40,408 research outputs found

    Introducing automated regression testing in Open Source projects

    Get PDF
    To learn how to introduce automated regression testing to existing medium scale Open Source projects, a long-term field experiment was performed with the Open Source project FreeCol. Results indicate that (1) introducing testing is both beneficial for the project and feasible for an outside innovator, (2) testing can enhance communication between developers, (3) signaling is important for engaging the project participants to fill a newly vacant position left by a withdrawal of the innovator. Five prescriptive strategies are extracted for the innovator and two conjectures offered about the ability of an Open Source project to learn about innovations

    Identifying Bugs in Make and JVM-Oriented Builds

    Full text link
    Incremental and parallel builds are crucial features of modern build systems. Parallelism enables fast builds by running independent tasks simultaneously, while incrementality saves time and computing resources by processing the build operations that were affected by a particular code change. Writing build definitions that lead to error-free incremental and parallel builds is a challenging task. This is mainly because developers are often unable to predict the effects of build operations on the file system and how different build operations interact with each other. Faulty build scripts may seriously degrade the reliability of automated builds, as they cause build failures, and non-deterministic and incorrect build results. To reason about arbitrary build executions, we present buildfs, a generally-applicable model that takes into account the specification (as declared in build scripts) and the actual behavior (low-level file system operation) of build operations. We then formally define different types of faults related to incremental and parallel builds in terms of the conditions under which a file system operation violates the specification of a build operation. Our testing approach, which relies on the proposed model, analyzes the execution of single full build, translates it into buildfs, and uncovers faults by checking for corresponding violations. We evaluate the effectiveness, efficiency, and applicability of our approach by examining hundreds of Make and Gradle projects. Notably, our method is the first to handle Java-oriented build systems. The results indicate that our approach is (1) able to uncover several important issues (245 issues found in 45 open-source projects have been confirmed and fixed by the upstream developers), and (2) orders of magnitude faster than a state-of-the-art tool for Make builds

    Finding Regressions in Projects under Version Control Systems

    Full text link
    Version Control Systems (VCS) are frequently used to support development of large-scale software projects. A typical VCS repository of a large project can contain various intertwined branches consisting of a large number of commits. If some kind of unwanted behaviour (e.g. a bug in the code) is found in the project, it is desirable to find the commit that introduced it. Such commit is called a regression point. There are two main issues regarding the regression points. First, detecting whether the project after a certain commit is correct can be very expensive as it may include large-scale testing and/or some other forms of verification. It is thus desirable to minimise the number of such queries. Second, there can be several regression points preceding the actual commit; perhaps a bug was introduced in a certain commit, inadvertently fixed several commits later, and then reintroduced in a yet later commit. In order to fix the actual commit it is usually desirable to find the latest regression point. The currently used distributed VCS contain methods for regression identification, see e.g. the git bisect tool. In this paper, we present a new regression identification algorithm that outperforms the current tools by decreasing the number of validity queries. At the same time, our algorithm tends to find the latest regression points which is a feature that is missing in the state-of-the-art algorithms. The paper provides an experimental evaluation of the proposed algorithm and compares it to the state-of-the-art tool git bisect on a real data set

    The Co-Evolution of Test Maintenance and Code Maintenance through the lens of Fine-Grained Semantic Changes

    Full text link
    Automatic testing is a widely adopted technique for improving software quality. Software developers add, remove and update test methods and test classes as part of the software development process as well as during the evolution phase, following the initial release. In this work we conduct a large scale study of 61 popular open source projects and report the relationships we have established between test maintenance, production code maintenance, and semantic changes (e.g, statement added, method removed, etc.). performed in developers' commits. We build predictive models, and show that the number of tests in a software project can be well predicted by employing code maintenance profiles (i.e., how many commits were performed in each of the maintenance activities: corrective, perfective, adaptive). Our findings also reveal that more often than not, developers perform code fixes without performing complementary test maintenance in the same commit (e.g., update an existing test or add a new one). When developers do perform test maintenance, it is likely to be affected by the semantic changes they perform as part of their commit. Our work is based on studying 61 popular open source projects, comprised of over 240,000 commits consisting of over 16,000,000 semantic change type instances, performed by over 4,000 software engineers.Comment: postprint, ICSME 201
    • …
    corecore