47 research outputs found

    Reliability Evaluation for Clustered WSNs under Malware Propagation.

    Full text link
    We consider a clustered wireless sensor network (WSN) under epidemic-malware propagation conditions and solve the problem of how to evaluate its reliability so as to ensure efficient, continuous, and dependable transmission of sensed data from sensor nodes to the sink. Facing the contradiction between malware intention and continuous-time Markov chain (CTMC) randomness, we introduce a strategic game that can predict malware infection in order to model a successful infection as a CTMC state transition. Next, we devise a novel measure to compute the Mean Time to Failure (MTTF) of a sensor node, which represents the reliability of a sensor node continuously performing tasks such as sensing, transmitting, and fusing data. Since clustered WSNs can be regarded as parallel-serial-parallel systems, the reliability of a clustered WSN can be evaluated via classical reliability theory. Numerical results show the influence of parameters such as the true positive rate and the false positive rate on a sensor node's MTTF. Furthermore, we validate the method of reliability evaluation for a clustered WSN according to the number of sensor nodes in a cluster, the number of clusters in a route, and the number of routes in the WSN

    The dynamics of complex systems. Studies and applications in computer science and biology

    Get PDF
    Our research has focused on the study of complex dynamics and on their use in both information security and bioinformatics. Our first work has been on chaotic discrete dynamical systems, and links have been established between these dynamics on the one hand, and either random or complex behaviors. Applications on information security are on the pseudorandom numbers generation, hash functions, informationhiding, and on security aspects on wireless sensor networks. On the bioinformatics level, we have applied our studies of complex systems to theevolution of genomes and to protein folding

    Markov Decision Processes with Applications in Wireless Sensor Networks: A Survey

    Full text link
    Wireless sensor networks (WSNs) consist of autonomous and resource-limited devices. The devices cooperate to monitor one or more physical phenomena within an area of interest. WSNs operate as stochastic systems because of randomness in the monitored environments. For long service time and low maintenance cost, WSNs require adaptive and robust methods to address data exchange, topology formulation, resource and power optimization, sensing coverage and object detection, and security challenges. In these problems, sensor nodes are to make optimized decisions from a set of accessible strategies to achieve design goals. This survey reviews numerous applications of the Markov decision process (MDP) framework, a powerful decision-making tool to develop adaptive algorithms and protocols for WSNs. Furthermore, various solution methods are discussed and compared to serve as a guide for using MDPs in WSNs

    Security Mechanisms in Unattended Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) consisting of a large number of sensor nodes are being deployed in potentially hostile environments for applications such as forest fire detection, battlefield surveillance, habitat monitoring, traffic management, etc. One common assumption in traditional WSNs is that a trusted third party, i.e., a sink, is assumed to be always available to collect sensed data in a real time or near real time fashion. Although many WSNs operate in such an on-site mode, there are WSN applications that do not fit into the real time data collection mode. For example, data collection in Unattended WSNs (UWSNs) relies on the periodical appearance of a mobile sink. As most existing security solutions developed for traditional WSNs rely on the presence of a trusted third party, it makes them not applicable to UWSNs directly. This motivates the research on security mechanisms for UWSNs. This dissertation contributes to security mechanisms in UWSNs from three important aspects, as, confidentiality and reliability, trust management, and capture resistance. The first aspect addresses data confidentiality and data reliability in UWSNs. We propose a data distribution scheme to provide forward secrecy, probabilistic backward secrecy and data reliability. Moreover, we demonstrate that backward secrecy of the historical data can be achieved through homomorphic encryption and key evolution. Furthermore, we propose a constrained optimization algorithm to further improve the above two data distribution schemes. The second study introduces trust management in UWSNs. We propose a set of efficient and robust trust management schemes for the case of UWSNs. The Advanced Scheme utilizes distributed trust data storage to provide trust data reliability and takes the advantages of both Geographic Hash Table (GHT) and Greedy Perimeter Stateless Routing (GPSR) to find storage nodes and to route trust data to them. In this way, it significantly reduces storage cost caused by distributed trust data storage and provides resilience to node compromise and node invalidation. The third study investigates how to detect a captured node and to resist node capture attack in UWSNs. We propose a node capture resistance and key refreshing scheme for UWSNs based on the Chinese remainder theorem. The scheme is able to provide forward secrecy, backward secrecy and collusion resistance for diminishing the effects of capture attacks

    Systems and algorithms for wireless sensor networks based on animal and natural behavior

    Full text link
    In last decade, there have been many research works about wireless sensor networks (WSNs) focused on improving the network performance as well as increasing the energy efficiency and communications effectiveness. Many of these new mechanisms have been implemented using the behaviors of certain animals, such as ants, bees, or schools of fish.These systems are called bioinspired systems and are used to improve aspects such as handling large-scale networks, provide dynamic nature, and avoid resource constraints, heterogeneity, unattended operation, or robustness, amongmanyothers.Therefore, thispaper aims to studybioinspired mechanisms in the field ofWSN, providing the concepts of these behavior patterns in which these new approaches are based. The paper will explain existing bioinspired systems in WSNs and analyze their impact on WSNs and their evolution. In addition, we will conduct a comprehensive review of recently proposed bioinspired systems, protocols, and mechanisms. Finally, this paper will try to analyze the applications of each bioinspired mechanism as a function of the imitated animal and the deployed application. Although this research area is considered an area with highly theoretical content, we intend to show the great impact that it is generating from the practical perspective.Sendra, S.; Parra Boronat, L.; Lloret, J.; Khan, S. (2015). Systems and algorithms for wireless sensor networks based on animal and natural behavior. International Journal of Distributed Sensor Networks. 2015:1-19. doi:10.1155/2015/625972S1192015Iram, R., Sheikh, M. I., Jabbar, S., & Minhas, A. A. (2011). Computational intelligence based optimization in wireless sensor network. 2011 International Conference on Information and Communication Technologies. doi:10.1109/icict.2011.5983561Lloret, J., Bosch, I., Sendra, S., & Serrano, A. (2011). A Wireless Sensor Network for Vineyard Monitoring That Uses Image Processing. Sensors, 11(6), 6165-6196. doi:10.3390/s110606165Lloret, J., Garcia, M., Bri, D., & Sendra, S. (2009). A Wireless Sensor Network Deployment for Rural and Forest Fire Detection and Verification. Sensors, 9(11), 8722-8747. doi:10.3390/s91108722Dasgupta, P. (2008). A Multiagent Swarming System for Distributed Automatic Target Recognition Using Unmanned Aerial Vehicles. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 38(3), 549-563. doi:10.1109/tsmca.2008.918619Quwaider, M., & Biswas, S. (2012). Delay Tolerant Routing Protocol Modeling for Low Power Wearable Wireless Sensor Networks. Network Protocols and Algorithms, 4(3). doi:10.5296/npa.v4i3.2054Sendra, S., Lloret, J., Garcia, M., & Toledo, J. F. (2011). Power Saving and Energy Optimization Techniques for Wireless Sensor Neworks (Invited Paper). Journal of Communications, 6(6). doi:10.4304/jcm.6.6.439-459Liu, M., & Song, C. (2012). Ant-Based Transmission Range Assignment Scheme for Energy Hole Problem in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 8(12), 290717. doi:10.1155/2012/290717Riva, G., & Finochietto, J. M. (2012). Pheromone-based In-Network Processing for Wireless Sensor Network Monitoring Systems. Network Protocols and Algorithms, 4(4). doi:10.5296/npa.v4i4.2206Garcia, M., Sendra, S., Lloret, J., & Canovas, A. (2011). Saving energy and improving communications using cooperative group-based Wireless Sensor Networks. Telecommunication Systems, 52(4), 2489-2502. doi:10.1007/s11235-011-9568-3Kim, J.-Y., Sharma, T., Kumar, B., Tomar, G. S., Berry, K., & Lee, W.-H. (2014). Intercluster Ant Colony Optimization Algorithm for Wireless Sensor Network in Dense Environment. International Journal of Distributed Sensor Networks, 10(4), 457402. doi:10.1155/2014/457402Dressler, F., & Akan, O. B. (2010). A survey on bio-inspired networking. Computer Networks, 54(6), 881-900. doi:10.1016/j.comnet.2009.10.024Atakan, B., & Akan, O. B. (2006). Immune System Based Distributed Node and Rate Selection in Wireless Sensor Networks. 2006 1st Bio-Inspired Models of Network, Information and Computing Systems. doi:10.1109/bimnics.2006.361806Di Pietro, R., & Verde, N. V. (2011). Introducing epidemic models for data survivability in Unattended Wireless Sensor Networks. 2011 IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks. doi:10.1109/wowmom.2011.5986165Marwaha, S., Indulska, J., & Portmann, M. (2009). Biologically Inspired Ant-Based Routing in Mobile Ad hoc Networks (MANET): A Survey. 2009 Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing. doi:10.1109/uic-atc.2009.95Jha, V., Khetarpal, K., & Sharma, M. (2011). A survey of nature inspired routing algorithms for MANETs. 2011 3rd International Conference on Electronics Computer Technology. doi:10.1109/icectech.2011.5942042Fernandez-Marquez, J. L., Di Marzo Serugendo, G., Montagna, S., Viroli, M., & Arcos, J. L. (2012). Description and composition of bio-inspired design patterns: a complete overview. Natural Computing, 12(1), 43-67. doi:10.1007/s11047-012-9324-yCamilo, T., Carreto, C., Silva, J. S., & Boavida, F. (2006). An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks. Lecture Notes in Computer Science, 49-59. doi:10.1007/11839088_5Selvakennedy, S., Sinnappan, S., & Shang, Y. (2006). T-ANT: A Nature-Inspired Data Gathering Protocol for Wireless Sensor Networks. Journal of Communications, 1(2). doi:10.4304/jcm.1.2.22-29Almshreqi, A. M. S., Ali, B. M., Rasid, M. F. A., Ismail, A., & Varahram, P. (2012). An improved routing mechanism using bio-inspired for energy balancing in wireless sensor networks. The International Conference on Information Network 2012. doi:10.1109/icoin.2012.6164367Chen, G., Guo, T.-D., Yang, W.-G., & Zhao, T. (2006). An improved ant-based routing protocol in Wireless Sensor Networks. 2006 International Conference on Collaborative Computing: Networking, Applications and Worksharing. doi:10.1109/colcom.2006.361893Okdem, S., & Karaboga, D. (2006). Routing in Wireless Sensor Networks Using Ant Colony Optimization. First NASA/ESA Conference on Adaptive Hardware and Systems (AHS’06). doi:10.1109/ahs.2006.63Salehpour, A.-A., Mirmobin, B., Afzali-Kusha, A., & Mohammadi, S. (2008). An energy efficient routing protocol for cluster-based wireless sensor networks using ant colony optimization. 2008 International Conference on Innovations in Information Technology. doi:10.1109/innovations.2008.4781748Wen, Y., Chen, Y., & Pan, M. (2008). Adaptive ant-based routing in wireless sensor networks using Energy*Delay metrics. Journal of Zhejiang University-SCIENCE A, 9(4), 531-538. doi:10.1631/jzus.a071382Liao, W.-H., Kao, Y., & Wu, R.-T. (2011). Ant colony optimization based sensor deployment protocol for wireless sensor networks. Expert Systems with Applications, 38(6), 6599-6605. doi:10.1016/j.eswa.2010.11.079Pavai, K., Sivagami, A., & Sridharan, D. (2009). Study of Routing Protocols in Wireless Sensor Networks. 2009 International Conference on Advances in Computing, Control, and Telecommunication Technologies. doi:10.1109/act.2009.133Juan, L., Chen, S., & Chao, Z. (2007). Ant System Based Anycast Routing in Wireless Sensor Networks. 2007 International Conference on Wireless Communications, Networking and Mobile Computing. doi:10.1109/wicom.2007.603Wang, C., & Lin, Q. (2008). Swarm intelligence optimization based routing algorithm for Wireless Sensor Networks. 2008 International Conference on Neural Networks and Signal Processing. doi:10.1109/icnnsp.2008.4590326Jiang, H., Wang, M., Liu, M., & Yan, J. (2012). A quantum-inspired ant-based routing algorithm for WSNs. Proceedings of the 2012 IEEE 16th International Conference on Computer Supported Cooperative Work in Design (CSCWD). doi:10.1109/cscwd.2012.6221881Okazaki, A. M., & Frohlich, A. A. (2011). Ant-based Dynamic Hop Optimization Protocol: A routing algorithm for Mobile Wireless Sensor Networks. 2011 IEEE GLOBECOM Workshops (GC Wkshps). doi:10.1109/glocomw.2011.6162356Hui, X., Zhigang, Z., & Xueguang, Z. (2009). A Novel Routing Protocol in Wireless Sensor Networks Based on Ant Colony Optimization. 2009 International Conference on Environmental Science and Information Application Technology. doi:10.1109/esiat.2009.460AbdelSalam, H. S., & Olariu, S. (2012). BEES: BioinspirEd backbonE Selection in Wireless Sensor Networks. IEEE Transactions on Parallel and Distributed Systems, 23(1), 44-51. doi:10.1109/tpds.2011.100Da Silva Rego, A., Celestino, J., dos Santos, A., Cerqueira, E. C., Patel, A., & Taghavi, M. (2012). BEE-C: A bio-inspired energy efficient cluster-based algorithm for data continuous dissemination in Wireless Sensor Networks. 2012 18th IEEE International Conference on Networks (ICON). doi:10.1109/icon.2012.6506592Neshat, M., Sepidnam, G., Sargolzaei, M., & Toosi, A. N. (2012). Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artificial Intelligence Review, 42(4), 965-997. doi:10.1007/s10462-012-9342-2Antoniou, P., Pitsillides, A., Blackwell, T., & Engelbrecht, A. (2009). Employing the flocking behavior of birds for controlling congestion in autonomous decentralized networks. 2009 IEEE Congress on Evolutionary Computation. doi:10.1109/cec.2009.4983153Ruihua, Z., Zhiping, J., Xin, L., & Dongxue, H. (2011). Double cluster-heads clustering algorithm for wireless sensor networks using PSO. 2011 6th IEEE Conference on Industrial Electronics and Applications. doi:10.1109/iciea.2011.5975688Kulkarni, R. V., Venayagamoorthy, G. K., & Cheng, M. X. (2009). Bio-inspired node localization in wireless sensor networks. 2009 IEEE International Conference on Systems, Man and Cybernetics. doi:10.1109/icsmc.2009.5346107Kulkarni, R. V., & Venayagamoorthy, G. K. (2010). Bio-inspired Algorithms for Autonomous Deployment and Localization of Sensor Nodes. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 663-675. doi:10.1109/tsmcc.2010.2049649Xin Song, Cuirong Wang, Wang, J., & Bin Zhang. (2010). A hierarchical routing protocol based on AFSO algorithm for WSN. 2010 International Conference On Computer Design and Applications. doi:10.1109/iccda.2010.5541265Gao, X. Z., Wu, Y., Zenger, K., & Huang, X. (2010). A Knowledge-Based Artificial Fish-Swarm Algorithm. 2010 13th IEEE International Conference on Computational Science and Engineering. doi:10.1109/cse.2010.49Wang, L., & Ma, L. (2011). A hybrid artificial fish swarm algorithm for Bin-packing problem. Proceedings of 2011 International Conference on Electronic & Mechanical Engineering and Information Technology. doi:10.1109/emeit.2011.6022829Yiyue, W., Hongmei, L., & Hengyang, H. (2012). Wireless Sensor Network Deployment Using an Optimized Artificial Fish Swarm Algorithm. 2012 International Conference on Computer Science and Electronics Engineering. doi:10.1109/iccsee.2012.453Yang, X.-S. (2010). A New Metaheuristic Bat-Inspired Algorithm. Studies in Computational Intelligence, 65-74. doi:10.1007/978-3-642-12538-6_6Goyal, S., & Patterh, M. S. (2013). Performance of BAT Algorithm on Localization of Wireless Sensor Network. INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY, 6(3), 351-358. doi:10.24297/ijct.v6i3.4481Krishnanand, K. N., & Ghose, D. (2006). Glowworm swarm based optimization algorithm for multimodal functions with collective robotics applications. Multiagent and Grid Systems, 2(3), 209-222. doi:10.3233/mgs-2006-2301Apostolopoulos, T., & Vlachos, A. (2011). Application of the Firefly Algorithm for Solving the Economic Emissions Load Dispatch Problem. International Journal of Combinatorics, 2011, 1-23. doi:10.1155/2011/523806Liao, W.-H., Kao, Y., & Li, Y.-S. (2011). A sensor deployment approach using glowworm swarm optimization algorithm in wireless sensor networks. Expert Systems with Applications, 38(10), 12180-12188. doi:10.1016/j.eswa.2011.03.053Sun, Y., Jiang, Q., & Zhang, K. (2012). A clustering scheme for Reachback Firefly Synchronicity in wireless sensor networks. 2012 3rd IEEE International Conference on Network Infrastructure and Digital Content. doi:10.1109/icnidc.2012.6418705Zungeru, A. M., Ang, L.-M., & Seng, K. P. (2012). Termite-Hill. International Journal of Swarm Intelligence Research, 3(4), 1-22. doi:10.4018/jsir.2012100101KumarE, S., S. M., K., & Kumar B. P., V. (2014). Clustering Protocol for Wireless Sensor Networks based on Rhesus Macaque (Macaca mulatta) Animal's Social Behavior. International Journal of Computer Applications, 87(8), 20-27. doi:10.5120/15229-3754Breza, M., & McCann, J. A. (2008). Lessons in Implementing Bio-inspired Algorithms on Wireless Sensor Networks. 2008 NASA/ESA Conference on Adaptive Hardware and Systems. doi:10.1109/ahs.2008.72Aziz, N. A. B. A., Mohemmed, A. W., & Sagar, B. S. D. (2007). Particle Swarm Optimization and Voronoi diagram for Wireless Sensor Networks coverage optimization. 2007 International Conference on Intelligent and Advanced Systems. doi:10.1109/icias.2007.4658528Falcon, R., Li, X., Nayak, A., & Stojmenovic, I. (2012). A harmony-seeking firefly swarm to the periodic replacement of damaged sensors by a team of mobile robots. 2012 IEEE International Conference on Communications (ICC). doi:10.1109/icc.2012.6363859Antoniou, P., & Pitsillides, A. (2010). A bio-inspired approach for streaming applications in wireless sensor networks based on the Lotka–Volterra competition model. Computer Communications, 33(17), 2039-2047. doi:10.1016/j.comcom.2010.07.020Benahmed, K., Merabti, M., & Haffaf, H. (2012). Inspired Social Spider Behavior for Secure Wireless Sensor Networks. International Journal of Mobile Computing and Multimedia Communications, 4(4), 1-10. doi:10.4018/jmcmc.2012100101Alrajeh, N. A., & Lloret, J. (2013). Intrusion Detection Systems Based on Artificial Intelligence Techniques in Wireless Sensor Networks. International Journal of Distributed Sensor Networks, 9(10), 351047. doi:10.1155/2013/351047Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Hierarchical Wireless Sensor Networks. Journal of Networks, 2(5). doi:10.4304/jnw.2.5.87-97Hussain, S., Matin, A. W., & Islam, O. (2007). Genetic Algorithm for Energy Efficient Clusters in Wireless Sensor Networks. Fourth International Conference on Information Technology (ITNG’07). doi:10.1109/itng.2007.97Ferentinos, K. P., & Tsiligiridis, T. A. (2007). Adaptive design optimization of wireless sensor networks using genetic algorithms. Computer Networks, 51(4), 1031-1051. doi:10.1016/j.comnet.2006.06.013Jia, J., Chen, J., Chang, G., & Tan, Z. (2009). Energy efficient coverage control in wireless sensor networks based on multi-objective genetic algorithm. Computers & Mathematics with Applications, 57(11-12), 1756-1766. doi:10.1016/j.camwa.2008.10.036Nan, G.-F., Li, M.-Q., & Li, J. (2007). Estimation of Node Localization with a Real-Coded Genetic Algorithm in WSNs. 2007 International Conference on Machine Learning and Cybernetics. doi:10.1109/icmlc.2007.4370265Saleem, K., Fisal, N., Abdullah, M. S., Zulkarmwan, A. B., Hafizah, S., & Kamilah, S. (2009). Proposed Nature Inspired Self-Organized Secure Autonomous Mechanism for WSNs. 2009 First Asian Conference on Intelligent Information and Database Systems. doi:10.1109/aciids.2009.75Jabbari, A., & Lang, W. (2010). Advanced Bio-inspired Plausibility Checking in a Wireless Sensor Network Using Neuro-immune Systems: Autonomous Fault Diagnosis in an Intelligent Transportation System. 2010 Fourth International Conference on Sensor Technologies and Applications. doi:10.1109/sensorcomm.2010.24Ponnusamy, V., & Abdullah, A. (2010). Biologically Inspired (Botany) Mobile Agent Based Self-Healing Wireless Sensor Network. 2010 Sixth International Conference on Intelligent Environments. doi:10.1109/ie.2010.46Li, J., Cui, Z., & Shi, Z. (2012). An Improved Artificial Plant Optimization Algorithm for Coverage Problem in WSN. Sensor Letters, 10(8), 1874-1878. doi:10.1166/sl.2012.2627Sendra, S., Llario, F., Parra, L., & Lloret, J. (2014). Smart Wireless Sensor Network to Detect and Protect Sheep and Goats to Wolf Attacks. Recent Advances in Communications and Networking Technology, 2(2), 91-101. doi:10.2174/22117407112016660012Sendra, S., Granell, E., Lloret, J., & Rodrigues, J. J. P. C. (2013). Smart Collaborative Mobile System for Taking Care of Disabled and Elderly People. Mobile Networks and Applications, 19(3), 287-302. doi:10.1007/s11036-013-0445-zGarcia, M., Sendra, S., Lloret, G., & Lloret, J. (2011). Monitoring and control sensor system for fish feeding in marine fish farms. IET Communications, 5(12), 1682-1690. doi:10.1049/iet-com.2010.0654Sendra, S., Lloret, J., Rodrigues, J. J. P. C., & Aguiar, J. M. (2013). Underwater Wireless Communications in Freshwater at 2.4 GHz. IEEE Communications Letters, 17(9), 1794-1797. doi:10.1109/lcomm.2013.072313.131214Lloret, J., Sendra, S., Ardid, M., & Rodrigues, J. J. P. C. (2012). Underwater Wireless Sensor Communications in the 2.4 GHz ISM Frequency Band. Sensors, 12(4), 4237-4264. doi:10.3390/s12040423

    Markov decision processes with applications in wireless sensor networks: A survey

    Get PDF
    Ministry of Education, Singapore under its Academic Research Funding Tier

    Compilation of thesis abstracts, June 2007

    Get PDF
    NPS Class of June 2007This quarter’s Compilation of Abstracts summarizes cutting-edge, security-related research conducted by NPS students and presented as theses, dissertations, and capstone reports. Each expands knowledge in its field.http://archive.org/details/compilationofsis109452750
    corecore