
Using Attribute Construction to Improve the Predictability of a GP Financial
Forecasting Algorithm

Michael Kampouridis and Fernando E. B. Otero

School of Computing
University of Kent, Chatham Maritime, UK

Email: {M.Kampouridis, F.E.B.Otero}@kent.ac.uk

Abstract—Financial forecasting is an important area in
computational finance. EDDIE 8 is an established Genetic
Programming financial forecasting algorithm, which has suc-
cessfully been applied to a number of international datasets.
The purpose of this paper is to further increase the algorithm’s
predictive performance, by improving its data space represen-
tation. In order to achieve this, we use attribute construction to
create new (high-level) attributes from the original (low-level)
attributes. To examine the effectiveness of the above method,
we test the extended EDDIE’s predictive performance across
25 datasets and compare it to the performance of two previous
EDDIE algorithms. Results show that the introduction of
attribute construction benefits the algorithm, allowing EDDIE
to explore the use of new attributes to improve its predictive
accuracy.

Keywords-genetic programming; financial forecasting; at-
tribute construction

I. INTRODUCTION

Financial forecasting is a vital area in computational fi-

nance [1]. There are numerous works that attempt to forecast

the future price movements of a stock; several examples

can be found in [2], [3]. EDDIE is a well-established

genetic programming financial forecasting tool, which has

been found to outperform traditional decision rule induction

methods, such as C4.5, and return high accuracy results over

different international stock markets [4], [5].

Recently, EDDIE 8 (ED8) [7], [8] was introduced, which

is one of the latest algorithms from the EDDIE series. While

previous EDDIE algorithms were using pre-specified periods

for the indicators from technical analysis (e.g., 20 days
Moving Average, 50 days Momentum), ED8 was the first

algorithm to allow these periods to be directly selected by

the GP. Thus, instead of the algorithm’s user pre-specifying

a number of fixed period values for the technical indicators,

as it traditionally happens in both academia and industry,

ED8 allowed the GP to evolve different periods for each

technical indicator. As a result to the above modification,

ED8 was able to produce new technical indicators, which

improved the algorithm’s predictive performance.

The purpose of this paper is to further improve the predic-

tive performance of EDDIE, by using attribute construction.

At the moment, ED8’s trees are limited in testing conditions

in the form of the triple (indicator, relational operator,

threshold). For example, a tree from ED8 could be asked

to evaluate the boolean 20 days Moving Average > 0.95,

where ‘20 days Moving Average’ is an indicator derived

from technical analysis [11], ’>’ is the relational operator,

and ‘0.95’ is a threshold value (real number). However, this

method has the potential disadvantage that it does not allow

for an effective search of the data space. This is because the

attributes defining the search space —the set of indicators

in this case— might be inadequate and new attributes might

be needed to represent the regularities of the space.

To tackle the above limitation, we propose the use of

attribute construction by extending EDDIE to allow the

creation of new attributes during the construction of its trees.

Our goal is to show that this extension is beneficial to the

algorithm, and subsequently leads to improvements in its

predictive performance.

The rest of this paper is organized as follows: Section

II offers a general overview of the EDDIE 8 algorithm.

Section III then explains how we incorporated the attribute

construction in EDDIE. Sections IV and V then present

the experimental setup and discuss the obtained results,

respectively. Lastly, Section VI concludes this paper and

discusses future work.

II. THE EDDIE 8 ALGORITHM

EDDIE 8 (ED8) is a Genetic Programming (GP) [9], [10]

financial forecasting algorithm, which learns and extracts

knowledge from a set of data. The question ED8 tries to

answer is ‘will the price increase within the n following days

by r%?’ The user first feeds the system with a set of past

data; EDDIE then uses this data and through a GP process, it

creates and evolves Genetic Decision Trees (GDTs), which

make recommendations of buy (1) or not-to-buy (0).

The set of data used is composed of three parts: (i) daily

closing price of a stock, (ii) a number of attributes, and

(iii) signals. Stocks’ daily closing prices can be obtained

online on websites such as http://finance.yahoo.com

and from financial statistics databases like Datastream.1

1Available at: http://thomsonreuters.com/datastream-
professional/

2013 Conference on Technologies and Applications of Artificial Intelligence

978-1-4799-2528-5/13 $31.00 © 2013 IEEE

DOI 10.1109/.22

55

2013 Conference on Technologies and Applications of Artificial Intelligence

978-1-4799-2528-5/13 $31.00 © 2013 IEEE

DOI 10.1109/.22

55

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30703731?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> AND <Condition> |

<Condition> OR <Condition> |
NOT <Condition> |
<VarConstructor> <RelationOperation> Threshold

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period
| Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterized range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 1. The Backus Normal Form of ED8

The attributes are indicators commonly used in technical

analysis [11]; which indicators to use depends on the user

and his belief of their relevance to the prediction. The

technical indicators used in this work are: Moving Average

(MA), Trade Break Out (TBR), Filter (FLR), Volatility

(Vol), Momentum (Mom), and Momentum Moving Average

(MomMA).2

The signals are calculated by looking ahead of the closing

price for a time horizon of n days, trying to detect if

there is an increase of the price by r% [5]. For this set of

experiments, n was set to 20 and r to 4%. In other words, the

GP is trying to use some of the above indicators to forecast

whether the daily closing price is going to increase by 4%

within the following 20 days.

After feeding the data to the system, EDDIE creates

and evolves a population of GDTs. Figure 1 presents the

Backus Normal Form (BNF) [15] (grammar) of ED8. The

root of the tree is an If-Then-Else statement. The

first branch is either a boolean (testing whether a technical

indicator is greater than/less than/equal to a value), or a logic

operator (AND, OR, NOT), which can hold multiple boolean

conditions. The Then and Else branches can be a new

GDT, or a decision, to buy (1) or not-to-buy (0).

As we can observe from the grammar in Figure 1, there

is a function called “VarConstructor”, which takes two

children. The first one is the indicator, and the second one is

the “Period”. “Period” is an integer within the parameterized

range [MinP, MaxP] that the user specifies. The advantage of

this approach is that ED8 is not constrained to pre-specified

2We use these indicators because they have been proved to be quite
useful in developing GDTs in previous works like [12], [13] and [14]. Of
course, there is no reason not to use other information like fundamentals or
limit order book. However, the aim of this work is not to find the ultimate
indicators for financial forecasting.

periods, as is usually the case in industry.3 As a consequence,

it is up to the GP and the evolutionary process to look for the

optimal periods values from the period range provided. For

instance, if this range is 2 to 65 days, then ED8 can create

Moving Averages with any of these periods, e.g., 20 days

MA, 25 days MA, and so on. Furthermore, the periods are

leaf nodes and are thus subject to genetic operators, such as

crossover and mutation. A sample GDT of ED8 is presented

in Figure 2. As we can see, if the 20 days MA is less than

6.4, then the user is advised to buy; otherwise, the user is

advised to consult another GDT, which is located in the

third branch (“else-branch”) of the tree. As explained, the

periods 20 and 50 of the figure’s sample tree are leaf nodes;

the advantage of this being that the GP can replace them

with other, more effective periods, which might have come

up during the evolutionary process.

If

<

VarConstructor

MovingAverage 20

6.4

Buy(1) If

>

VarConstructor

Momentum 50

5.57

Not-Buy(0) Buy(1)

Figure 2. Sample GDT generated by ED8.

Depending on the classification of the predictions, we

can have four cases: True Positive (TP), False Positive (FP),

True Negative (TN), and False Negative (FN). As a result,

we can use the metrics presented in Equations 1, 2 and 3:

Rate of Correctness

RC =
TP + TN

TP + TN + FP + FN
(1)

Rate of Missing Chances

RMC =
FN

FN + TP
(2)

Rate of Failure

RF =
FP

FP + TP
(3)

The above metrics combined give the following fitness

3In the literature, the users of similar algorithms pre-specify certain
periods that they consider useful. For instance, 20 days MA, and 50 days
MA. The indicators (e.g., MA) together with their respective period (e.g.,
20) are treated by the GP as a single leaf node. Thus, the numbers 20 and
50 cannot change during the evolutionary process. In our previous work
[7], [8], we questioned this approach, because nobody can guarantee that,
for instance, a 20 days MA is better than a 25 days MA. To address this
issue, we created ED8, which is able to search in the space of technical
indicators and their periods.

5656

function, presented in Equation 4:

ff = w1 ∗RC − w2 ∗RMC − w3 ∗RF (4)

where w1, w2 and w3 are the weights for RC, RMC and RF

respectively. These weights are given in order to reflect the

preferences of investors. Thus, a conservative investor would

avoid failure; thus a higher weight for RF should be used.

For the experiments of this paper, the focus is on strategies

that mainly target correctness and reduced failure.

This concludes this short presentation of ED8. For more

detailed presentations of the EDDIE 8 algorithm, we refer

the reader to [7], [8]. The next section discusses attribute

construction and explains how it is incorporated in EDDIE.

III. INCORPORATING ATTRIBUTE CONSTRUCTION IN

EDDIE

It is well known that the classification performance is de-

pendent of the quality of the data space representation (i.e.,

attributes of the data) [19], [20]. If the attributes defining the

data space—the set of indicators in the case of EDDIE—are

inadequate, it becomes more difficult to create GDTs with

a high predictive quality. Attribute construction (also known

as feature construction) [19] is usually employed in order to

mitigate the potential problem of inadequate attributes. The

goal of attribute construction is to create new (high-level)

attributes from the original (low-level) attributes, improving

the data space representation. The main rationale is that

even when the original attributes are individually inadequate,

they can be combined to create new attributes with greater

predictive power than the original ones, effectively creating

a new data space representation where the regularities are

more apparent.

Attribute construction methods can be divided into two

categories with respect to the use of a classification algo-

rithm, namely the filter and wrapper methods:

Filter methods: are those methods where the attribute

construction is independent of the classification algorithm

that will be used to create the final classification model. New

attributes are created and evaluated by directly analysing

the data, without running a classification algorithm, using

information-theoretic measures (e.g., based on the entropy

measure). One clear advantage is that filter methods tend to

be more computational efficient; another advantage is that

the results are expected to have a more generic usefulness,

since they are not specifically created for a classification

algorithm (i.e., their quality is not determined by a specific

classification algorithm).

Wrapper methods: are those methods where the at-

tribute construction includes the use of a classification

algorithm. When new attributes are created, their quality

is evaluated by running a classification algorithm. As a

consequence, the created attributes tend to be specific for

the classification algorithm, limiting their usefulness for dif-

ferent classification algorithms. One of the main drawbacks

of wrapper methods is that they tend to be computationally

expensive, since they require the execution of a classifica-

tion algorithm to evaluate a candidate new attribute—many

executions when several different candidate attributes need

to be evaluated.

Genetic Programming has been successfully used in at-

tribute construction, following both filter and wrapper strate-

gies. Hu [20] proposed a GP for attribute construction called

GPCI following the filter strategy. The terminal set of the

GP consists of the booleanized original attributes and the

function set consists of the AND and OR operators; each

individual represent a candidate new attribute, created by

combining the (now boolean) attributes using the AND and

OR operators. Otero et al. [21] proposed a filter method that

uses a GP for attribute construction, without requiring the

boolean transformation of the original attributes. Krawiec

followed a wrapper strategy in the GP for attribute con-

struction proposed in [22]. More recently, Neshatian et al.

[23] proposed a GP-based filter method with the distinctive

feature of being able to create multiple new attributes in

a single execution. Other GP-based attribute construction

methods can be found in [24], [26].

In this paper we propose to incorporate attribute construc-

tion in EDDIE in order to improve the predictive accuracy

of the created GDTs. Since EDDIE is essentially a GP

algorithm, which can be used for attribute construction,

we do not follow the filter nor the wrapper strategy. We

extended EDDIE to allow the creation of new attributes

during the construction of the GDTs. In other words, EDDIE

will evolve GDTs that can evolve new attributes at the same

time—new attributes are evolved as new boolean conditions

that can appear in tests (first branch of a If-Then-Else
statement) of GDTs. This strategy resembles the embedded

feature selection strategy, where the feature selection occurs

as part of the classification model creation.4 Note that our

aim is not to propose a new attribute construction method;

we are interested in allowing EDDIE decide if new attributes

are needed or not to improve the predictive accuracy.

A. The New EDDIE 8-ATTR Algorithm

The current version of EDDIE only creates GDTs involv-

ing the combination of tests composed by a triple (attribute,

operator, value), where the value is a numeric constant, as

most of machine learning algorithm used for knowledge

discovery. In order to allow the creation of new attributes,

EDDIE’s grammar is extended to allow the creation of

tests involving the direct comparison of indicator values,

presented in Figure 3—the new version is called EDDIE

8-ATTR (ED8-ATTR).

The main modification is the introduction of the

production “<VarConstructor> <RelationOperation>

4Refer to [27] for a discussion of different feature selection strategies
and methods.

5757

<Tree> ::= If-Then-Else <Condition> <Tree> <Tree> | Decision
<Condition> ::= <Condition> AND <Condition> |

<Condition> OR <Condition> |
NOT <Condition> |
<VarConstructor> <RelationOperation> Threshold |
<VarConstructor> <RelationOperation> <VarConstructor>

<VarConstructor> ::= MA period | TBR period | FLR period | Vol period
| Mom period | MomMA period

<RelationOperation> ::= “>” | “<” | “=”
Terminals:

MA, TBR, FLR, Vol, Mom, MomMA are function symbols
Period is an integer within a parameterized range, [MinP, MaxP]
Decision is an integer, Positive or Negative implemented
Threshold is a real number

Figure 3. The Backus Normal Form of ED8-ATTR

<VarConstructor>’’ to the symbol “<Condition>’’,
which defines the rules for creating the conditions of

If-Then-Else statements of the GDTs. The new

grammar allows ED8-ATTR to create GDTs with the

same structure as ED8 and also GDTs that can define

new attributes, in a similar fashion as GP-based attribute

construction methods [20], [21], [22]—i.e., creating new

boolean conditions combining indicators (attributes) using

AND, OR and NOT operators. A sample GDT of ED8-ATTR

is presented in Figure 4. It is important to emphasize

that this GDT could not be created by the original ED8,

since it involves a condition comparing indicator values

directly—i.e., a new boolean attribute represented by the

condition “MovingAverage 20 > Momentum 50”.

If

>

VarConstructor

MovingAverage 20

VarConstructor

Momentum 50

Not-Buy(0) Buy(1)

Figure 4. Sample GDT generated by ED8-ATTR using a new boolean
attribute represented by the condition “MovingAverage 20 > Momentum
50”.

IV. EXPERIMENTAL SETUP

Our goal is to investigate whether the introduction of

attribute construction is beneficial to the EDDIE algorithm.

We are thus going to compare the performance of ED8-

ATTR to ED8, and also its predecessor, EDDIE 7 (ED7),

which uses pre-specified periods for the technical indicators.

The reason for also using the latter algorithm is because

although ED8 has been proven superior to the previous

EDDIE versions, there can be datasets that it is outperformed

by ED7, as it has previously been shown in [7], [8]. We thus

consider it important to test the performance of ED8-ATTR

to both ED7 and ED8.

Table I
GP PARAMETERS VALUES USED IN THE EXPERIMENTS.

GP Parameters

Max Initial Depth 6
Max Depth 8
Generations 50
Population size 500
Tournament size 2
Reproduction probability 0.1
Crossover probability 0.9
Mutation probability 0.01
Weight {w1, w2, w3} {0.6, 0.1, 0.3}
Period (ED8) [2,65]

In addition to the performance metrics mentioned in

Section II (i.e., fitness, RC, RMC, RF), we also use an

additional metric for the comparison of the algorithms. This

metric is related to the return the algorithm yields, and is

called Average Annualized Rate of Return (AARR). The

formula for this metric is presented in the Appendix. It

should be stated that AARR is not part of the fitness func-

tion. However, rate of return is a very important investment

metric, and that is why we use it as a reference.

Furthermore, we run tests for 25 datasets. These datasets

consist of daily closing prices from 18 stocks from FTSE

100, and 7 international indices. The 18 FTSE 100 stocks

are: Aggreko, Amlin, Barclays, British Petroleum (BP),

Cadbury, Carnival, Easyjet, First, Hammerson, Imperial To-

bacco, Marks & Spencer, Next, Royal Bank of Scotlland

(RBS), Schroders, Sky, Tesco, Vodafone and Xstrata. The

7 indices are: Athens Stock Exchange (Greece), DJIA

(USA), HSI (Hong Kong), MDAX (Germany), and NAS-

DAQ (USA), NIKEI (Japan), and NYSE (USA). The training

period is 1000 days and the testing period 300.

The GP parameters are presented in Table I. For statistical

purposes, the GP is run 50 times. The process is as follows.

We create a population of 500 GDTs, which are evolved for

50 generations, over a training period of 1000 days. At the

last generation, the best performing GDT in terms of fitness

is saved and applied to the testing data. As already explained,

this procedure is done for 50 individual runs.5 Next session

presents and discusses the results for the above experiments.

V. RESULTS

Table II presents the Mean and Best results for the 5

performance metrics tested in this paper. The higher ranking

algorithm per test is indicated by bold fonts. As we can

observe, ED8-ATTR gets the top ranking in 8 out of the 10

cases we investigated. More specifically, ED8-ATTR ranks

first in all 5 tests in terms of Mean results. In addition, in the

case of Best results, ED8-ATTR ranks first for the metrics

of Fitness, RC and RMC.

5We do not argue that these are the optimal GP parameters. Nevertheless,
experience from previous EDDIE experiments has shown that the above GP
parameters return effective results.

5858

Table II
FRIEDMAN RANKINGS FOR THE MEAN ANS BEST RESULTS OF ED7,

ED8 AND ED8-ATTR.

Fitness RC RMC RF AARR

ED7 2.12 2.16 1.98 2.24 2.12

Mean ED8 2.04 2.00 2.14 1.92 2.12

ED8-ATTR 1.84 1.84 1.88 1.84 1.76

ED7 1.96 1.94 2.14 1.80 1.88
Best ED8 2.20 2.24 2.2 2.12 2.00

ED8-ATTR 1.84 1.82 1.64 2.08 2.12

Subsequent analysis on the Holm post-hoc test [17], [18]

showed that the above results were not significant at 5%

level. However, this should not alarm us, because the fact

remains that ED8-ATTR was ranked first across the majority

of the tests, and specially in all the results concerning

the Mean performance. This suggests that ED8-ATTR is a

robust algorithm and is expected to produce better results

when new data is used. It also indicates that introducing

attribute construction does not have a negative impact on

the performance of the algorithm, even thought we are

effectively increasing the search space of the GP, and instead

an overall improvement is observed.

The above results are very important because they demon-

strate the superiority of ED8-ATTR across its predeces-

sors. These results also show us that the use of attribute

construction has enabled EDDIE to improve its data space

representation, and thus return improved forecasting results.

To further investigate the above, we looked into the

trees returned by the Hammerson dataset, which was the

dataset that ED8-ATTR had the biggest positive effect.

After looking into the productions of the tree that yielded

the best (testing) fitness results, we found that it was

using 10 productions of the form “<VarConstructor>
<RelationOperation> <VarConstructor>”, and another

10 of the form “<VarConstructor> <RelationOperation>
<Threshold>”. On the other hand, when we looked

into the productions of the worse performing tree

of Hammerson, we found that it was only using

6 productions of the form “<VarConstructor>
<RelationOperation> <VarConstructor>”, and 20 of

the form “<VarConstructor> <RelationOperation>
<Threshold>”. The former tree had a fitness of around

70%, whereas the latter tree had a fitness of about 40%.

The difference is of course quite significant. One reason

that explains why the first tree performed so well could

be because of the fact that it was using more productions

(at a rate of 50% of the total productions—10 out of

20) that allow the direct comparison of indicators (i.e.,

V arConstructor). On the other hand, the second tree was

only using the new production at a rate of 23% (6 out of

26 productions). Hence, it could be argued that the higher

Table III
AVERAGE COMPUTATIONAL TIME OF A SINGLE RUN ON THE

HAMMERSON DATASET.

ED7 ED8 ED8-ATTR

32.26 secs 43.14 secs 44.5 secs

rate of the “<VarConstructor> <RelationOperation>
<VarConstructor>” production attributed to the superiority

of the first tree.

Lastly, Table III presents the average computational time

of a single run6 of each algorithm for the Hammerson

dataset. As we can observe, ED8-ATTR is only 1.5 seconds

slower than ED8, which is 11 seconds slower than ED7.

Overall, these differences are minimal and we can thus

conclude that the introduction of attribute construction in

EDDIE 8 did not have any significant negative effect on the

computational time, while it led to important improvements

in the performance metrics.

VI. CONCLUSION

To conclude, this paper presented work on EDDIE 8

(ED8), which is an established GP financial forecasting

algorithm. As we explained, a limitation of ED8 is that its

trees are constrained in testing conditions in the form of

the triple (indicator, relational operator, threshold). However,

as this method has the potential disadvantage of ineffective

search of the data space, we extended EDDIE to allow the

creation of new attributes during the construction of its

trees. Results showed that this attribute construction was

beneficial to the algorithm, which was able to outperform

its two predecessors, EDDIE 7 and EDDIE 8, in 8 of the 10

tests examined. Results also indicated that the introduction

of more productions that allow the direct comparison of

indicators in a single tree, can have a significantly positive

effect to the tree’s predictive performance.

Lastly, since we observed performance improvements

in the GDTs that use the new grammar production, we

believe it would be interesting to implement a mechanism

to promote its use. Future work could also focus on using

arithmetic operators to combine the indicator values. This

could lead to an even better representation of the data space

and thus further improvements in the forecasting results.

APPENDIX

Here we present the formulas for the additional per-

formance metric AARR [4]. We would once again like

to remind the reader that this metric should be used for

reference only, since it is not part of the fitness function.

Hypothetical Trading Behaviour: We assume that when
a positive position is predicted by a GDT, one unit of money

6We ran each algorithm for 50 individual runs, and then divided each
resulted computational time by 50.

5959

is invested in a stock reflecting the current closing price. If
the closing price does rise by r% or more at day t within the
next n trading days, we then sell the portfolio at the closing
price of day t. If not, we sell the portfolio on the nth day,
regardless of the price.

Given a positive position predicted, for example, the ith
positive position, for simplicity, we ignore transaction cost,

and annualize its return by the following formula:

ARRi =
250

t
∗ Pt − P0

P0
(5)

Where P0 is the buy price, Pt is the sell price, t is

the number of days in markets, 255 is the number of

total trading days in one calendar year. Given a GDT

that generates N+ number of positive positions over the

period examined, its average ARR is shown in Equation (6):

AARR =
1

N

N+∑

i=1

ARRi (6)

REFERENCES

[1] E. Tsang and S. Martinez-Jaramillo, “Computational finance,”
IEEE Computational Intelligence Society Newsletter, pp. 3–8,
2004.

[2] S.-H. Chen, Genetic Algorithms and Genetic Programming in
Computational Finance. Springer-Verlag New York, LLC,
2002.

[3] J. Binner, G. Kendall, and S.-H. Chen, Eds., Applications
of Artificial Intelligence in Finance and Economics, ser.
Advances in Econometrics. Elsevier, 2004, vol. 19.

[4] J. Li, “FGP: A genetic programming-ased financial fore-
casting tool,” Ph.D. dissertation, Department of Computer
Science, University of Essex, 2001.

[5] E. Tsang, J. Li, S. Markose, H. Er, A. Salhi, and G. Iori, “ED-
DIE in financial decision making,” Journal of Management
and Economics, vol. 4(4), 2000.

[6] M. Kampouridis and E. Tsang, “EDDIE for investment oppor-
tunities forecasting: Extending the search space of the GP,” in
Proceedings of the IEEE World Congress on Computational
Intelligence, Barcelona, Spain, 2010, pp. 2019–2026.

[7] ——, “Investment opportunities forecasting: Extending the
grammar of a gp-based tool,” International Journal of Com-
putational Intelligence Systems, vol. 5, no. 3, pp. 530–541,
2012.

[8] J. Koza, Genetic Programming: On the programming of
computers by means of natural selection. Cambridge, MA:
MIT Press, 1992.

[9] R. Poli, W. Langdon, and N. McPhee, A Field Guide to
Genetic Programming. Lulu.com, 2008.

[10] R. Edwards and J. Magee, “Technical analysis of stock
trends,” New York Institute of Finance, 1992.

[11] S. Martinez-Jaramillo, “Artificial financial markets: An agent-
based approach to reproduce stylized facts and to study the
red queen effect,” Ph.D. dissertation, CFFEA, University of
Essex, 2007.

[12] F. Allen and R. Karjalainen, “Using genetic algorithms to
find technical trading rules,” Journal of Financial Economics,
vol. 51, pp. 245–271, 1999.

[13] M. Austin, G. Bates, M. Dempster, V. Leemans, and
S. Williams, “Adaptive systems for foreign exchange trading.”
Quantitative Finance, vol. 4(4), pp. 37–45, 2004.

[14] J. Backus, “The syntax and semantics of the proposed in-
ternational algebraic language of Zurich,” in International
Conference on Information Processing. UNESCO, 1959,
pp. 125–132.

[15] E. Tsang, S. Markose, and H. Er, “Chance discovery in stock
index option and future arbitrage,” New Mathematics and
Natural Computation, World Scientific, vol. 1(3), pp. 435–
447, 2005.

[16] J. Demšar, “Statistical comparisons of classifiers over multiple
data sets,” Journal of Machine Learning Research, vol. 7, pp.
1–30, 2006.

[17] S. Garcia, F. Herrera, and J.Shawe-Taylor, “An extension on
‘statistical comparisons of classifiers over multiple data sets’
for all pairwise comparisons”, Journal of Machine Learning
Research, vol. 9, pp. 2677–2694, 2008.

[18] Y-J. Hu, “A Genetic Programming Approach to Constructive
Induction,” Proc. of the 3rd Anual Genetic Programming
Conference, pp. 146-151, 1998.

[19] YJ. Hu, “Constructive Induction: Covering Attribute Spec-
trum,” Feature Extraction Construction and Selection, pp.
257-272, 1998.

[20] F.E.B. Otero, M.M.S. Silva, A.A. Freitas, and J.C. Nievola,
“Genetic Programming for Attribute Construction in Data
Mining,” Proc. of EuroGP, LNCS 2610, pp. 384–393, 2003.

[21] K. Krawiec, “Genetic programming-based construction of
features for machine learning and knowledge discovery
tasks,” Genetic Programming and Evolvable Machines, vol.
3(4), pp. 329–343, 2002.

[22] K. Neshatian, M. Zhang, and P. Andreae, “A Filter Approach
to Multiple Feature Construction for Symbolic Learning Clas-
sifiers Using Genetic Programming,” IEEE Transaction on
Evolutionary Computation, vol. 16, no. 5, pp. 645–661, 2012.

[23] H. Guo, L. B. Jack, and A. K. Nandi, “Feature generation
using genetic programming with application to fault classifi-
cation,” IEEE Trans. Syst. Man Cybern. B Cybern., vol. 35,
no. 1, pp. 89–99, 2005.

[24] M. G. Smith and L. Bull, “Genetic programming with a
genetic algorithm for feature construction and selection,”
Genet. Programming Evolvable Mach., vol. 6, no. 3, pp. 265–
281, 2005.

[25] I. Witten, E. Frank, and M.A. Hall, “Data Mining: Practical
Machine Learning Tools and Techniques”, 3rd. ed., Morgan
Kaufmann, 2011, 664 pages.

6060

