23,908 research outputs found

    Wireless and Physical Security via Embedded Sensor Networks

    Full text link
    Wireless Intrusion Detection Systems (WIDS) monitor 802.11 wireless frames (Layer-2) in an attempt to detect misuse. What distinguishes a WIDS from a traditional Network IDS is the ability to utilize the broadcast nature of the medium to reconstruct the physical location of the offending party, as opposed to its possibly spoofed (MAC addresses) identity in cyber space. Traditional Wireless Network Security Systems are still heavily anchored in the digital plane of "cyber space" and hence cannot be used reliably or effectively to derive the physical identity of an intruder in order to prevent further malicious wireless broadcasts, for example by escorting an intruder off the premises based on physical evidence. In this paper, we argue that Embedded Sensor Networks could be used effectively to bridge the gap between digital and physical security planes, and thus could be leveraged to provide reciprocal benefit to surveillance and security tasks on both planes. Toward that end, we present our recent experience integrating wireless networking security services into the SNBENCH (Sensor Network workBench). The SNBENCH provides an extensible framework that enables the rapid development and automated deployment of Sensor Network applications on a shared, embedded sensing and actuation infrastructure. The SNBENCH's extensible architecture allows an engineer to quickly integrate new sensing and response capabilities into the SNBENCH framework, while high-level languages and compilers allow novice SN programmers to compose SN service logic, unaware of the lower-level implementation details of tools on which their services rely. In this paper we convey the simplicity of the service composition through concrete examples that illustrate the power and potential of Wireless Security Services that span both the physical and digital plane.National Science Foundation (CISE/CSR 0720604, ENG/EFRI 0735974, CIES/CNS 0520166, CNS/ITR 0205294, CISE/ERA RI 0202067

    Artificial intelligence and UK national security: Policy considerations

    Get PDF
    RUSI was commissioned by GCHQ to conduct an independent research study into the use of artificial intelligence (AI) for national security purposes. The aim of this project is to establish an independent evidence base to inform future policy development regarding national security uses of AI. The findings are based on in-depth consultation with stakeholders from across the UK national security community, law enforcement agencies, private sector companies, academic and legal experts, and civil society representatives. This was complemented by a targeted review of existing literature on the topic of AI and national security. The research has found that AI offers numerous opportunities for the UK national security community to improve efficiency and effectiveness of existing processes. AI methods can rapidly derive insights from large, disparate datasets and identify connections that would otherwise go unnoticed by human operators. However, in the context of national security and the powers given to UK intelligence agencies, use of AI could give rise to additional privacy and human rights considerations which would need to be assessed within the existing legal and regulatory framework. For this reason, enhanced policy and guidance is needed to ensure the privacy and human rights implications of national security uses of AI are reviewed on an ongoing basis as new analysis methods are applied to data

    Security risk assessment and protection in the chemical and process industry

    Get PDF
    This article describes a security risk assessment and protection methodology that was developed for use in the chemical- and process industry in Belgium. The approach of the method follows a risk-based approach that follows desing principles for chemical safety. That approach is beneficial for workers in the chemical industry because they recognize the steps in this model from familiar safety models .The model combines the rings-of-protection approach with generic security practices including: management and procedures, security technology (e.g. CCTV, fences, and access control), and human interactions (pro-active as well as re-active). The method is illustrated in a case-study where a practical protection plan was developed for an existing chemical company. This chapter demonstrates that the method is useful for similar chemical- and process industrial activities far beyond the Belgian borders, as well as for cross-industrial security protection. This chapter offers an insight into how the chemical sector protects itself on the one hand, and an insight into how security risk management can be practiced on the other hand

    Intelligent intrusion detection in low power IoTs

    Get PDF
    Security and privacy of data are one of the prime concerns in today’s Internet of Things (IoT). Conventional security techniques like signature-based detection of malware and regular updates of a signature database are not feasible solutions as they cannot secure such systems effectively, having limited resources. Programming languages permitting immediate memory accesses through pointers often result in applications having memory-related errors, which may lead to unpredictable failures and security vulnerabilities. Furthermore, energy efficient IoT devices running on batteries cannot afford the implementation of cryptography algorithms as such techniques have significant impact on the system power consumption. Therefore, in order to operate IoT in a secure manner, the system must be able to detect and prevent any kind of intrusions before the network (i.e., sensor nodes and base station) is destabilised by the attackers. In this article, we have presented an intrusion detection and prevention mechanism by implementing an intelligent security architecture using random neural networks (RNNs). The application’s source code is also instrumented at compile time in order to detect out-of-bound memory accesses. It is based on creating tags, to be coupled with each memory allocation and then placing additional tag checking instructions for each access made to the memory. To validate the feasibility of the proposed security solution, it is implemented for an existing IoT system and its functionality is practically demonstrated by successfully detecting the presence of any suspicious sensor node within the system operating range and anomalous activity in the base station with an accuracy of 97.23%. Overall, the proposed security solution has presented a minimal performance overhead.</jats:p

    Multiple Moving Object Recognitions in video based on Log Gabor-PCA Approach

    Full text link
    Object recognition in the video sequence or images is one of the sub-field of computer vision. Moving object recognition from a video sequence is an appealing topic with applications in various areas such as airport safety, intrusion surveillance, video monitoring, intelligent highway, etc. Moving object recognition is the most challenging task in intelligent video surveillance system. In this regard, many techniques have been proposed based on different methods. Despite of its importance, moving object recognition in complex environments is still far from being completely solved for low resolution videos, foggy videos, and also dim video sequences. All in all, these make it necessary to develop exceedingly robust techniques. This paper introduces multiple moving object recognition in the video sequence based on LoG Gabor-PCA approach and Angle based distance Similarity measures techniques used to recognize the object as a human, vehicle etc. Number of experiments are conducted for indoor and outdoor video sequences of standard datasets and also our own collection of video sequences comprising of partial night vision video sequences. Experimental results show that our proposed approach achieves an excellent recognition rate. Results obtained are satisfactory and competent.Comment: 8,26,conferenc
    • …
    corecore