228,467 research outputs found

    Massively Parallel Computing at the Large Hadron Collider up to the HL-LHC

    Full text link
    As the Large Hadron Collider (LHC) continues its upward progression in energy and luminosity towards the planned High-Luminosity LHC (HL-LHC) in 2025, the challenges of the experiments in processing increasingly complex events will also continue to increase. Improvements in computing technologies and algorithms will be a key part of the advances necessary to meet this challenge. Parallel computing techniques, especially those using massively parallel computing (MPC), promise to be a significant part of this effort. In these proceedings, we discuss these algorithms in the specific context of a particularly important problem: the reconstruction of charged particle tracks in the trigger algorithms in an experiment, in which high computing performance is critical for executing the track reconstruction in the available time. We discuss some areas where parallel computing has already shown benefits to the LHC experiments, and also demonstrate how a MPC-based trigger at the CMS experiment could not only improve performance, but also extend the reach of the CMS trigger system to capture events which are currently not practical to reconstruct at the trigger level.Comment: 14 pages, 6 figures. Proceedings of 2nd International Summer School on Intelligent Signal Processing for Frontier Research and Industry (INFIERI2014), to appear in JINST. Revised version in response to referee comment

    Muon Spectrometer Phase-I Upgrade for the ATLAS Experiment: the New Small Wheel project

    Full text link
    The instantaneous luminosity of the Large Hadron Collider at CERN will be increased by up to a factor of five to seven with respect to the design value. To maintain an excellent detection and background rejection capability in the forward region of the ATLAS detector, part of the muon detection system will be upgraded during LHC shutdown periods with the replacement of part of the present first station in the forward regions with the so-called New Small Wheels (NSWs). The NSWs will have a diameter of approximately 10 m and will be made of two detector technologies: Micromegas and small-strip Thin Gap Chambers (sTGC). The physics motivation for this significant upgrade to the ATLAS detector will be presented. The design choices made to address the physics needs will be discussed. Finally, the status of the production of the detector modules will be presented.Comment: 10 pages, presented at CIPANP 201

    Highly Granular Calorimeters: Technologies and Results

    Full text link
    The CALICE collaboration is developing highly granular calorimeters for experiments at a future lepton collider primarily to establish technologies for particle flow event reconstruction. These technologies also find applications elsewhere, such as detector upgrades for the LHC. Meanwhile, the large data sets collected in an extensive series of beam tests have enabled detailed studies of the properties of hadronic showers in calorimeter systems, resulting in improved simulation models and development of sophisticated reconstruction techniques. In this proceeding, highlights are included from studies of the structure of hadronic showers and results on reconstruction techniques for imaging calorimetry. In addition, current R&D activities within CALICE are summarized, focusing on technological prototypes that address challenges from full detector system integration and production techniques amenable to mass production for electromagnetic and hadronic calorimeters based on silicon, scintillator, and gas techniques.Comment: 11 pages, 16 figures, the proceeding for the overview talk presented at the conference Instrumentation for Colliding Beam Physics 2017 (INSTR17), Novosibirsk, Russia, 27 February - 3 March 2017, to be published in JINS

    Scholarly collaboration across time zones

    Get PDF
    The barriers to global collaboration of yesteryear were, for example, country boundaries and time zones. Today however, in a world where communication is thriving on new technologies, these barriers have been overcome, not only by the technology itself, but also by the collaborators in a desire (and need) to extend knowledge, seize opportunities and build partnerships. This chapter reports on one such collaboration: a case study where the focus is the writing of a scholarly article between authors from Australia, England and South Africa. The challenges of different time zones, academic calendars, and managing the collaboration are outlined in this chapter. Findings from the case study suggests that the key elements of success are related to the individuals and project management techniques, and not the technology per se. The constructivist learning theory as well as the e-Moderation model are supported by this work and thus extend their application to the academic writing process

    Evaluation of the ICT Test Bed project: final report, June 2007

    Get PDF
    The report describes three strands of evaluation used in the review of the 2006 outcomes from ICT Test Bed and the findings from each strand. a) Quantitative data: Benchmarking of changes in performance on national tests against matched comparator schools and national averages; b) Qualitative data: Site visits including classroom observations, interviews with local authority managers, head teachers, teachers, administrative staff, technicians and students; and c) Document analysis
    • …
    corecore