179,016 research outputs found

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    AN INVESTIGATION OF EVOLUTIONARY COMPUTING IN SYSTEMS IDENTIFICATION FOR PRELIMINARY DESIGN

    Get PDF
    This research investigates the integration of evolutionary techniques for symbolic regression. In particular the genetic programming paradigm is used together with other evolutionary computational techniques to develop novel approaches to the improvement of areas of simple preliminary design software using empirical data sets. It is shown that within this problem domain, conventional genetic programming suffers from several limitations, which are overcome by the introduction of an improved genetic programming strategy based on node complexity values, and utilising a steady state algorithm with subpopulations. A further extension to the new technique is introduced which incorporates a genetic algorithm to aid the search within continuous problem spaces, increasing the robustness of the new method. The work presented here represents an advance in the Geld of genetic programming for symbolic regression with significant improvements over the conventional genetic programming approach. Such improvement is illustrated by extensive experimentation utilising both simple test functions and real-world design examples

    Absolutely free extrinsic evolution of passive low-pass filter

    Get PDF
    Evolutionary electronics is a brunch of evolvable hardware, where the evolutionary algorithm is applied towards electronic circuits. The success of evolutionary search most of all depends on variable length representation methodology. The low-pass filter is a standard task in evolutionary electronics to start with. The results of evolution enable one to qualify whether the methodology is good for further experiments. In this paper the maximum freedom for evolutionary search has been proclaimed as a main target during development of new VLR methodology. The introduction of R-support elements enables to perform an unconstrained evolution of analogue circuits for the first time. The proposed algorithm has been tested on the example of analogue low-pass filter. The experimental results demonstrate that the evolved filter is comparable with filters evolved previously using genetic programming and genetic algorithms techniques. The obtained results are compared in details with low-pass filters previously designed

    Self-repair ability of evolved self-assembling systems in cellular automata

    Get PDF
    Self-repairing systems are those that are able to reconfigure themselves following disruptions to bring them back into a defined normal state. In this paper we explore the self-repair ability of some cellular automata-like systems, which differ from classical cellular automata by the introduction of a local diffusion process inspired by chemical signalling processes in biological development. The update rules in these systems are evolved using genetic programming to self-assemble towards a target pattern. In particular, we demonstrate that once the update rules have been evolved for self-assembly, many of those update rules also provide a self-repair ability without any additional evolutionary process aimed specifically at self-repair

    Gossip, Sexual Recombination and the El Farol Bar: modelling the emergence of heterogeneity

    Get PDF
    Brian Arthur's `El Farol Bar' model is extended so that the agents also learn and communicate. The learning and communication is implemented using an evolutionary process acting upon a population of mental models inside each agent. The evolutionary process is based on a Genetic Programming algorithm. Each gene is composed of two tree-structures: one to control its action and one to determine its communication. A detailed case-study from the simulations show how the agents have differentiated so that by the end of the run they had taken on very different roles. Thus the introduction of a flexible learning process and an expressive internal representation has allowed the emergence of heterogeneity

    Using attribute construction to improve the predictability of a GP financial forecasting algorithm

    Get PDF
    Financial forecasting is an important area in computational finance. EDDIE 8 is an established Genetic Programming financial forecasting algorithm, which has successfully been applied to a number of international datasets. The purpose of this paper is to further increase the algorithm’s predictive performance, by improving its data space representation. In order to achieve this, we use attribute construction to create new (high-level) attributes from the original (low-level) attributes. To examine the effectiveness of the above method, we test the extended EDDIE’s predictive performance across 25 datasets and compare it to the performance of two previous EDDIE algorithms. Results show that the introduction of attribute construction benefits the algorithm, allowing EDDIE to explore the use of new attributes to improve its predictive accuracy
    corecore