3 research outputs found

    Intrusion Detection in Mobile Ad Hoc Networks Using Classification Algorithms

    Full text link
    In this paper we present the design and evaluation of intrusion detection models for MANETs using supervised classification algorithms. Specifically, we evaluate the performance of the MultiLayer Perceptron (MLP), the Linear classifier, the Gaussian Mixture Model (GMM), the Naive Bayes classifier and the Support Vector Machine (SVM). The performance of the classification algorithms is evaluated under different traffic conditions and mobility patterns for the Black Hole, Forging, Packet Dropping, and Flooding attacks. The results indicate that Support Vector Machines exhibit high accuracy for almost all simulated attacks and that Packet Dropping is the hardest attack to detect.Comment: 12 pages, 7 figures, presented at MedHocNet 200

    Feature Selection and Energy Management in Wireless Sensor Networks using Deep Learning

    Get PDF
    In wireless sensor networks, when the available energy sources and battery capacity are extremely constrained, energy efficiency is a major issue to be adressed. One of the main goals in the design of wireless sensor networks (WSNs) is to maximize longevity of battery life. Designers can benefit from the use of intelligent power utilization models to accomplish this goal. These models seek to decrease the number of chosen sensors used to record environmental measures in order to minimize power utilization while retaining the acceptable level of measurement accuracy. In order to simulate wireless sensor networks, we looked at real world datasets. Our simulation findings demonstrate that the suggested strategy can be used to accomplish significant goals by using the right number of sensors using deep learning, extend the lifespan of the wireless sensor networks

    A Large-Scale Network Data Analysis via Sparse and Low Rank Reconstruction

    Get PDF
    With the rapid growth of data communications in size and complexity, the threat of malicious activities and computer crimes has increased accordingly as well. Thus, investigating efficient data processing techniques for network operation and management over large-scale network traffic is highly required. Some mathematical approaches on flow-level traffic data have been proposed due to the importance of analyzing the structure and situation of the network. Different from the state-of-the-art studies, we first propose a new decomposition model based on accelerated proximal gradient method for packet-level traffic data. In addition, we present the iterative scheme of the algorithm for network anomaly detection problem, which is termed as NAD-APG. Based on the approach, we carry out the intrusion detection for packet-level network traffic data no matter whether it is polluted by noise or not. Finally, we design a prototype system for network anomalies detection such as Probe and R2L attacks. The experiments have shown that our approach is effective in revealing the patterns of network traffic data and detecting attacks from large-scale network traffic. Moreover, the experiments have demonstrated the robustness of the algorithm as well even when the network traffic is polluted by the large volume anomalies and noise
    corecore