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With the rapid growth of data communications in size and complexity, the threat of malicious activities and computer crimes has
increased accordingly as well. Thus, investigating efficient data processing techniques for network operation and management over
large-scale network traffic is highly required. Some mathematical approaches on flow-level traffic data have been proposed due to
the importance of analyzing the structure and situation of the network. Different from the state-of-the-art studies, we first propose a
new decomposition model based on accelerated proximal gradient method for packet-level traffic data. In addition, we present the
iterative scheme of the algorithm for network anomaly detection problem, which is termed as NAD-APG. Based on the approach,
we carry out the intrusion detection for packet-level network traffic data no matter whether it is polluted by noise or not. Finally,
we design a prototype system for network anomalies detection such as Probe and R2L attacks. The experiments have shown that
our approach is effective in revealing the patterns of network traffic data and detecting attacks from large-scale network traffic.
Moreover, the experiments have demonstrated the robustness of the algorithm as well even when the network traffic is polluted by
the large volume anomalies and noise.

1. Introduction

The rapid growth of data communication through the
Internet and World Wide Web has led to vast amounts
of information available online. In addition, business and
government organizations create large amounts of both
structured and unstructured information which need to be
processed, analyzed, and linked. The large-scale network
data plays a popular and important role in network operation
and management. Consequently, high-dimensional data and
multivariate data are becoming commonplace as the number
of applications increases, such as statistical and demographic
computation and digital libraries. Though it can provide
flexible and cost-saving IT solutions for the end users, it
is much easier in causing a great deal of problems such as
network and system security issues due to its sharing and
centralizing computing resources.

In general, network managers consider that the packet-
level and flow-level data constitute the traditional network

traffic data. On one hand, the packet-level data analysis
performs successfully in maintaining simple, scalable, highly
available, and robust networks [1]. On the other hand, flow-
level data analysis has become popular in recent studies
because the data can describe the network-level status and
behavior of communication networks from origin nodes to
destination nodes (OD) effectively [2]. However, there is no
absolute way to secure the data and data transformations in
large-scale networking systems. The existing techniques and
tools of securing a network system still rely heavily on human
experiences. Most of them require human involvement in
analyzing and detecting anomalies and intrusions. Moreover,
the existing networked-data analysis techniques are mainly
based on the complete data, which limits the application
of them. Unveiling the anomalies is a crucial task, espe-
cially nowadays, as big data acquisition and storage become
increasingly difficult with the increasing amount of data due
to the sampling bandwidth and storage space constraints [3].
Some approaches have been achieved in flow-level network
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data [2, 4, 5]. They reconstructed all origin-destination flows
via compressive sensing methods by leveraging the low
intrinsic-dimensionality of OD flows and the sparse nature
of anomalies. Meanwhile, due to the difficulties of collecting
and processing the large-scale packet-level data, to the best of
our knowledge, few researchers pay attention to analyzing the
incomplete packet-level data for managing and controlling
the whole network.

Intrusion detection systems are security managements
systems developed to find inconsistency with expected pat-
terns in network traffic data, which is termed as well in litera-
ture [3] as novelty detection, anomaly mining, and noising
mining. They play an important role in detecting different
types of network attacks including Denial of Service (DOS),
surveillance and other probing (Probe), unauthorized access
to local super user (root) privilege (U2R), and unauthorized
access from a remotemachine (R2L) attacks. Intrusion detec-
tion approaches can be categorized into two main categories:
signature-based and anomaly-based detection. Signature-
based or misuse-based detection systems detect on-going
anomalies by looking for a match with any predefined attack
signature [6]. Anomaly-based detection, on the other hand,
makes an assumption that intruders’ behaviors are different
from that of normal network traffic. Therefore, any deviation
from the normal flow can be considered as an attack [7].

To enhance the human perception and understanding
of different types of network intrusions and attacks, and
inspired by the literature [5], approaches on network traffic
data analysis and network anomalies detection based on
compressed sensing in big data are put forth in this paper.
As pointed out in literature [2, 3], on one hand, the number
of normal data instances is much more than the number
of anomaly data ones, which exactly meets the sparsity
requirements of compressed sensing theory. On the other
hand, traffic matrices usually have low effective dimensions
because they can be well approximated by a few principal
components that correspond to the largest singular values
of the matrices, which are introduced by Lakhina et al. [8]
by using of Principal Component Analysis (PCA) method to
traffic matrix analysis.

Therefore, at the first stage, we propose a new decom-
position model for packet-level traffic matrix. Then, we
present the iterative algorithm based on accelerated proximal
gradient method for network anomaly detection problem,
which is termed as NAD-APG. Based on the approach, we
carry out the intrusion detection for network traffic data no
matter whether it is polluted by noise or not. Finally, we
design a prototype system for network anomalies detection
such as Probe and R2L attacks and so on. The experiments
have shown that our approach is effective in revealing the
patterns of network traffic data and detecting attacks from
large-scale network traffic. In addition, the experiments have
demonstrated the robustness of the algorithm as well even
when the network traffic is polluted by the large volume
anomalies and noise.

The rest of the paper is organized as follows. Section 2
gives an overview of existing methods on structural anal-
ysis of network traffic via compressed sensing techniques.
Section 3 presents our approach on anomaly detection in

network traffic based on accelerated proximal gradient line
researchmethod (APGL).The experimental evaluation of our
new approaches is explored in Section 4. Finally, conclusions
and future work are presented in Section 5.

2. Related Work

It has become popular in recent studies that considering the
traffic matrix analysis as the main flow-level data because
the traffic matrix can describe the network-level status and
behavior of communication networks from origin nodes to
destination nodes (OD) effectively and it is a combination of
different classes of network traffic to represent howmuchdata
is transmitted during different time intervals [8].

As one of the most widely used methods to analyze traffic
matrix, PCA was put forth in [9] by Lakhina et al. They
calculated the principal component that corresponds to the
largest singular value of the matrix and utilized these prin-
cipal components to approximate the original traffic matrix.
Moreover, they improved this method and proposed volume
anomaly detection approach based on PCA-subspace [8]. In
the following approaches, researchers improved the classical
PCA method and proposed distributed PCA [10], network
anomography [11], and traffic matrix evaluation from adap-
tivity and bias perspectives [12]. However, as mentioned by
the literatures [5, 8, 13], there are some limitations when we
utilize the PCA method to deal with the traffic matrix in
order to analyze and manage the whole network, such as the
fluctuation of estimation error with the volume change of
anomalies, the sensitivity to the choice of parameters, and
failure on exploiting the sparsity of anomalies.

Therefore, due to the increasing complexity and amounts
of internet applications, the acquisition and storage of big
data becomes more and more difficult. Moreover, to over-
come the limitations of PCA, researchers have obtained some
approaches for analyzing end-to-end network traffic in recent
years. To solve the problem that PCA performs poorly in
polluted traffic matrix by large volume anomalies, Lakhina
et al. [8] proposed structural analysis by decomposing the
network traffic matrix into deterministic traffic, anomaly
traffic, and the noise traffic matrix. They analyzed that the
decomposition problem is equivalent to the relaxed principal
component pursuitmethod.Adistributed estimationmethod
to unveil the anomalies presented inODflows using proximal
gradient method was proposed by Mardani et al. [5]. A
centralized solver and the in-network processing of link-load
measurements were analyzed in their work as well. While
Nie et al. found that the size of OD flows obeys the power
laws [4]. By using this characteristic and restricted isometric
property in compressed sensing theory, they reconstructed
all OD flows with the help of partial observed samples from
backbone network traffic data.

However, all the current researches pay too much atten-
tion on the network traffic in flow-level network. Therefore,
we propose a novel approach based on the latest method
from compressed sensing to reveal the abnormal patterns
by dealing with the packet-level network data. Firstly, we
propose to apply the most popular accelerated proximal
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gradient line search method (APGL) [14] to recover the low
rank matrices with network traffic data. Moreover, to get
a more accurate and robust approximation to reconstruct
traffic matrix, motivated partly by the literature [15], we
propose a traffic matrix decomposition method based on the
APGL algorithm. Finally, the simulation results and analysis
describe the effectiveness and robustness of our approaches
in network traffic data.

3. Overall Approach

3.1. Principal Component Analysis Method. Principal com-
ponent analysis (PCA), as a widely used method in high
dimensional data analysis, can be viewed as a coordinate
transformation process which transforms the redundant data
points to a low dimensional system. As pointed out in
literature [2, 9], each row vector 𝑥

𝑖
of the traffic matrix

𝑋 ∈ R𝑚×𝑛 is considered as a data point. PCA is performed
by calculating the principal component vectors of 𝑋, which
are represented as {V

𝑖
, 𝑖 = 1, 2, . . . , 𝑛}. The first principal

component vector enjoys the property of the maximum
variance of the original matrix 𝑋. Similarly, the tth principal
component vector V

𝑡
, 𝑡 = 2, 3, . . . , 𝑚 captures the maximum

variance of the residual traffic matrix as follows:

V
𝑡
= arg max
‖V‖=1
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It is noted that vectors 𝑢
𝑖
and V

𝑖
(𝑖 = 1, 2, 3, . . . , 𝑚) form

the orthogonal basis ofR𝑛, respectively. Therefore, the traffic
matrix can be decomposed by the following formula:
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If we denote 𝜎
𝑖
:= ‖𝑋V

𝑖
‖, the traditional PCA method can be

recited by the famous singular value decomposition (SVD)
method in the research field ofmatrix computation as follows:

𝑋 =

𝑚

∑

𝑖=1
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𝑇
, (4)

where V
𝑖
can be achieved by calculating the eigenvectors of

the matrix 𝑋𝑇𝑋, while 𝜎
𝑖
= √𝜆

𝑖
⋅ 𝜆
𝑖
is the corresponding

eigenvalue of the matrix𝑋𝑇𝑋. That is to say,
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SVD plays an important role for its revealing, interesting,
and attractive algebraic properties and conveys important
geometrical and theoretical in-sights about transformations.
The entries of each matrix obtained by the SVD algorithm
have their special physical significances. According to the
rationale of Eckart-Young theorem, ∑𝑟
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𝑖
𝑢
𝑖
V
𝑖

𝑇
(1 ≤ 𝑟 ≤ 𝑚)
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Figure 1: Visualization for original normal traffic with 97278 data
items.

is considered to be the best rank-r approximation of𝑋, that is,
∑
𝑟

𝑖=1
𝜎
𝑖
𝑢
𝑖
V
𝑖

𝑇
= arg minrank(𝑌)≤𝑟‖𝑋 − 𝑌‖𝐹, where ‖ ⋅ ‖𝐹 denotes

the Frobenius norm.
To the matrix expression for the PCA, it seeks an optimal

estimate of 𝐴 via the following constrained optimization:

min
𝐴,𝐸

‖𝐸‖𝐹
,

subject to rank (𝐴) ≤ 𝑟,

𝑋 = 𝐴 + 𝐸,

(6)

where 𝐴, 𝐸 ∈ R𝑚×𝑛, 𝑟 ≪ min(𝑚, 𝑛). In fact, the optimal
estimate of 𝐴 is the projection of the columns of 𝑋 onto the
subspace spanned by the 𝑟 principal left singular vectors of𝑋
[16].

3.2. Network Anomaly Detection Algorithm Based on APG.
Though classical PCA method processes the data with the
corruption of small Gaussian noise effectively, it always
breaks down under large corruption [16]. Therefore, to
recover a low-rank matrix 𝐴 from a corrupted data matrix
𝑋 = 𝐴 + 𝐸, where some of the matrix 𝐸may be of arbitrarily
largemagnitude,Wright et al. [17] proposed amethod termed
as Robust PCA (RPCA) which can exactly recover the low-
rank matrix in the presence of gross errors. Based on their
analysis for the above optimization problem, the Lagrangian
reformulation of it is

min
𝐴,𝐸

rank (𝐴) + 𝜆‖𝐸‖0,

subject to 𝑋 = 𝐴 + 𝐸,

(7)

where 𝜆 is a positive parameter that balances the two terms.
Unfortunately, the above optimization problem is NP-hard
in general due to the nonconvexity and discontinuous nature
of the rank function. Moreover, the nuclear norm ‖ ⋅ ‖

∗
(the

sum of singular values of a matrix) is well known as a
convex surrogate of the nonconvex matrix rank function.
Therefore, in the literature [17], researchers proposed to solve
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Figure 2: (a) Principal components of original data in PCA. (b) Residual matrix visualization in PCA.
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Figure 3: (a) Normal traffic in NAD-APG method. (b) Visualization for abnormal traffic using NAD-APG.

the following convex optimization problem by replacing the
𝑙
0-norm with 𝑙1-norm and rank(𝐴) with ‖𝐴‖

∗
:

min
𝐴,𝐸

‖𝐴‖∗
+ 𝜆‖𝐸‖1

,

subject to 𝑋 = 𝐴 + 𝐸.

(8)

To develop faster and more scalable algorithms associated
with the robust PCA, one popularmethod among state-of-art
research approaches [16, 18–21] dubbed accelerated proximal
gradient algorithm (APG) is widely exploited to seek an
optimal solution of a soft constrained version of the convex
problem (8). In this paper, we adopt the algorithm partially in

the literature [16].Themainmodel is the following unstrained
minimization optimization problem:

min
𝐴,𝐸

𝜇‖𝐴‖∗
+ 𝜆𝜇‖𝐸‖1

+

1

2

‖𝑋 − 𝐴 − 𝐸‖
2

𝐹
. (9)

Moreover, they summarized the convergence of the algorithm
theoretically as follows.

Theorem 1 (see [16]). Suppose that 𝐹(𝐴, 𝐸) = 𝜇‖𝐴‖
∗
+

𝜆𝜇‖𝐸‖
1
+ (1/2)‖𝑋 − 𝐴 − 𝐸‖

2

𝐹
. For all 𝑘 > log(𝜇

0
/𝜇)/ log(1/𝜂),

any solution 𝑋∗ of the problem (9), we have 𝐹(𝑋) − 𝐹(𝑋∗) ≤
4‖𝑋
𝑘0
− 𝑋
∗
‖
2

𝐹
/(𝑘 − 𝑘

0
+ 1)
2.

The APG algorithm solves the optimization problem (9)
by iteratively updating 𝐴, 𝐸, and other parameters. At last, in
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Figure 4: (a) Gaussian white noise matrix. (b) Anomaly-free traffic matrix with Gaussian white noise.
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Figure 5: (a) Abnormal traffic using NAD-APG. (b) Residual matrix with Gaussian white noise in PCA.
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Figure 6: Original normal traffic mixed with 500 Probe attack data.

the 𝑘th iteration, we update 𝐴
𝑘+1

and 𝐸
𝑘+1

as the following
iterative scheme:

𝐴
𝑘+1

= S
𝜇/2
(𝑌
𝐴

𝑘
+

𝑋 − 𝑌
𝐴

𝑘
− 𝑌
𝐸

𝑘

2

) ,

𝐸
𝑘+1

= S
𝜇/2
(𝑌
𝐸

𝑘
+

𝑋 − 𝑌
𝐴

𝑘
− 𝑌
𝐸

𝑘

2

) ,

where S
𝜇/2 (

𝑥) =

{
{
{
{
{
{

{
{
{
{
{
{

{

𝑥 −

𝜇

2

, if 𝑥 >
𝜇

2

;

𝑥 +

𝜇

2

, if 𝑥 <
𝜇

2

;

0, otherwise,

(10)
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Figure 7: (a) Principal components of hybrid data in PCA. (b) Residual matrix visualization in PCA.
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Figure 8: (a) Normal traffic in NAD-APG method. (b) Abnormal patterns shown in NAD-APG.

𝑌
𝐴

𝑘+1
, 𝑌𝐸
𝑘+1

and 𝑡
𝑘+1

are updated in the same way as [16] as
follows:

𝑌
𝐴

𝑘+1
= 𝐴
𝑘+1

+

𝑡
𝑘
− 1

𝑡
𝑘+1

(𝐴
𝑘+1

− 𝐴
𝑘
) ,

𝑌
𝐸

𝑘+1
= 𝐸
𝑘+1

+

𝑡
𝑘
− 1

𝑡
𝑘+1

(𝐸
𝑘+1

− 𝐸
𝑘
) ,

𝑡
𝑘+1

=

1 + √1 + 4𝑡
2

𝑘

2

.

(11)

Here we summarize the main procedure for solving our
network anomaly detection problem by APG algorithm,

which is called NAD-APG (see Algorithm 1). As pointed out
in [19], the algorithm has a convergence rate of 𝑂(1/𝑘2).

4. Experiments and Results

In this section, we conduct several experiments on different
attack types to show the effectiveness of our proposed
approach.

4.1.TheData Set. Currently, there are only fewpublic datasets
for intrusion detection evaluation. According to the literature
review by Tsai et al. [22], the majority of the IDS experiments
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Figure 9: Visualization for 500 normal and 100 R2L network traffic.

are performed on the KDD Cup 99 datasets. It is the most
comprehensive dataset that is still widely applied to compare
and measure the performance of IDSs. Therefore, in order
to facilitate fair and rational comparisons with other state-
of-the-art detection approaches, we select the KDD Cup
99 dataset to evaluate the performance of our approach
for detection. This dataset was derived from the DARPA
1998 datset. It contains training data with approximately five
million connection records and test data with about two
million connection records. Each record in this dataset is
uniquewith 41 features. KDDCup 99 dataset includes normal
traffic and our different types of attacks, namely, Probe,
Denial of Service (DOS), User o Root (U2R), and Remote to
User (R2U).More details about these attacks are given by [23].

During our experiments, we use 10% KDD Cup 99 for
training and testing. Literature review shows that a significant
number of state-of-the-art IDSs, such as [23, 24], were
evaluated using 10% KDD Cup 99 data. Therefore, training
and testing our system on the 10%KDDCup 99 data can help
to provide a fair comparison with those approaches. The 10%
KDD Cup 99 consists of 494,021 TCP/IP connection records
simulated in a military network environment, US Air Force
LAN. Each record is labeled as either normal or an attack, and
it has 41 different quantitative and qualitative features. These
features are generally categorized into threemain groups.The
first group is the basic features (i.e., attributes 1 to 9) that can
be extracted from a TCP/IP connection. The second group
refers to features 10 to 22 that are named as content-based
features presenting the information derived from network
packet payloads. The third group corresponds to the traffic-
based features, which are carried by the features 23 to 41 of
each record. A complete list of the set of features and the
detailed description is available in [25].

4.2. Experimental Results. To demonstrate our method for
managing the internet network, especially detecting the
abnormal behaviors from the normal network traffic, we
conduct PCA and NAD-APG methods for normal traffic
mixed with some attacks in our experiments.

Firstly, we randomly choose some normal traffic data
which consists of 97278 data items (see Figure 1). In this
paper, we consider these data as the normally-free traffic to
test the performance of ourmethod. After using PCA, we can

find that the principal components almost enjoy the whole
property of the original normal traffic. Here, the sum of the
variances of the first ten principal components is near 100%
of the total variance of the original data. Figure 2 shows us the
details of two matrices after decomposing the original matrix
using PCA, where Figure 2(a) shows the visualization for
matrix which is composed of top ten principal components
andFigure 2(b) shows the details of residualmatrix.However,
it is very difficult for us to find any pattern from them.
Moreover, there are still some data characteristics left in
residual matrix after we apply PCA to the original normal
data, which confuse the network analysts greatly. If we use our
proposed method to the above normal traffic, two matrices
with low-rank and sparse properties can be obtained to
show the normal and abnormal traffic, respectively. Figure 3
visualizes the details of the two matrices, where Figure 3(a)
represents the low-rank matrix with main properties of the
original normal traffic. In our paper, we term this matrix as
normal traffic matrix. While Figure 3(b) displays the matrix
with all zero elements, which is termed as abnormal traffic
matrix.Therefore, if we decompose the unique normal traffic
into two matrices, we can obtain normal matrix uniquely.
To sum up, Figure 3 shows the correctness and effectiveness
of our proposed NAD-APG. Furthermore, if the traffic was
polluted by noise (in this paper, we refer the noise to be
Gaussianwhite noisewith 0mean and 1 variance), NAD-APG
can identify the anomaly-free traffic accurately.

Figures 4 and 5 show the robust property of our proposed
NAD-APGmethod, where (a) is the visualization of Gaussian
white noise added to the normal traffic and (b) is the recovery
of anomaly-free traffic. In fact, we obtained the all zeromatrix
as well in this decomposition, which means the traffic is
anomaly-free. Figure 5 compares the effectiveness of NAD-
APG method with PCA. In the visualization of residual
matrix of PCA, it is obvious that we cannot find any pattern
of attacks.

To evaluate the effectiveness of our method for detecting
attacks in the whole internet, we add 500 “Probe” data items
to the normal traffic, which means that the amount of the
total data items is 97778 (see Figure 6). As we all know, Probe
attacks refer to attackers that typically probe the victim’s
network or host by searching through the network or host
for open ports before they launch an attack on a given host
[26]. Therefore, there may be a large volume of traffic in a
short time interval. Figure 6 displays the details of hybrid
traffic. Firstly, we try to use PCA to detect the Probe attack.
Figure 7(a) shows us the principal components of the hybrid
traffic data which occupy the 99% contribution to the whole
data. Though only 1% of energy of the whole data is left
in the residual matrix, we find that there are still some
intrinsic properties of the original data set which does not
show any valuable pattern for attacks. However, if we test
the hybrid data using NAD-APG method, the sparse traffic
matrix obtained from the algorithm shows the attack pattern
apparently. This enables the network manager to identify the
anomalous packets from the normal traffic and can improve
the accuracy of attacks detection. Figures 8(a) and 8(b) show
the patterns of normal and abnormal traffic decomposed by
the NAD-APG scheme.
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Input:Network traffic matrix𝑋 ∈ R𝑚×𝑛, 𝜆 and tolerance 𝜀.
Initialize: 𝐴

0
← 0; 𝐸

0
← 0; 𝑡

0
← 1;

Repeat
Step 1. Update 𝐴

𝑘+1
, 𝐸
𝑘+1

as 𝐴
𝑘+1

= S
𝜇/2
(𝑌
𝐴

𝑘
+ ((𝑋 − 𝑌

𝐴

𝑘
− 𝑌
𝐸

𝑘
)/2)) and 𝐸

𝑘+1
= S
𝜇/2
(𝑌
𝐸

𝑘
+ ((𝑋 − 𝑌

𝐴

𝑘
− 𝑌
𝐸

𝑘
)/2)).

Step 2. Let 𝑡
𝑘+1

= (1 + √1 + 4𝑡
2

𝑘
)/2.

Step 3. Update 𝑌𝐴
𝑘+1

and 𝑌𝐸
𝑘+1

: 𝑌𝐴
𝑘+1

= 𝐴
𝑘+1
+ ((𝑡
𝑘
− 1)/(𝑡

𝑘+1
))(𝐴
𝑘+1
− 𝐴
𝑘
), 𝑌𝐸
𝑘+1

= 𝐸
𝑘+1
+ ((𝑡
𝑘
− 1) / (𝑡

𝑘+1
))(𝐸
𝑘+1
− 𝐸
𝑘
)

Until ‖𝐴
𝑘+1
− 𝐴
𝑘
‖ ≤ 𝜀; ‖𝐸

𝑘+1
− 𝐸
𝑘
‖ ≤ 𝜀; 𝐴 ← 𝐴

𝑘+1
, 𝐸 ← 𝐸

𝑘+1
.

Analyze: normal traffic pattern matrix 𝐴; abnormal traffic matrix 𝐸.
Output: Is there any abnormal activity or not in the whole traffic?

Algorithm 1: Anomaly detection using APG.
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Figure 10: (a) Principal components of NR data in PCA. (b) Residual matrix of NR data in PCA.

0 100 200 300 400 500 600

0

1

2

3

4

5

6
×10

6

−1

(a)

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

4

(b)

Figure 11: (a) Normal traffic of NR in NAD-APG method. (b) Abnormal patterns of NR in NAD-APG.
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Figure 12: (a) Normal traffic of NRN in NAD-APG method. (b) Abnormal patterns of NRN in NAD-APG.

Table 1: Rank of low-rank matrix in the decomposition of NAD-APG method for attacks detection.

Different sampling data Data items Rank (sampling data) Rank (low-rank matrix)
Normal traffic 97378 38 10
Normal traffic + Probe 97778 38 4
500 Normal traffic + 100 R2L traffic 600 36 4
Normal traffic + 100 R2L traffic 97478 38 4

To further demonstrate the advantages of our proposed
scheme in small sampling data, we randomly choose 500
normal data items and 100 R2L attacks traffic as our test
data set (here we term this data set as NR). R2L attacks
always reveal the unauthorized local access from a remote
machine. Moreover, the data values in R2L attacks are always
much larger than the common data traffic. Therefore, we
can find that the fluctuation in the scale of the data values
occurs fromFigure 9. Figures 10 and 11 represent the details of
the normal and abnormal traffic matrices obtained from the
two different decomposition algorithms, where the residual
matrix in PCA is still confusing. Therefore, it is very difficult
for network analysts to find the R2L attacks pattern from
it. On the contrary, the attack pattern can apparently be
found from the sparse matrix as shown in Figure 11(b). Even
sometimes the real network traffic data are polluted by the
noise (here we term this data set as NRN), especially the
Gaussian white noise; the NAD-APG method can separate
the normal and R2L attack patterns apparently. Figures 12(a)
and 12(b) reveal the different patterns hidden in the network
traffic, respectively.

To sum up, the experiments implemented above show
that the low-rank matrix represents the normal traffic and
the sparse matrix can always reveal the patterns of different
attacks when we use our proposed NAD-APG scheme to
detect anomalies. Table 1 describes the different ranks of the
normal traffic matrix in detecting different attacks. There is
no doubt that the low-rank matrices in processing different

sampling data have much lower ranks than the original ones.
However, the rank of low-rank matrix is ten when we deal
with the pure normal network traffic, which may be caused
by the pure type of data.

5. Conclusion

This paper introduced a new decomposition model for
packet-level network traffic data no matter whether it was
polluted by large-scale anomalies and noise or not. We pre-
sented the iterative algorithm based on accelerated proximal
gradientmethod, whichwas termed asNAD-APG.Moreover,
we designed a prototype system for network anomalies
detection such as Probe and R2L attacks and so on. The
experiments have shown that our approach is effective in
revealing the patterns of network traffic data and detecting
attacks from a variety of networking patterns. In addition,
the experiments have demonstrated the robustness of the
algorithm as well when the network traffic is polluted by the
large volume anomalies and noise.

Though it is effective in detecting the attacks from
the large-volume network traffic, it is difficult to classify
the abnormal activities. Therefore, leveraging some feature
selection and classification methods to our approaches to
enhance the efficiency of intrusion detection is considered as
our near future work. On the other hand, we will do more
researches on APG algorithm itself and make our method
more powerful and practical.
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