69,027 research outputs found

    Limits on the Benefits of Energy Storage for Renewable Integration

    Full text link
    The high variability of renewable energy resources presents significant challenges to the operation of the electric power grid. Conventional generators can be used to mitigate this variability but are costly to operate and produce carbon emissions. Energy storage provides a more environmentally friendly alternative, but is costly to deploy in large amounts. This paper studies the limits on the benefits of energy storage to renewable energy: How effective is storage at mitigating the adverse effects of renewable energy variability? How much storage is needed? What are the optimal control policies for operating storage? To provide answers to these questions, we first formulate the power flow in a single-bus power system with storage as an infinite horizon stochastic program. We find the optimal policies for arbitrary net renewable generation process when the cost function is the average conventional generation (environmental cost) and when it is the average loss of load probability (reliability cost). We obtain more refined results by considering the multi-timescale operation of the power system. We view the power flow in each timescale as the superposition of a predicted (deterministic) component and an prediction error (residual) component and formulate the residual power flow problem as an infinite horizon dynamic program. Assuming that the net generation prediction error is an IID process, we quantify the asymptotic benefits of storage. With the additional assumption of Laplace distributed prediction error, we obtain closed form expressions for the stationary distribution of storage and conventional generation. Finally, we propose a two-threshold policy that trades off conventional generation saving with loss of load probability. We illustrate our results and corroborate the IID and Laplace assumptions numerically using datasets from CAISO and NREL.Comment: 45 pages, 17 figure

    Cooperation and Storage Tradeoffs in Power-Grids with Renewable Energy Resources

    Full text link
    One of the most important challenges in smart grid systems is the integration of renewable energy resources into its design. In this work, two different techniques to mitigate the time varying and intermittent nature of renewable energy generation are considered. The first one is the use of storage, which smooths out the fluctuations in the renewable energy generation across time. The second technique is the concept of distributed generation combined with cooperation by exchanging energy among the distributed sources. This technique averages out the variation in energy production across space. This paper analyzes the trade-off between these two techniques. The problem is formulated as a stochastic optimization problem with the objective of minimizing the time average cost of energy exchange within the grid. First, an analytical model of the optimal cost is provided by investigating the steady state of the system for some specific scenarios. Then, an algorithm to solve the cost minimization problem using the technique of Lyapunov optimization is developed and results for the performance of the algorithm are provided. These results show that in the presence of limited storage devices, the grid can benefit greatly from cooperation, whereas in the presence of large storage capacity, cooperation does not yield much benefit. Further, it is observed that most of the gains from cooperation can be obtained by exchanging energy only among a few energy harvesting sources

    Dispersed storage and generation case studies

    Get PDF
    Three installations utilizing separate dispersed storage and generation (DSG) technologies were investigated. Each of the systems is described in costs and control. Selected institutional and environmental issues are discussed, including life cycle costs. No unresolved technical, environmental, or institutional problems were encountered in the installations. The wind and solar photovoltaic DSG were installed for test purposes, and appear to be presently uneconomical. However, a number of factors are decreasing the cost of DSG relative to conventional alternatives, and an increased DSG penetration level may be expected in the future

    Ancillary Services in Hybrid AC/DC Low Voltage Distribution Networks

    Get PDF
    In the last decade, distribution systems are experiencing a drastic transformation with the advent of new technologies. In fact, distribution networks are no longer passive systems, considering the current integration rates of new agents such as distributed generation, electrical vehicles and energy storage, which are greatly influencing the way these systems are operated. In addition, the intrinsic DC nature of these components, interfaced to the AC system through power electronics converters, is unlocking the possibility for new distribution topologies based on AC/DC networks. This paper analyzes the evolution of AC distribution systems, the advantages of AC/DC hybrid arrangements and the active role that the new distributed agents may play in the upcoming decarbonized paradigm by providing different ancillary services.Ministerio de Economía y Competitividad ENE2017-84813-RUnión Europea (Programa Horizonte 2020) 76409

    Requirements to Testing of Power System Services Provided by DER Units

    Get PDF
    The present report forms the Project Deliverable ‘D 2.2’ of the DERlab NoE project, supported by the EC under Contract No. SES6-CT-518299 NoE DERlab. The present document discuss the power system services that may be provided from DER units and the related methods to test the services actually provided, both at component level and at system level

    Smart Procurement Of Naturally Generated Energy (SPONGE) for PHEV's

    Get PDF
    In this paper we propose a new engine management system for hybrid vehicles to enable energy providers and car manufacturers to provide new services. Energy forecasts are used to collaboratively orchestrate the behaviour of engine management systems of a fleet of PHEV's to absorb oncoming energy in an smart manner. Cooperative algorithms are suggested to manage the energy absorption in an optimal manner for a fleet of vehicles, and the mobility simulator SUMO is used to show simple simulations to support the efficacy of the proposed idea.Comment: Updated typos with respect to previous versio
    corecore