160 research outputs found

    Modeling, Analysis, and Hard Real-time Scheduling of Adaptive Streaming Applications

    Get PDF
    In real-time systems, the application's behavior has to be predictable at compile-time to guarantee timing constraints. However, modern streaming applications which exhibit adaptive behavior due to mode switching at run-time, may degrade system predictability due to unknown behavior of the application during mode transitions. Therefore, proper temporal analysis during mode transitions is imperative to preserve system predictability. To this end, in this paper, we initially introduce Mode Aware Data Flow (MADF) which is our new predictable Model of Computation (MoC) to efficiently capture the behavior of adaptive streaming applications. Then, as an important part of the operational semantics of MADF, we propose the Maximum-Overlap Offset (MOO) which is our novel protocol for mode transitions. The main advantage of this transition protocol is that, in contrast to self-timed transition protocols, it avoids timing interference between modes upon mode transitions. As a result, any mode transition can be analyzed independently from the mode transitions that occurred in the past. Based on this transition protocol, we propose a hard real-time analysis as well to guarantee timing constraints by avoiding processor overloading during mode transitions. Therefore, using this protocol, we can derive a lower bound and an upper bound on the earliest starting time of the tasks in the new mode during mode transitions in such a way that hard real-time constraints are respected.Comment: Accepted for presentation at EMSOFT 2018 and for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD) as part of the ESWEEK-TCAD special issu

    Programming MPSoC platforms: Road works ahead

    Get PDF
    This paper summarizes a special session on multicore/multi-processor system-on-chip (MPSoC) programming challenges. The current trend towards MPSoC platforms in most computing domains does not only mean a radical change in computer architecture. Even more important from a SW developer´s viewpoint, at the same time the classical sequential von Neumann programming model needs to be overcome. Efficient utilization of the MPSoC HW resources demands for radically new models and corresponding SW development tools, capable of exploiting the available parallelism and guaranteeing bug-free parallel SW. While several standards are established in the high-performance computing domain (e.g. OpenMP), it is clear that more innovations are required for successful\ud deployment of heterogeneous embedded MPSoC. On the other hand, at least for coming years, the freedom for disruptive programming technologies is limited by the huge amount of certified sequential code that demands for a more pragmatic, gradual tool and code replacement strategy

    ALOHA: A Unified Platform-Aware Evaluation Method for CNNs Execution on Heterogeneous Systems at the Edge

    Get PDF
    CNN design and deployment on embedded edge-processing systems is an error-prone and effort-hungry process, that poses the need for accurate and effective automated assisting tools. In such tools, pre-evaluating the platform-aware CNN metrics such as latency, energy cost, and throughput is a key requirement for successfully reaching the implementation goals imposed by use-case constraints. Especially when more complex parallel and heterogeneous computing platforms are considered, currently utilized estimation methods are inaccurate or require a lot of characterization experiments and efforts. In this paper, we propose an alternative method, designed to be flexible, easy to use, and accurate at the same time. Considering a modular platform and execution model that adequately describes the details of the platform and the scheduling of different CNN operators on different platform processing elements, our method captures precisely operations and data transfers and their deployment on computing and communication resources, significantly improving the evaluation accuracy. We have tested our method on more than 2000 CNN layers, targeting an FPGA-based accelerator and a GPU platform as reference example architectures. Results have shown that our evaluation method increases the estimation precision by up to 5× for execution time, and by 2\times for energy, compared to other widely used analytical methods. Moreover, we assessed the impact of the improved platform-awareness on a set of neural architecture search experiments, targeting both hardware platforms, and enforcing 2 sets of latency constraints, performing 5 trials on each search space, for a total number of 20 experiments. The predictability is improved by 4\times , reaching, with respect to alternatives, selection results clearly more similar to those obtained with on-hardware measurements
    • …
    corecore