosophic sets
and employed them to medical diagnosis.

In medical diagnosis problem, symptoms and inspecting data
of some disease may be changed in different time intervals.
It leads to the question that whether only by using a single
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period inspection one can conclude for a particular patient with
a particular decease or not. Sometimes symptoms of different
diseases may appear for a person under treatment. Then, natural
question arises, how can we decide a proper diagnosis for the
particular patient by using one inspection? To answer this
question Ye [38] proposed multi-period medical diagnosis (i.e.
dynamic medical diagnosis) strategy based on neutrosophic
tangent function. Several medical strategies [39-52] have been
reported in the literature in neutrosophic environment including
neutrosophic hybrid set environment. Nguyen et al. [S3] made a
survey of the state-of-the-arts on neutrosophic sets in biomedical
diagnoses. The aforementioned strategies [ 36, 37, 38] employed
cosine similarity measure and tangent similarity measure under
neutrosophic environment.

The use of single-valued neutrosophic sets in medical diagnosis
by using distance measures and similarity measure which have
not been addressed in the literature. In this paper, we present two
algorithms for medical diagnosis by using distance measures and
similarity measures under neutrosophic environment. This study
answers the following research questions:

1. Is it possible to formulate a new algorithm for medical diag-
nosis by using normalized Hamming distance and similarity
measure?

2. Is it possible to formulate a new algorithm for medical diag-
nosis by using normalized Euclidean distance and similarity
measure?

3. Isit possible to develop a new algorithm for medical diagno-
sis by using new distance formula and similarity measure?

The above-mentioned analysis describes the motivation behind
proposing two new medical diagnosis algorithms under single
valued neutrosophic environment using new distance formulas
and similarity measures. This study develops two novel medical
diagnosis algorithms under single valued neutrosophic environ-
ment. The Objectives of the paper are stated as follows:

1. To define two new neutrosophic distance formulas.

2. To develop two new medical diagnosis algorithms under sin-
gle valued neutrosophic environment.

3. To show numerical example of medical diagnosis using the
proposed algorithms.

4. To compare the obtained results derived from the proposed
two algorithms with the algorithms based on normalized
Hamming and normalized Euclidean distance.

5. To fill the research gap, we propose two algorithms for med-
ical diagnosis by using distance measures and new similarity
measures under neutrosophic environment.

The proposed algorithms can be effective in dealing with medi-
cal diagnosis under single valued neutrosophic set environment.

Neutrosophic Sets and Systems, 18/2017

It can be extended to interval neutrosophic environment and neu-
trosophic hybrid environment. The main contributions of this pa-
per are summarized below:

i. We define two new distance formulas for neutrosophic sets.

ii. We develop two new algorithms for medical diagnosis based
on new distance formulas and similarity measure.

iii. We present the comparison between the proposed algo-
rithms with the algorithms based on normalized Hamming
and normalized Euclidean distance.

The rest of the paper unfolds as follows: In section 2, we describe
some basic definitions and operations of single valued neutro-
sophic sets (SVNSs). In section 3, we present the definition of
proposed distance formulas and develop two new algorithms for
medical diagnosis and present comparison with numerical exam-
ple. In section 4, we present conclusion and future scope of the
study.

2 Preliminaries

In this section, we review some basic concepts related to neutro-
sophic sets.

Definition 1. [19] Let Z be a space of points (objects).
A neutrosophic set M in Z is characterized by a truth-
membership function (up(2)), an indeterminacy-membership
Sunction (op(2)) and a falsity-membership function (var(2)).
The functions (par(2)), (oam(2)), and (vp(2)) are real stan-
dard or non-standard subsets of 107,17, that is, pp(2)
Z = 10,1 om(z) : Z — J07,1%[ and vy (2)

Z — ]0_7 1+[ and 0~ < pp(2) + opm(2) + v (z) < 3t.
From philosophical point of view, the neutrosophic set takes the
value from real standard or non-standard subsets of |0~, 17 . In
real life applications in scientific and engineering problems, it is
difficult to use neutrosophic set with value from real standard or
non-standard subset of |07, 1%[,, where 0~ = 0—¢, 1T = 1+¢,
€ is an infinitesimal number > 0. To apply neutrosophic set in
real-life problems more conveniently, Smarandache and Wang
et al. [20] defined single-valued neutrosophic sets which takes
the value from the subset of [0, 1]. Thus, a single-valued neu-
trosophic set is a special case of neutrosophic set. It has been
proposed as a generalization of crisp sets, fuzzy sets, and intu-
itionistic fuzzy sets in order to deal with incomplete information.

Definition 2. Let Z = {21, 22, ..., 2, } be a discrete confined
set. Consider M, N, O be three neutrosophic sets in Z. For all
z; € Z we have:

dig (M, N)=H (M, N)=max{|pun(z) — pn(2i)l], loa (2) —
on(z)l; [va(zi) — v (2)|}-
where dg (M, N)=H(M,N) denotes the extended Hausdroff

distance between between two neutrosophic sets M and N.
The above defined distance dg (M, N') between neutrosophic sets
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M and N satisfies the following properties:

(D1) dpz (M, N) >0,

(D2)dy(M,N)=0ifandonlyif M = N; forall M, N € NS,
(D3)dH(M7N) = dH(NvM))

(D4)If M C N C O forall M,N,O € NS, then dg(M,0) >
dg(M,N)and dyg(M,0) > dy(N,O).

then d is called the distance measure between two neutrosophic
sets.

Definition 3. A mapping S NS(Z) x NS(Z) —
[0,1], NS(Z) denotes the set of all NS in Z = {z1,22, ..., 2n},
S(M, N) is said to be the degree of similarity between M € NS
and N € NS, if S(M, N) satisfies the properties of conditions
(S1-S4):

(S1) S(M, N)=S(N, M),

(52) S(M, N)=(1,0,0). If M = N forall M,N € NS,

(S3) S}L(M’ N) >0, SJ(M’ N) >0, SV(M’ N) >0,

(S4)If M C N C O forall M,N,O € NS, then S(M,N) >
S(M,O)and S(N,0) > S(M, O).

Definition 4. The normalized Hamming distance between two
neutrosophic sets M and N is defined by

n

As(M, N) =3 (e z5) = o2

j=1

Howm(zj) —on(2)] + [vm () — vn(25)))-

Definition 5. The normalized Euclidean distance between two
neutrosophic sets M and N is defined by

n

(01, ) ={ 5 3 ()~ ()

Jj=1

Fom(z) — on(z))? + arlz) - VN<zj>>2>}2.

3 Neutrosophic Sets in Medical Diagno-
sis

We first correct the formulas for the Definitions 4 and 5, where
in both of them the we should put * 1 ” instead of 21n” in order
for the Hamming distance and respectlvely Euclidean distance to
be “normalized”. These formulas are extended from intuitionis-
tic fuzzy sets, where indeed one uses “% ” since there are only
two intuitionistic fuzzy sets memberships (membership and non-
membership). But, we have three components in neutrosophic
sets.

For example, if we compute the Hamming distance between the
neutrosophic numbers: (1,1, 1) and (0,0,0), we get {|1 — 0| +
1 —0[+ |1 -0} =2 = 1.5 > 1. Therefore, it is not nor-
malized since the result is not in [0,1]. Similarly for the Eu-
clidean formula, where we get for the same neutrosophic num-

bers: /3{[1— 0+ [1 0]+ [1 -0} = /3 > 1.
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We write normalized formulae for two neutrosophic sets as fol-
lows.

Definition 6. The normalized Hamming distance between two
neutrosophic sets M and N is defined by

1 n
ds( :%; e (25) — pn (25)]

Hon () — on(z) + lvm(z;) — v (25)))-

Definition 7. The normalized Euclidean distance between two
neutrosophic sets M and N is defined by

n

> ((uaa(z5) = ()

j=1

du(M, N) :{3171

N

Fow(z) — on(z)) + (onr(z5) — w(zj))?)} |

In this section, we give new concepts for medical diagnosis
via distances between neutrosophic sets. In fact our purpose is
to find an accurate diagnosis for each patient p;,7 = 1,2, 3. The
relation between neutrosophic sets for all the symptoms of the
i-th patient from the k-th diagnosis is as follows:

n

i) = 2 3 5 1 55) = s ()] + b () = o)

j=1
+ [vp, (7)) = va, ()] + é[max(mpi (2j) = pa, (25)1,
|0, (25) = 0, (2))], [ (25) = va (z)D)] |- (D)
We take n = 5.

We consider there are three patients: Ali, Hamza, Imran and
symptoms of patient are Temperature, Insulin, Blood pressure,
Blood plates, Cough and finally we get diagnosis as Diabates,
Dengue, Tuberculosis.

In Table 1, the data are explained by three parameters: mem-
bership function (u), non-membership function (v) and inde-
terminacy function (o). In Table 2, the symptoms are de-
scribed by (i, 0, v). For example, Diabates temperature is low
(u =0.2,0 = 0.0,v = 0.8), while Dengue temperature is high
(p=0.9,0=0.0,vr=0.1).

Table 1. Membership function u, Indeterminacy function o and
non-membership function v.

I Ali Hamza Imran
Temperature | (0.8,0.1,0.1) | (0.6,0.2,0.2) | (0.4,0.2,0.4)
Insulin (0.2,0.2,0.6) | (0.9,0.0,0.1) | (0.2,0.1,0.7)
Blood pressure | (0.4,0.2,0.4) | (0.1,0.1,0.8) | (0.1,0.2,0.7)
Blood plates (0.8,0.1,0.1) | (0.2,0.1,0.7) | (0.3,0.1,0.6)
Cough (0.3,0.3,0.4) | (0.5,0.1,0.4) | (0.8,0.0,0.2)
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Table 2. Symptoms
I Temperature Insulin Blood pressure | Blood plates Cough
Diabates (0.2,0.0,0.8) | (0.9,0.0,0.1) | (0.1,0.1,0.8) (0.1,0.1,0.8) | (0.1,0.1,0.8)
Dengue (0.9,0.0,0.1) | (0.0,0.2,0.8) | (0.8,0.1,0.1) (0.9,0.0,0.1) | (0.1,0.1,0.8)
Tuberculosis | (0.6,0.2,0.2) | (0.0,0.1,0.9) | (0.4,0.2,0.4) (0.0,0.2,0.8) | (0.9,0.0,0.1)

By using formula (1), for n = 5, we obtain Table 3. For r = 4, we obtain Table 7.
Table 3. Using formula (1), for n = 5. Table 7. Using formula (2), for r» = 4.
I Ali | Hamza | Imran I Ali | Hamza | Imran
Diabates | 0.38 | 0.14 | 0.27 Diabates | 0.42 | 0.28 | 0.37
Dengue | 0.15 | 040 | 0.34 Dengue | 0.21 | 047 | 041
Tuberculosis | 0.25 | 025 | 0.14 Tuberculosis | 0.39 | 041 | 0.17
The best medical diagnosis in each column is identified by the For r = 5, we get Table 8.
lowest difference. Therefore, in the first column, Ali suffers from Table 8. Using formula (2), for r = 5.
Dengue, in the second column, Hamza suffers from Diabates, i Ali | Hamza | Imran
in the third column, Imran suffers from Tuberculosis. Now we Diabates 0.43 03 0.39
define another relation for the best medical diagnosis: Dengue 0.22 0.48 0.41
. n Tuberculosis | 0.41 0.44 0.17
da(pi, di) = =3 \/ﬁ{ Z(Wm (ZJ) — Hdy, (ZJ)| By calculation for » = 6, we find Table 9.
=t . Table 9. Using formula (2), for r = 6.
Hop,(27) = 00 (z)] + [, () udk<zj>>r}7 ! AY_| Hamza | Tmran
¢ ‘ ) Diabates 0.43 0.31 04
2) Dengue 0.23 0.49 0.41
Tuberculosis | 0.42 0.46 0.17

and r is a positive number. We take n = 5. We examine the
above relation for r = 1,2, ..., 10. First, for » = 1 we calculate Forr =7, we find Table 10.

Table 4. Table 10. Using formula (2), for r = 7.

1 Ali | Hamza | Imran
Table 4. Using formula (2), for r = 1. Diabates 043 032 04T
I Ali | Hamza | Imran

Dengue 0.16 0.4 0.36 : . . .

Tuberculosis | 0.25 | 0.25 0.15 For r = 8, we get Table 11.
Now, for r = 2 we get Table 5. Table 11. Using formula (2), for r = 8.
1 Ali | Hamza | Imran
Table 5. Using formula (2), for r = 2. Diabates 0.44 0.33 0.41
I Ali | Hamza | Imran Dengue 0.24 | 0.51 0.43
Diabates 0.4 0.22 0.32 Tuberculosis | 0.44 | 0.49 0.18
Dengue 0.19 | 043 0.38
Tuberculosis | 0.32 | 032 | 0.15 Forr =9, we get Table 12.
: 1t f . . bl Table 12. Using formula (2), for » = 9.
The result for » = 3 is given in Table 6. I Ali | Hamza | Imran
Table 6. Using formula (2), for r = 3. Diabates | 044 | 033 | 042
I Ali | Hamza | Imran Dengue 0.24 0.51 0.43
Diabates 041 0.25 035 Tuberculosis | 0.45 0.5 0.18
Dengue 0.2 0.45 0.39 For r = 10, we obtain Table 13.
Tuberculosis | 0.35 0.37 0.16

Table 13. Using formula (2), for » = 10.

I Ali | Hamza | Imran
Diabates 0.45 0.34 0.43
Dengue 0.24 | 0.52 0.43
Tuberculosis | 0.45 0.51 0.18
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As r becoming larger, the difference between the data in tables
become inferior, that is, the data approaches to the real amount.
In Tables 4-13, the results are same. In fact in all tables, in the
first column, the lowest difference is related to Ali and Dengue,
so Ali suffers from Dengue, also in the second column Hamza
suffers from Diabates, in the third column Imran suffers from
Tuberculosis.

The normalized Hamming distance for all the symptoms of the
i-th patient from the k-th diagnosis [?] is

a(pisde) =5 >~ (2) = i (25)

-HO'pi(Zj) - Udk(zj>| + ‘V;Di(zj) - de(zj)l)' (3)

and the normalized Euclidean distance [?] is

n

o) ={ 23 (5) = a2

(0 (23) — 00y (23)) + (s (25) — v, (z;-))?)} .
@

We set n = 5.
By formulas (3), (4) respectively, the results are given in Tables
14 and 15.

Table 14. Using formula (3).

1 Ali | Hamza | Imran
Diabates 0.39 0.15 0.26
Dengue 0.16 0.4 0.36

Tuberculosis | 0.25 0.25 0.15
Table 15. Using formula (4).

1 Ali | Hamza | Imran
Diabates 0.46 0.24 0.37
Dengue 0.20 | 049 0.43

Tuberculosis | 0.35 0.37 0.18

Thus, we studied results that have been obtained from formulas
(3), (4) are same with relations (1), (2). Another idea for medical
diagnosis is

d(M,N) =max(|pa(z:) — pn(2i)],

lon(2i) — on(zi)ls [var(2i) — v (2:)])

)

Table 16. Medical diagnosis.

1 Ali | Hamza | Imran
Diabates 0.7 0.6 0.7
Dengue 0.4 0.9 0.7
Tuberculosis | 0.8 0.9 0.3

The similarity measures between two neutrosophic sets M and
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N is defined as follows :
1 — ) .
Sy (M,N) = - Z [[mm(uM(zi),uN(zi)) + min(oa(2),0n8(2))
i=1

+ min(var(2), vn(2:))] + [max(par (), pn ()

+ max(oar(2:), on (2i)) + max(var(2:), v (2:))] |-

(6)
We set n = 5 (Table 17).
Table 17. Using formula (6), for n = 5.
1 Ali | Hamza | Imran
Diabates 0.28 0.70 0.45
Dengue 0.63 0.27 0.32
Tuberculosis | 0.51 0.52 0.65
1[ & 1
S2(M,N) = — d - 3 nar (i) = pon (22))
i=1
+lom(zi) —on(2i) + lvm(zi) — v (z:)) |- (D)

We set n = 5 (Table 18).
Table 18. Using formula (7), for n = 5.

1 Ali | Hamza | Imran
Diabates 0.69 0.45 0.72
Dengue 0.84 0.4 0.66
Tuberculosis | 0.55 0.55 0.85

Z min(pas (%), v (%)) +min(oa(2;), on(2i))
+min(var(z), vn (2:))] + Z [max (s (2:), v (22))
+max(oar(2;), on(2:)) + max(var(z;), VN(Zz))]

3
We set n = 5 (Table 19).
Table 19. Using formula (8), for n = 5.
1 Ali | Hamza | Imran
Diabates 0.27 0.64 0.41
Dengue 0.61 0.25 0.31
Tuberculosis | 0.45 0.45 0.64
1
Su(M, N) =1 — 2 (max(|par(2:) — un(2:)])
+ max(|aM(zz) —on(zi)])
+max(|var(zi) — v (2i)])- ©)

We set n = 5 (Table 20).
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Table 20. Using formula (9), for n = 5.

I Ali | Hamza | Imran
Diabates 0.47 0.6 0.5
Dengue 0.5 0.1 0.25
Tuberculosis | 0.67 04 0.73

So(M,N) =1 - [Z [ar () — e (22)

i=1
+loar(zi) = on(z0)] + lvar (20) = v (2)]

= [lear(z) + v (@) + loar(z:) + ow ()]

=1
el + )]
We set n = 5 (Table 21).

Table 21. Using formula (10), for n = 5.

Neutrosophic Sets and Systems, 18/2017

I Ali | Hamza | Imran
Diabates 0.83 0.50 0.75
Dengue 0.60 | 0.86 0.84
Tuberculosis | 0.74 0.75 0.55

The obtained relations from Sy,c1 (M, N), Spewa(M, N) are
closely same with relations 1 — 5. Consequently, the obtained
results from the relations between neutrosophic sets (1), (2), (5),
(11), (12) are equivalent to the results of formula (3), (4). By us-
ing the distance and similarity measures formulas between neu-
trosophic sets, we establish the most applicable medical diagno-
sis that in all tables are related to the lowest difference in each
column. Finally, we conclude that the methods which have the
results equivalent to normalized hamming and normalized Eu-
clidean formulas are best to determine the diseases of a patient.
Now we present our first method in the following algorithm 1.
Algorithm 1:

(10)

I Ali | Hamza | Imran Step 1. Input the truth membership, indeterminacy and non-
Diabates 042 | 078 058 membership values of patients and diagnosis.
Dengue 0.76 0.4 0.46 Step 2. Compute the diseases by different distance measures
Tuberculosis | 0.62 | 0.62 | 0.78 given in steps 3 — 7.
Step 3.
We can see that the results obtained by using the relations Lo
51,52 ) S;?, 5.4, Ss are different from r.elatlons 1 — 5. Therefore, dy(piy dyy) = — Z [ \Npi %) — tta (2)] + op, (23) — 0, (2))]
these similarity measures are not applicable. ni
The new similarity measures between neutrosophic sets M and 1
N are defined as follows. The first one is + v, (25) — va, (Zg)\] + g[max(\,um (25) — pay (25)1;
1 1< A , A ,
Snewl :ﬁp(_n) |:1—6Xp(—3 ;(‘}th(%) —,UN(Zi)| ‘O.pi(z_?) O-dk(zj)|7|ypi(zj) de(zj))}:|'
Step 4.
Flowm (zi) = on(z0)] + v (2:) — VN(Zi)I))} - an
1 n
We set n = 5 (Table 22). da(pi, dy,) :3%{ Z(mpi (%)) = pai (2)|
j=1
1
Table 22. Using formula (11), for n = 5. A7
T T Hamea T e o) = 9, ()l + o) v ()}
Diabates 0.86 0.52 0.75
Dengue . 0.55 | 0.88 0.84 Step 5.
Tuberculosis | 0.73 0.73 0.52
1 n
The second one is d3(pi, di) = % (lp: (25) = pay (25)]
=1
1 1 ¢
Shew? :ﬁp(—n) [16XP gg |\/NM(22) - \/,U’N(Z'L)| +|O-p1(zj) O-dk(z])‘ + |Vpi(2.7) _de(z])D'
Step 6.
Vo (z) = Von (@) + [V (z) — Ven(2))

We set n = 5 (Table 23).

Table 23. Using formula (12), for n = 5.

m

1
(12)  da(pi, dy) {32 1o (25)

3

" — Hdy, (ZJ ))

N

(0 (23) — 00, (23))° + (s (25) — v, <zj>>2>} |
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Step 7.
d(M, N) =max(|ppm(zi) — pn(2i)l;
lon(zi) — on (20, [va (2i) — wn (20)))-

W present our second method in the following algorithm 2.
Algorithm 2:

Step 1. Input the truth membership, indeterminacy and non-
membership values of patients and diagnosis.

Step 2. Also compute the diseases by similarity measures given
in steps 3 — 9.

Step 3.

Sl( |: min .UM Z? ,UN(Zi))

S\H

+m1n( M (zi),0n(2i)) + min(var(2), v (2:))]

+ [max(ua (), v (1)) + max(on (), o (=)

+ max(var(2;), VN (zz))]] .

Step 4.
1[— 1
a0, ) = 1| 520 = ) = v )
T low(z) — ow(z) + ar(z) — w(z»)}
Step 5.

S3(M,N) = Z [min(par(2:), un (2:) + min(oar(zi), on(2i))

86

Step 7.

S5(04.6) =1 | 3 [l ) = v )
+oam(zi) — on(z)| + lvm(zi) — v (zi)]]

+ Z [ear (zi) + pn (23)| + o (zi) + on(2:)]

=1

+vn () + VN(Zi)|]:| .

Step 8.

Snewl

e 1 e Y ar(a) — )

1 —exp( p
Hoa(z) — on ()] + var () — w(zn-)))]

Step 9.

Sner

1
e [ oy VG~ Vi)

1=

Vo (z) = Von ()l + |Vvm(z) - \/VN(Zz')D)} .

Finally, We compare these methods to normalized hamming and
normalized Euclidean formulas and conclude that the methods
which have results equivalent to normalized hamming and nor-
malized Euclidean formulas are the best methods to determine
the disease of a patient.

+min(va(2), vn(2)) Z max(par(z:), pn(2:) )4 Conclusion
i=1

+max(oar(2i), 0w (2i)) + max(va(2i), v (2))]-

Step 6.

S(M, N) =1~ & (maax(pae (21) — o (20))
+ mgx(\UM(Zz‘) —on(z)])

+ m?X(‘VM(Zi) —vn(2)])).

In this we have developed two new algorithms for medical di-
agnosis using the proposed distance formula and similarity mea-
sures. We have solved a numerical example and compared the
obtained results derived from the proposed two algorithms with
the algorithms based on normalized Hamming and normalized
Euclidean distance. The proposed algorithms can be extended to
interval neutrosophic set environment and other neutrosophic hy-
brid environment for medical diagnosis.
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