366 research outputs found

    Preventing Distributed Denial-of-Service Attacks on the IMS Emergency Services Support through Adaptive Firewall Pinholing

    Full text link
    Emergency services are vital services that Next Generation Networks (NGNs) have to provide. As the IP Multimedia Subsystem (IMS) is in the heart of NGNs, 3GPP has carried the burden of specifying a standardized IMS-based emergency services framework. Unfortunately, like any other IP-based standards, the IMS-based emergency service framework is prone to Distributed Denial of Service (DDoS) attacks. We propose in this work, a simple but efficient solution that can prevent certain types of such attacks by creating firewall pinholes that regular clients will surely be able to pass in contrast to the attackers clients. Our solution was implemented, tested in an appropriate testbed, and its efficiency was proven.Comment: 17 Pages, IJNGN Journa

    SecSip: A Stateful Firewall for SIP-based Networks

    Get PDF
    SIP-based networks are becoming the de-facto standard for voice, video and instant messaging services. Being exposed to many threats while playing an major role in the operation of essential services, the need for dedicated security management approaches is rapidly increasing. In this paper we present an original security management approach based on a specific vulnerability aware SIP stateful firewall. Through known attack descriptions, we illustrate the power of the configuration language of the firewall which uses the capability to specify stateful objects that track data from multiple SIP elements within their lifetime. We demonstrate through measurements on a real implementation of the firewall its efficiency and performance

    Preventing DDoS using Bloom Filter: A Survey

    Full text link
    Distributed Denial-of-Service (DDoS) is a menace for service provider and prominent issue in network security. Defeating or defending the DDoS is a prime challenge. DDoS make a service unavailable for a certain time. This phenomenon harms the service providers, and hence, loss of business revenue. Therefore, DDoS is a grand challenge to defeat. There are numerous mechanism to defend DDoS, however, this paper surveys the deployment of Bloom Filter in defending a DDoS attack. The Bloom Filter is a probabilistic data structure for membership query that returns either true or false. Bloom Filter uses tiny memory to store information of large data. Therefore, packet information is stored in Bloom Filter to defend and defeat DDoS. This paper presents a survey on DDoS defending technique using Bloom Filter.Comment: 9 pages, 1 figure. This article is accepted for publication in EAI Endorsed Transactions on Scalable Information System

    A hybrid and cross-protocol architecture with semantics and syntax awareness to improve intrusion detection efficiency in Voice over IP environments

    Get PDF
    Includes abstract.Includes bibliographical references (leaves 134-140).Voice and data have been traditionally carried on different types of networks based on different technologies, namely, circuit switching and packet switching respectively. Convergence in networks enables carrying voice, video, and other data on the same packet-switched infrastructure, and provides various services related to these kinds of data in a unified way. Voice over Internet Protocol (VoIP) stands out as the standard that benefits from convergence by carrying voice calls over the packet-switched infrastructure of the Internet. Although sharing the same physical infrastructure with data networks makes convergence attractive in terms of cost and management, it also makes VoIP environments inherit all the security weaknesses of Internet Protocol (IP). In addition, VoIP networks come with their own set of security concerns. Voice traffic on converged networks is packet-switched and vulnerable to interception with the same techniques used to sniff other traffic on a Local Area Network (LAN) or Wide Area Network (WAN). Denial of Service attacks (DoS) are among the most critical threats to VoIP due to the disruption of service and loss of revenue they cause. VoIP systems are supposed to provide the same level of security provided by traditional Public Switched Telephone Networks (PSTNs), although more functionality and intelligence are distributed to the endpoints, and more protocols are involved to provide better service. A new design taking into consideration all the above factors with better techniques in Intrusion Detection are therefore needed. This thesis describes the design and implementation of a host-based Intrusion Detection System (IDS) that targets VoIP environments. Our intrusion detection system combines two types of modules for better detection capabilities, namely, a specification-based and a signaturebased module. Our specification-based module takes the specifications of VoIP applications and protocols as the detection baseline. Any deviation from the protocol’s proper behavior described by its specifications is considered anomaly. The Communicating Extended Finite State Machines model (CEFSMs) is used to trace the behavior of the protocols involved in VoIP, and to help exchange detection results among protocols in a stateful and cross-protocol manner. The signature-based module is built in part upon State Transition Analysis Techniques which are used to model and detect computer penetrations. Both detection modules allow for protocol-syntax and protocol-semantics awareness. Our intrusion detection uses the aforementioned techniques to cover the threats propagated via low-level protocols such as IP, ICMP, UDP, and TCP

    Novel Approach for IP-PBX Denial of Service Intrusion Detection Using Support Vector Machine Algorithm.

    Get PDF
    Recent trends have revealed that SIP based IP-PBX DoS attacks contribute to most overall IP-PBX attacks which is resulting in loss of revenues and quality of service in telecommunication providers. IP-PBX face challenges in detecting and mitigating malicious traffic. In this research, Support Vector Machine (SVM) machine learning detection & prevention algorithm were developed to detect this type of attacks Two other techniques were benchmarked decision tree and Naïve Bayes. The training phase of the machine learning algorithm used proposed real-time training datasets benchmarked with two training datasets from CICIDS and NSL-KDD. Proposed real-time training dataset for SVM algorithm achieved highest detection rate of 99.13% while decision tree and Naïve Bayes has 93.28% & 86.41% of attack detection rate, respectively. For CICIDS dataset, SVM algorithm achieved highest detection rate of 76.47% while decision tree and Naïve Bayes has 63.71% & 41.58% of detection rate, respectively. Using NSL-KDD training dataset, SVM achieved 65.17%, while decision tree and Naïve Bayes has 51.96% & 38.26% of detection rate, respectively.The time taken by the algorithms to classify the attack is very important. SVM gives less time (2.9 minutes) for detecting attacks while decision tree and naïve Bayes gives 13.6 minutes 26.2 minutes, respectively. Proposed SVM algorithm achieved the lowest false negative value of (87 messages) while decision table and Naïve Bayes achieved false negative messages of 672 and 1359, respectively

    New Approaches to Mitigation of Malicious Traffic in VoIP Networks

    Get PDF
    Voice over IP (VoIP) telephony is becoming widespread in use, and is often integrated into computer networks. Because of this, malicious software threatens VoIP systems in the same way that traditional computer systems have been attacked by viruses, worms, and other automated agents. VoIP networks are a challenge to secure against such malware as much of the network intelligence is focused on the edge devices and access environment. This paper describes the design and implementation of a novel VoIP security architecture in which evaluation of, and mitigation against, malicious traffic is demonstrated by the use of virtual machines to emulate vulnerable clients and servers through the use of apparent attack vectors. This new architecture, which is part of an ongoing research project, establishes interaction between the VoIP backend and the end users, thus providing information about ongoing and unknown attacks to users

    Intrusion detection mechanisms for VoIP applications

    Get PDF
    VoIP applications are emerging today as an important component in business and communication industry. In this paper, we address the intrusion detection and prevention in VoIP networks and describe how a conceptual solution based on the Bayes inference approach can be used to reinforce the existent security mechanisms. Our approach is based on network monitoring and analyzing of the VoIP-specific traffic. We give a detailed example on attack detection using the SIP signaling protocol
    corecore