
An Empirical Investigation into the Impact of

Refactoring on Regression Testing

Napol Rachatasumrit

Supervised by: Dr. Miryung Kim

The University of Texas at Austin

May 4, 2012

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/211335384?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

It is widely believed that refactoring improves software quality and developer’s

productivity by making it easier to maintain and understand software systems. On

the other hand, some believe that refactoring has the risk of functionality regression

and increased testing cost. This paper investigates the impact of refactoring edits

on regression tests using the version history of Java open source projects: (1) Are

there adequate regression tests for refactoring in practice? (2) How many of existing

regression tests are relevant to refactoring edits and thus need to be re-run for the new

version? (3) What proportion of failure-inducing changes are relevant to refactorings?

By using a refactoring reconstruction analysis and a change impact analysis in tandem,

we investigate the relationship between the types and locations of refactoring edits

identified by RefFinder and the affecting changes and affected tests identified by the

FaultTracer change impact analysis. The results on three open source projects,

JMeter, XMLSecurity, and ANT, show that only 22% of refactored methods and fields

are tested by existing regression tests. While refactorings only constitutes 8% of atomic

changes, 38% of affected tests are relevant to refactorings. Furthermore, refactorings

are involved in almost a half of failed test cases. These results call for new automated

regression test augmentation and selection techniques for validating refactoring edits.

ii

Acknowledgements

I would like to thank the advice and guidance of Dr. Miryung Kim, my supervisor.

Without her knowledge and assistance, this study would not have been successful.

I also thank Lingming Zhang for his help with running FaultTracer and analyzing

its results. This work was in part supported by National Science Foundation under

the grants CCF-1149391, CCF-1043810, and CCF-1117902, and by a Microsoft SEIF

award. I also would like to thank Dr. Dewayne Perry for being the second reader of

my thesis.

iii

Contents

1 INTRODUCTION 1

2 RELATED WORK 4

2.1 Empirical Studies of Refactoring . 4

2.2 Automated Refactoring Reconstruction . 5

2.3 Change Impact Analysis and Regression Test Selection. 6

2.4 Refactoring Edit Validation. 7

3 STUDY APPROACH 7

3.1 Background on RefFinder . 8

3.2 Background on FaultTracer . 8

3.3 Subject Programs . 11

3.4 Manual Inspection Process . 12

4 RESULTS 12

4.1 Are There Adequate Tests for Refactoring Edits in Practice? 12

4.2 How Many of Existing Regression Tests are Relevant to Refactoring Edits? . 15

4.3 What Proportion of Failure-Inducing Changes Are Relevant to Refactoring? 16

5 DISCUSSION 18

6 CONCLUSION 20

iv

List of Figures

1 Reconstruction of an introduce explaining variable refactoring 9

2 An example extended call graph . 10

3 Test methods that exercise the refactoring edits from Table 1 11

4 An example refactoring edit of introduce explaining variable found in JMeter

3.0-4.0 . 13

5 An example refactoring edit of introduce explaining variable JMeter 0.0-1.0 . 13

6 Refactoring test coverage by type . 14

7 The ECG of testTokenizer . 16

8 testNestedExample1 failure trace . 18

9 The ratio of failure-inducing changes out of all refactoring edits per type . . 18

10 An example refactoring edit stored in an XML format 19

v

List of Tables

1 Subject Program Statistics . 21

2 Refactoring edits identified by RefFinder and validated by manual inspection 22

3 Are there adequate tests for refactoring in practice? 23

4 How many of existing tests need to be rerun due to refactorings? 23

5 What proportion of failure-inducing changes are relevant to refactoring? . . . 24

vi

1 INTRODUCTION

Refactoring changes a software system in such a way that it does not alter the external

behavior of the code but improves the modular structure of software [18]. It is widely believed

that refactoring improves software quality and developer’s productivity by making it easier

to maintain and understand software systems [8]. Many believe that a lack of refactoring

incurs technical debt to be repaid in the form of increased maintenance cost [2]. For example,

eXtreme Programming claims that refactoring saves development cost and improves software

quality [1] and advocates the rule of refactor mercilessly throughout the entire project life

cycles. On the other hand, there exists a conventional wisdom that software engineers often

avoid refactoring, when they are constrained by a lack of resources (e.g., right before major

software releases). Some also believe that refactoring does not provide immediate benefit

unlike new features or bug fixes, and incurs the risk of functionality regression and increased

testing cost.

Recent empirical studies show contradicting evidence on the benefit of refactoring as well.

Ratzinger et al. [23] found that, if the number of refactoring increases in the preceding time

period, the number of defects decreases. On the other hand, Weißgerber and Diehl found that

a high ratio of refactoring edits is often followed by an increasing ratio of bug reports [30, 31]

and incomplete or incorrect refactoring edits cause bugs [9]. Though refactoring is defined

as a semantics-preserving code transformation, Murphy-Hill et al. found that developers

often interleave refactoring edits with other behavior-modifying edits and apply refactoring

manually without using automated refactoring engines [20]. This practice could be error-

prone, and thus requires developers to test code after refactoring. In our field study of

refactoring at Microsoft, the survey participants also indicated that refactoring comes with

1

a risk of introducing subtle bugs and functionality regression. When a regression test suite

is inadequate, it could prevent developers from initiating refactoring effort, because there is

no safety net for checking the correctness of refactoring edits [15].

To understand the relationship between refactoring edits and regression testing, we apply

a change impact analysis and a refactoring reconstruction analysis in tandem to version

history data. We use an automated refactoring reconstruction tool, RefFinder to identify

the types and locations of refactoring edits that occurred between each pair of consecutive

releases [22, 14]. We manually inspect the results from RefFinder to filter out false positive

refactoring edits. We also use an automated change impact analysis tool, FaultTracer [33].

It takes the old and new versions of a program and a regression test suite as inputs. It then

identifies affected tests—a subset of tests relevant to the program differences between the two

versions and affecting changes—a subset of atomic changes relevant to the affected tests. We

then examine these two sets of data to investigate how refactoring edits in practice affect

regression tests in three large open source projects: Apache JMeter, XML Security Library,

and Apache ANT. The following summarizes our study questions and corresponding results.

• Q1: Are there adequate tests for refactoring edits in practice? In theory, refactorings

are code transformations that do not affect any functional property of the program.

However, in practice, we often find that refactorings co-occur with functional changes.

A sufficient test coverage of refactoring edits may provide confidence to programmers to

initiate refactoring effort. In our study, we find that refactoring edits are not very well

tested—only 22% of refactored methods and fields are covered by existing regression

tests. Though this coverage of refactoring edits is slightly higher than the test coverage

of all changes (20%), there is an insufficient amount of regression tests to ensure the

correctness of refactoring edits.

2

• Q2: How many of existing regression tests need to be re-run due to refactoring edits?

Because refactoring often introduces a large amount of coordinated edits throughout

the system, a large proportion of existing tests may too be affected by the edits and

thus must be re-run for the new version. We investigate the proportion of existing

regression tests affected by refactoring edits. While refactoring edits constitute only

8% of atomic changes identified by FaultTracer, 38% of affected tests are relevant

to those refactoring edits. This result indicates that there is a potential opportunity

of saving a regression testing cost, if a regression test selection algorithm can isolate

pure refactoring edits from behavior-modifying edits and select tests relevant to only

behavior-modifying edits.

• Q3: What proportion of failed regression tests are relevant to refactoring edits? Man-

ual application of refactoring could be error-prone and logically inconsistent. To un-

derstand the extent of regression errors potentially caused by refactoring edits, we

measure how many of failed regression tests exercise the location of refactoring edits.

Out of 18083 tests in our subject program, 80 tests failed due to regression faults. 39

out of those 80 failed tests include refactoring edits as affecting changes. We also inves-

tigate the types of refactorings relevant to these failed tests. Most of these refactorings

were intra-method refactoring edits such as remove control flag, inline temp, introduce

explaining variable, etc [8]. We speculate that these refactoring edits are often done

manually by programmers without an automated tool. This indicates the needs of

automated refactoring validation and (/or) test augmentation techniques that target

intra-method refactoring edits.

These results call for new regression test augmentation and selection techniques geared to

validating refactoring edits. By disambiguating pure refactorings from refactoring edits mixed

3

with behavior-modifying edits, a regression test selection algorithm could avoid selection

of test cases that only exercise behavior-preserving edits. The remainder of this paper is

organized as follows. Section 2 summarizes related work. Sections 3 and 4 describe our

study approach and the corresponding results with the limitations of our study. Section 6

concludes with the direction of future work.

2 RELATED WORK

2.1 Empirical Studies of Refactoring

Xing and Stroulia found that 70% of structural changes in Eclipse’s evolution history are

due to refactorings and existing IDEs lack support for complex refactorings [32]. Dig et

al. studied the role of refactorings in API evolution, and found that 80% of the changes

that break client applications are API-level refactorings [5]. While these studies focus on

the frequency and types of refactorings, they do not focus on how refactoring edits impact

regression testing. MacCormack et al. [17] defined modularity metrics and use these metrics

to study evolution of Mozilla and Linux. They found that the redesign of Mozilla resulted in

an architecture that was significantly more modular than that of its predecessor. However,

this study merely monitors design structure changes in terms of modularity metrics without

identifying refactoring edits.

Kataoka et al. [13] proposed a refactoring evaluation method that compares software before

and after refactoring in terms of coupling metrics. Kolb et al. [16] performed a case study

on the design and implementation of existing software and found that refactoring improves

software with respect to maintainability and reusability. Moser et al. [19] conducted a case

4

study in an industrial, agile environment and found that refactoring enhances quality and

reusability related metrics. Carriere et al.’s case study found the average time taken to resolve

tickets decreases after re-architecting the system [3]. Ratzinger et al. found that refactoring

related features and defects have an inverse correlation [23]. Unlike these previous studies,

this paper focuses on the relationship between refactoring edits and regression testing.

Because manual refactoring is often tedious and error-prone, modern IDEs provide features

to automate the application of refactorings [10, 25]. However, recent research found several

limitations of tool-assisted refactorings as well. Daniel et al. found dozens of bugs in the

refactoring tools in popular IDEs [4]. Murphy-Hill et al. found that many refactoring tools

do a poor job of communicating errors and programmers do not leverage them as effectively

as they could [20]. These findings motivate our study to investigate the relationship between

the adequacy of regression tests and refactoring edits.

2.2 Automated Refactoring Reconstruction

Our study approach relies on an automated refactoring reconstruction tool to ease the burden

of manually finding refactoring edits from source code or recording all refactoring edits from

a refactoring engine in an IDE. Prete et al. present a survey of refactoring reconstruction

techniques that take two program versions as input and determines the location and types of

refactoring edits [14]. For example, Weißgerber and Diehl use a signature-based analysis and

clone detection to analyze and rank refactoring candidates [31]. Xing and Stroulia detect

refactoring instances by comparing program versions at the design level, which are packages,

classes, interfaces, fields, and blocks [32]. This comparison is based on names and structural

similarities. Since both techniques do not analyze method bodies, they do not detect intra-

5

method refactoring edits, such as an inline temp refactoring. Dig and Johnson combine a

syntactic analysis and a semantic analysis to detect and refine refactoring candidates [6]. It

finds similar code fragments using an Shingles analysis and reasons about reference relations

between them to aid the matching process.

In our study we use RefFinder because it not only detects simple refactoring edits such as

renames and moves, but also complex refactoring edits that require an analysis of method

bodies or pre-requisite refactoring edits. RefFinder currently supports sixty three refac-

toring types in the Fowler’s catalog [8], showing the most comprehensive coverage among

existing techniques [14]. According to Prete et al.’s evaluation using Fowler’s refactoring

examples, the accuracy of RefFinder ranges about 93% to 98% for precision and 93% to

99% for recall [14]. In our study, we filter out false positive refactoring edits through manual

inspection.

2.3 Change Impact Analysis and Regression Test Selection.

Existing regression test selection algorithms take two program versions V1 and V2, and

a test suite T as input and select tests ∈ T relevant to the delta between V1 and V2.

Some algorithms such as DejaVoo [26, 11, 21] construct control flow graphs (CFG) for

both versions and simultaneously traverse the two graphs to identify matching CFG nodes,

{(o1, n1), (o2, n2), . . . (ok, nk)}, whose outgoing edges have different targets. Then the tests

that exercised any of {o1, o2, . . . ok} are selected as affected tests because the changes to its

control flow may lead to different run-time behavior in the new version V2.

Chianti change impact analysis [24] instead constructs dynamic call graphs, modeling pro-

grams at a coarser granularity. It compares the syntax tree of the old and new program

6

versions and decomposes the edits into atomic changes at a method and field level [24] such

as AM for an method addition and CM for method body edits. It reports affected tests—a

subset of regression tests relevant to edits and affecting changes—a subset of changes rel-

evant to the execution of affected tests in the new version. FaultTracer extends Chianti

to identify affected tests and relevant affecting changes more accurately [33]. It uses an ex-

tended call graph representation to model how individual tests directly read or write to fields.

It implements a Tarantula-style fault localization [12] to rank the affecting changes from the

change impact analysis. We analyze affected tests and affecting changes from FaultTracer

together with the refactoring edits from RefFinder to investigate the relationship between

refactoring and regression tests.

2.4 Refactoring Edit Validation.

Schaeffer et al. validate refactoring edits by comparing data and control dependences between

two program versions [27]. As opposed to validating refactoring edits, Daniel et al. focus

on testing refactoring engines by systematically generating input programs for refactoring

transformations [4]. SafeRefactor focuses on validating refactoring edits by leveraging an

existing test generation engine and by comparing test results between the old and new

program versions [28]. While these projects focus on either validation of refactoring edits or

refactoring engines, we study the impact of refactoring edits on regression tests using version

history data.

3 STUDY APPROACH

This section presents our study method and subject programs. It provides the background of

RefFinder and FaultTracer. We then discuss how we incorporate the refactoring recon-

7

struction results from RefFinder and the change impact analysis results of FaultTracer.

3.1 Background on RefFinder

To identify refactoring edits, we employ a RefFinder Eclipse plug-in that automatically

identifies both simple and complex types of refactoring edits. It extracts logic facts about

the structure of both old and new program versions using the Eclipse JDT syntax tree

analysis. It identifies program edits that fit the canonical program structure before and after

each refactoring type by invoking template logic queries on extracted facts using a Tyruba

logic programming engine [29].

Table 1 shows an example of inferring an introduce explaining variable using RefFinder.

This refactoring simplifies a complicated expression by putting the result of an expression

or parts of the expression in a temporary variable with a name that explains the purpose.

For example, in the get method in JMeterVariables class, a return expression in the old

version is assigned to variable val in the new version. RefFinder uses the syntax tree

analysis to extract logic facts from both program versions. A subset of logical change facts

corresponding to the source edits is shown in Table 1. Then RefFinder invokes a template

logic query corresponding to introduce explaining variable to infer the refactoring edits.

3.2 Background on FaultTracer

FaultTracer combines the strength of Chianti-style change impact analysis and spectrum-

based fault localization to improve the precision of localizing failure-inducing edits [33].

FaultTracer computes all atomic changes and their dependencies by analyzing the abstract

syntax tree of the old and new program versions: CM (change method), AM (add method),

DM (delete method), AF (add field), DF (delete field), CFI (change instance field initializer),

8

public class JMeterVariables{
public String get(String key){

- return (String)variables.get(key);

+ String val = (String)variables.get(key);

+ if(val == null){
+ return "";

+ }
+ return val;

}
}

Logic Change Facts
added localvar("get()","String", "val", EXPR).

deleted methodbody("get()", BLOCK1).

added methodbody("get()", BLOCK2). . . .

A template logic rule for an introduce explaining vari-
able refactoring: if the method bodies of the old and new
version are similar and there exists a new local variable
that holds a value of a return type, it is likely to be a
refactoring edit of an introduce explaining variable type.
added localvar(mName, rType, id1, expr1)

∧ NOT(deleted localvar(mName, rType, id1, expr2)

∧ NOT(deleted localvar(mName, rType, id2, expr1)

∧ deleted methodbody(mName, oldBody)

∧ added methodbody(mName, newBody)

⇒ introduce explaining var(id1, expr1, mName)

Inferred Refactoring Edits
introduce explaining var("val", EXPR, "get()").

Figure 1: Reconstruction of an introduce explaining variable refactoring

CSFI (change static field initializer), LCm (look up change due to method changes), and LCf

(look up change due to field changes). The dependences among these atomic changes are

determined based on the pre-defined rules in [33]. It then creates an extended call graph of

each test case using the ASM byte-code manipulation and analysis framework. The extended

call graph enhances a dynamic call graph representation to additionally include field access

information. It then selects affected tests, i.e., a set of regression tests in the old version

that are relevant to the atomic changes between two program versions and selects affecting

changes, i.e., a subset of atomic changes relevant to each affected test. We call a set of

atomic changes relevant to each failed test as failure-inducing changes.

Figure 3 shows an example of a test method that exercises the introduce explaining

9

Figure 2: An example extended call graph

variable refactoring edit. Method testNestedExample1 accesses field function of type

CompoundFunction. Then it calls setParameters, which then calls String.length. Later

testNestedExample1 calls execute, which eventually calls UnknownFunction.execute,

which then calls JMeterVariables.get. Figure 2 shows an extended call graph of

testNestedExample1 that accesses field variables which is a part of introduce explain-

ing variable refactoring edit from Figure 1. An oval represents a field, and a round rectangle

represents a method. The extended call graph represents the trace of method calls and field

accesses reachable from a test case under focus. FaultTracer selects this test case as an

affected test because it exercises the changed method JMeterVariables.get. For this test

case, the method body change (CM) in JMeterVariables.get and all its dependent changes

are selected as affecting changes as these edits affect the execution of testNestedExample1.

10

CompundFunction.testNestedExample1()

public void testNestedExample1(){
function.setParameters(expr); ...

assertEquals("hello worldhellorld",

function.execute(result, null));...}

CompundFunction.setParameters()

public void setParameters(String parameters){
if (parameters == null || parameters.length() == 0){...}

CompundFunction.execute()

public String execute(SampleResult pR, Sampler cS){...
results.append(item.execute(pR, cS));...}

UnknownFunction.execute()

public String execute(SampleResult pR, Sampler cS){
String ret = getVariables().get(name);...}

UnknownFunction.getVariables()

private JMeterVariables getVariables(){
return varMap.get(Thread.currentThread().getName());

}

Figure 3: Test methods that exercise the refactoring edits from Table 1

3.3 Subject Programs

We select three Java programs, JMeter, XMLSecurity, and ANT, from Software Infrastruc-

ture Repository (SIR) as our study subjects [7]. Unlike many open source projects, these

programs have a large number of regression tests along with evolution history. The size of

the programs ranges from 17201 to 80444 LOC (line of code). The number of refactoring

edits found by RefFinder in each version ranges from 13 to 222 in JMeter, from 19 to 115

in XMLSecurity, and from 0 to 249 in Ant. The size in LOC and the number of classes,

methods and fields are shown in Table 1. It also shows the number of refactoring types,

refactoring edits found by RefFinder and validated through our manual inspection, and the

number of atomic changes reported by FaultTracer between each consecutive release pair.

Table 2 lists the types of refactoring edits, along with the number of instances for each type.

11

3.4 Manual Inspection Process

Since RefFinder finds false positive refactoring edits—its precision is 0.79 according to

Prete et al. [22]—we manually inspect all results from RefFinder to eliminate false positive

refactoring edits. We use the following criteria for manual inspection. First, while refactoring

is defined as behavior-preserving edits, in practice, refactoring rarely occurs alone without

any semantic change [20]. Thus, we include refactoring edits that co-occur with behavior-

modifying edits in our data set. We consider the code snippet from JMeter 4.0 in Figure

4 as an introduce explaining variable refactoring edit since msg is a new explaining variable

for ex.getMessage() even though this code also includes a behavior-modifying edit that

assigns a different value to msg if it is null.

Second, while following the guideline and examples from Fowler’s refactoring catalog, we

do not consider the meaning of identifier names. For an example, in the snippet in Fig-

ure 5, falseCounterString and trueCounterString are introduced as explaining vari-

ables for Integer.toString(vars.getIteration()) and Integer.toString(counter++)

in method execute. Even though the identifier names do not effectively represent their

purposes, we consider them as correct refactoring edits.

4 RESULTS

This section describes the result of each study question.

4.1 Are There Adequate Tests for Refactoring Edits in Practice?

If there are sufficient test cases, developers can be more confident about applying refactorings

manually as regression errors can be caught by existing tests. On the other hand, if the

12

public void doAction(ActionEvent e){
...

catch(Exception ex){
+ String msg = ex.getMessage();

+ if(msg == null){
+ msg="Unexpected error - see log for details";

+ log.warn("Unexpected error",ex);

+ }
- JMeter Utils.reportErrorToUser(ex.getMessage());

+ JMeter Utils.reportErrorToUser(msg);

}
...

}

Figure 4: An example refactoring edit of introduce explaining variable found in JMeter 3.0-4.0

public String execute(SampleResult pR, Sampler cS){
...

+ String falseCounterString =

Integer.toString(counter);

+ String trueCounterString =

Integer.toString(vars.getIteration());

if(perThread){
+ return Integer.toString(vars.getIteration());

+ return trueCounterString;

}else{
+ return Integer.toString(counter++);

+ return falseCounterString;

}
...

}

Figure 5: An example refactoring edit of introduce explaining variable JMeter 0.0-1.0

regression test suite has insufficient coverage, it may be unsafe to initiate refactoring, because

code changes introduced by refactoring may be hard to validate. To investigate whether there

are enough regression tests in software projects for developers to safely initiate refactoring,

we measure refactoring test coverage and compare this against change test coverage and total

test coverage. In Table 3, R is a set of methods and fields that are part of refactoring edits,

C is a set of methods and fields that are part of atomic changes identified by FaultTracer,

T is a set of methods and fields exercised by existing tests, and A is the total number of

13

methods and fields in the new version.

Refactoring test coverage is the percentage of refactored methods and fields (R) tested by

existing regression tests out of all refactored methods and fields. Change test coverage and

total test coverage are defined as |(C∩T)|
|C| and |T |

|A| respectively. 18083 methods and fields out

of 64767 are exercised by regression tests (28% total test coverage). Only 1895 out of 9516

atomic changes are exercised by regression tests, indicating that changes are not well tested

by regression tests in the subject programs (20% change test coverage). Similarly, only 160

out of 738 refactored methods and fields are exercised by regression tests, resulting in 22%

refactoring test coverage. These results imply that all types edits including refactoring edits

are not well tested, and the regression test suite is insufficient for checking the correctness

of program changes.

Figure 6: Refactoring test coverage by type

We also measure refactoring test coverage per refactoring type. Two refactoring types with

14

the lowest test coverage are replace magic numbers with constant and inline method, both

under 10%. The replace magic numbers with constant refactoring creates a constant, names

it after the meaning, and replaces the number with it for improved readability. The inline

method refactoring puts the method’s body into its caller and removes the method. Since

the implementations of these two types of refactoring edits do not often change public APIs,

they are relatively easy to implement. Therefore, developers may have not added new tests

to validate these types of refactoring.

Only 22% of refactorings are tested

4.2 How Many of Existing Regression Tests are Relevant to Refac-
toring Edits?

Because refactoring often introduces a large amount of coordinated edits throughout the

system, a large proportion of existing tests may too need to be re-run on the new version.

We measure a ratio of affected tests that exercise refactoring edits. We use FaultTracer to

determine affected tests (AT), each of which exercises at least one atomic change between

two program versions. For those affected tests, FaultTracer identifies affecting changes,

i.e. the atomic changes that appear on the ECG of the tests and all other changes that are

dependent on those atomic changes (AC). We then measure the ratio of affecting tests that

exercise at least one refactoring edit location (ATR), and affecting changes whose location

overlaps with at least one refactoring edit (ACR). ATR and ACR both show the ratio of

affected tests and affecting changes relevant to refactoring edits.

Table 4 summarizes the results. FaultTracer identifies 1564 regression tests as affected

tests, i.e., these regression tests are relevant to the changes between two versions and thus

must be re-run on the new version. While the methods and fields that are a part of refactoring

15

edits constitute only 8% of all atomic changes identified by FaultTracer, 594 out of 1564

affected tests (38% of affected tests) exercise refactoring edits.

While refactoring edits constitutes only 8% of atomic changes,

38% of affected tests are relevant to refactoring edits.

In theory, there is no need of re-running a regression test if the test exercises only pure,

behavior-preserving transformations. In the study, there are 12 regression tests that consist

of only pure refactoring edits with negligible or no behavioral changes. For example, Figure

7 shows an extended call graph of testTokenizer in Ant 2.0, which is selected as an affected

test. Only translateCommandline() was selected as an affecting change, but its code does

not have any behavior-modifying edit. Such regression tests represent an added testing cost

that should be avoided. There is a potential opportunity of saving regression testing cost,

if a test selection algorithm can isolate behavior-modifying edits from behavior-preserving

edits and select only the tests exercise behavior-modifying edits.

Figure 7: The ECG of testTokenizer

4.3 What Proportion of Failure-Inducing Changes Are Relevant
to Refactoring?

Manual application of refactoring could be error-prone and logically inconsistent. To un-

derstand the extent of regression errors potentially caused by refactoring, we measure how

16

many of failed regression tests exercise the location of refactoring edits. We define a set of

affected tests that succeeded in the old version but failed in the new version as failed affected

tests, ATF . We then measure a subset of ATF that exercise refactoring edits, which we call

ATRF . Similarly, we define a subset of affecting changes for the failed tests as failure-inducing

changes, ACF and define a subset of affecting changes for the failed tests that exercise the

location of refactoring edits, ACRF .

Table 5 summarizes our results. There are 80 failed affected tests, and 39 out of them exercise

the location of at least one refactoring edit. This indicates that refactoring edits in practice

often involve functional changes and could possibly introduce errors. In some cases, refac-

toring edits appear on the execution trace of failed tests but they are not the failure causes.

For example, testNestedExample1 in Figure 3 causes a test failure in the new version. A

refactored method get() occurs in its extended call graph, and thus testNestedExample1

is considered as a failed affected test. However, refactoring edits are not necessarily a failure

cause. As shown in Figure 8, when we trace back the execution of this test, we find that the

fault occurs before the refactored method is called. The fault is in setParameters(), which

is supposed to add an object of type CompoundFunction to the head of the linked list. But

it adds an object of type UnknownFunction instead and then a wrong execute() is called,

leading to a failure.

A half of failed affected tests include refactoring edits.

Figure 9 shows the percentage of failure-inducing changes out of all refactoring edits for

each refactoring type. The refactoring types with the highest percentage of failure-inducing

changes are remove control flag, introduce explaining variable, and inline temp. All these

involve with changes in local variables and we believe that developers do not have nor use

17

automated refactoring engines for these types of refactorings and manual application of these

refactorings could be potentially error prone.

public void testNestedExample1(){
function.setParameters(expr);

...

assertTrue(function.hasFunction());

assertTrue(function.hasStatics());

assertEquals(”hello world”, <-- Fault occurs

function.Components.get(0).execute(result, null));
assertEquals("hellorld",

function.cComponents.get(1)).execute(result, null));

assertEquals(”hello worldhellorld”,
function.execute(result, null)); <-- Refactoring occurs

...

}

Figure 8: testNestedExample1 failure trace

Figure 9: The ratio of failure-inducing changes out of all refactoring edits per type

5 DISCUSSION

While we remove false positive refactoring edits through manual inspection, RefFinder can-

not find some refactoring edits (false negatives). In particular, when different refactorings

18

<Refactoring type="Introduce Explaining Variable">

<package>org.apache.jmeter.threads</package>

<class>JMeter Variables</class>

<oldMethod>get</oldMethod>

<field>val</field>

<check>CORRECT</check>

<comment>n/a</comment>

</Refactoring>

Figure 10: An example refactoring edit stored in an XML format

are applied to the same code location, RefFinder generally cannot detect such refactoring

instances, because it only compares the old and new versions but does not consider interme-

diate versions. Though our data set may not include the complete set of refactorings edits

in the subject programs, we believe that our study accurately represents the relationship be-

tween refactorings and existing tests, because RefFinder has relatively a high recall (0.95)

according to Prete et al.’s evaluation [22]).

Some may disagree with our broad definition of refactoring edits—tolerating behavior mod-

ifications in counting refactoring edits in the manual inspection process. As we discuss in

Section 3, we consult Fowler’s catalog of refactoring [8] when manually inspecting refactoring

edits. Fowler does not introduce each refactoring type with a formal definition but presents it

through examples. Thus, when refactoring edits did not directly conform to Fowler’s exam-

ples, we subjectively disambiguate individual refactoring instances, as we see appropriate.

To mitigate this threat to validity, we make our data set of refactoring edits available in

public in an XML format.1 Each refactoring edit has several attributes: the involved classes,

methods, and fields, and the type of refactoring according to Fowler’s catalog [8], and our

manual inspection result. Figure 10 shows an example of the introduce explaining variable

instance from an earlier example in the XML format.

1http://users.ece.utexas.edu/~miryung/software.html

19

6 CONCLUSION

This paper presents an empirical study of how refactoring affects regression testing using

the version histories of Java projects. The study finds that test coverage of refactoring is

insufficient, and regression tests are significantly impacted by refactorings edits, though only

a small proportion of edits consists of refactoring. Furthermore, failure-inducing changes

often include refactoring edits mixed with behavior modifying edits. The results suggest the

need of an automated regression test augmentation approach that targets refactoring edits.

The results also indicate that there is a potential opportunity of saving regression testing

cost, if a test selection algorithm can isolate pure refactoring edits from behavior-modifying

edits and select tests relevant to only behavior-modifying edits.

20

Table 1: Subject Program Statistics

Subject LoC #Class #Method #Field

JMeter 0.0 31005 313 2501 830
JMeter 1.0 33655 341 2650 894
JMeter 2.0 32948 327 2567 893
JMeter 3.0 37336 383 3103 938
JMeter 4.0 38162 393 3164 935
JMeter 5.0 40695 402 3237 970

XMLSec 0.0 17435 181 1244 140
XMLSec 1.0 18323 194 1300 147
XMLSec 2.0 22863 221 1424 151
XMLSec 3.0 16878 154 1023 129

Ant 0.0 17201 172 1581 748
Ant 1.0 25846 228 2427 1145
Ant 2.0 39733 342 3690 1714
Ant 3.0 38810 342 3696 440
Ant 4.0 61877 532 5430 2520
Ant 5.0 63510 536 5546 2546
Ant 6.0 63578 536 5808 2550
Ant 7.0 80381 649 7186 3212
Ant 8.0 80444 650 7190 3212

Pair #Type #Correct #Change

JMeter 0.0-1.0 10 92 58
JMeter 1.0-2.0 12 67 68
JMeter 2.0-3.0 11 222 72
JMeter 3.0-4.0 9 47 51
JMeter 4.0-5.0 4 13 58

XMLSec 0.0-1.0 8 19 92
XMLSec 1.0-2.0 10 115 53
XMLSec 2.0-3.0 6 27 69

Ant 0.0-1.0 12 199 101
Ant 1.0-2.0 14 249 123
Ant 2.0-3.0 3 4 47
Ant 4.0-5.0 8 53 446
Ant 5.0-6.0 0 0 46
Ant 7.0-8.0 3 6 392

21

Table 2: Refactoring edits identified by RefFinder and validated by manual inspection

Input program pair Refactoring types (# instances)

JMeter 0.0-1.0 move method(3), replace magic number with constant(6), introduce
explaining variable(8), extract interface(1), extract method(5), replace
method with method object(4), add parameter(30), move field(8), extract
class(1), remove parameter(26)

JMeter 1.0-2.0 replace exception with test(1), move method(1), replace magic number
with constant(6), introduce explaining variable(4), pull up field(16), ex-
tract method(7), extract superclass(1), rename method(1), inline temp(3),
add parameter(8), move field(16), remove parameter(3)

JMeter 2.0-3.0 inline temp(26), move method(16), replace magic number with con-
stant(18), introduce explaining variable(19), extract method(21), inline
method(9), introduce assertion(1), rename method(10), add parame-
ter(52), move field(6), remove parameter(44)

JMeter 3.0-4.0 inline temp(1), move method(1), replace magic number with constant(8),
introduce explaining variable(2), extract method(1), replace method with
method object(5), add parameter(11), extract class(1), remove parame-
ter(17)

JMeter 4.0-5.0 add parameter(2), replace magic number with constant(4), introduce ex-
plaining variable(5), remove parameter(2)

XMLSec 0.0-1.0 move field(4), extract method(2), inline temp(3), add parameter(3), inline
method(1), remove parameter(2), introduce explaining variable(3), replace
exception with test(1)

XMLSec 1.0-2.0 extract method(2), move method(12), pull up method(12), move field(19),
pull up field(19), extract superclass(2), inline temp(1), add parameter(18),
remove parameter(27), introduce explaining variable(3)

XMLSec 2.0-3.0 move method(3), replace magic number with constant(2), extract
method(2), push down method(1), add parameter(8), remove parame-
ter(11)

Ant 0.0-1.0 inline temp(1), pull up field(1), replace magic number with constant(15),
introduce explaining variable(13), move method(5), extract method(13),
inline method(1), remove parameter(70), add parameter(71), move
field(7), extract class(1), pull up method(1)

Ant 1.0-2.0 inline temp(1), move method(12), replace magic number with con-
stant(56), introduce explaining variable(16), extract interface(1), extract
method(6), inline method(1), pull up method(11), remove control flag(3),
extract superclass(2), pull up field(9), add parameter(66), move field(9),
remove parameter(56)

Ant 2.0-3.0 add parameter(2), introduce explaining variable(1), remove parameter(1)
Ant 4.0-5.0 inline temp(10), replace magic number with constant(4), introduce ex-

plaining variable(9), extract method(2), remove control flag(2), rename
method(3), add parameter(16), remove parameter(7)

Ant 5.0-6.0 n/a
Ant 7.0-8.0 add parameter(1), introduce explaining variable(4), remove parameter(1)

22

Table 3: Are there adequate tests for refactoring in practice?

Pair |R| |C| |T | |A| |R ∩ T | |C ∩ T |
JMeter 0.0-1.0 62 880 606 3544 9 104
JMeter 1.0-2.0 50 563 1007 3460 4 157
JMeter 2.0-3.0 196 1905 1368 4041 42 584
JMeter 3.0-4.0 33 462 1395 4099 1 77
JMeter 4.0-5.0 11 230 1400 4207 2 38

XMLsec 0.0-1.0 9 456 591 1447 7 126
XMLsec 1.0-2.0 34 145 588 1575 24 50
XMLsec 2.0-3.0 17 500 540 1152 6 100

Ant 0.0-1.0 125 1544 674 3572 10 123
Ant 1.0-2.0 146 2273 991 5404 30 326
Ant 2.0-3.0 3 49 995 5414 3 25
Ant 4.0-5.0 47 435 2374 8092 20 150
Ant 5.0-6.0 0 24 2368 8358 0 14
Ant 7.0-8.0 5 50 3186 10402 2 21

Total 738 9516 18083 64767 160 1895

Table 4: How many of existing tests need to be rerun due to refactorings?

Pair |AT | |ATR| |ACR| |R| |C|
JMeter 0.0-1.0 55 22 7 62 880
JMeter 1.0-2.0 66 28 3 50 563
JMeter 2.0-3.0 55 53 58 196 1905
JMeter 3.0-4.0 51 5 1 33 462
JMeter 4.0-5.0 57 12 1 11 230

XMLsec 0.0-1.0 68 46 7 9 456
XMLsec 1.0-2.0 53 53 24 34 145
XMLsec 2.0-3.0 59 34 4 17 500

Ant 0.0-1.0 101 79 7 125 1544
Ant 1.0-2.0 123 115 26 146 2273
Ant 2.0-3.0 47 11 3 3 49
Ant 4.0-5.0 429 126 44 57 435
Ant 5.0-6.0 34 0 0 0 24
Ant 7.0-8.0 366 10 5 5 50

Total 1564 594 190 738 9516

23

Table 5: What proportion of failure-inducing changes are relevant to refactoring?

Pair |R| |C| |ATF ||ATRF ||ACF ||ACRF |
JMeter 0.0-1.0 62 880 16 11 41 2
JMeter 1.0-2.0 50 563 3 3 2 1
JMeter 2.0-3.0 196 1905 0 0 0 0
JMeter 3.0-4.0 33 462 0 0 0 0
JMeter 4.0-5.0 11 230 0 0 0 0

XMLsec 0.0-1.0 9 456 0 0 0 0
XMLsec 1.0-2.0 34 145 5 5 12 7
XMLsec 2.0-3.0 17 500 0 0 0 0

Ant 0.0-1.0 125 1544 6 5 21 2
Ant 1.0-2.0 146 2273 4 3 63 5
Ant 2.0-3.0 3 49 14 4 12 1
Ant 4.0-5.0 57 435 17 7 458 44
Ant 5.0-6.0 0 24 0 0 0 0
Ant 7.0-8.0 5 50 15 1 53 5

Total 738 9516 80 39 662 67

24

References

[1] K. Beck. extreme Programming explained, embrace change. Addison-Wesley Profes-

sional, 2000.

[2] L. A. Belady and M. Lehman. A Model of Large Program Development. IBM Systems

Journal, 15(3):225–252, 1976.

[3] J. Carriere, R. Kazman, and I. Ozkaya. A cost-benefit framework for making architec-

tural decisions in a business context. In ICSE ’10: Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, pages 149–157, New York, NY, USA,

2010. ACM.

[4] B. Daniel, D. Dig, K. Garcia, and D. Marinov. Automated testing of refactoring engines.

In ESEC-FSE ’07: Proceedings of the the 6th joint meeting of the European software

engineering conference and the ACM SIGSOFT symposium on The foundations of soft-

ware engineering, pages 185–194, New York, NY, USA, 2007. ACM.

[5] D. Dig and R. Johnson. The role of refactorings in api evolution. In ICSM ’05: Pro-

ceedings of the 21st IEEE International Conference on Software Maintenance, pages

389–398, Washington, DC, USA, 2005. IEEE Computer Society.

[6] D. Dig and R. Johnson. Automated detection of refactorings in evolving components.

In ECOOP ’06: Proceedings of European Conference on Object-Oriented Programming,

pages 404–428. Springer, 2006.

[7] H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with

testing techniques: An infrastructure and its potential impact. Empirical Softw. Engg.,

10(4):405–435, 2005.

25

[8] M. Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley Pro-

fessional, 2000.

[9] C. Görg and P. Weißgerber. Error detection by refactoring reconstruction. In MSR ’05:

Proceedings of the 2005 international workshop on Mining software repositories, pages

1–5, New York, NY, USA, 2005. ACM Press.

[10] W. G. Griswold. Program Restructuring as an Aid to Software Maintenance. PhD

thesis, University of Washington, 1991.

[11] M. J. Harrold, J. A. Jones, T. Li, D. Liang, A. Orso, M. Pennings, S. Sinha, S. A.

Spoon, and A. Gujarathi. Regression test selection for java software. In OOPSLA ’01:

Proceedings of the 16th ACM SIGPLAN Conference on Object Oriented Programming,

Systems, Languages, and Applications, pages 312–326, New York, NY, USA, 2001. ACM.

[12] M. J. H. James A. Jones and J. Stasko. Visualization of test information to assist

fault localization. In ICSE ’05: Proceeding of the International Conference on Software

Engineering, page 477, Orlando, Florida, USA, 2002. ACM Press.

[13] Y. Kataoka, T. Imai, H. Andou, and T. Fukaya. A quantitative evaluation of main-

tainability enhancement by refactoring. In Software Maintenance, 2002. Proceedings.

International Conference on, pages 576 – 585, 2002.

[14] M. Kim, M. Gee, A. Loh, and N. Rachatasumrit. Ref-finder: a refactoring reconstruction

tool based on logic query templates. In Proceedings of the eighteenth ACM SIGSOFT

international symposium on Foundations of software engineering, FSE ’10, pages 371–

372, New York, NY, USA, 2010. ACM.

26

[15] M. Kim, T. Zimmermann, and N. Nagappan. A field study of refactoring benefits and

challenges. In Submitted to FSE 2012 (Under Review), 2012.

[16] R. Kolb, D. Muthig, T. Patzke, and K. Yamauchi. Refactoring a legacy component for

reuse in a software product line: a case study: Practice articles. J. Softw. Maint. Evol.,

18:109–132, March 2006.

[17] A. MacCormack, J. Rusnak, and C. Y. Baldwin. Exploring the structure of complex

software designs: An empirical study of open source and proprietary code. volume 52,

pages 1015–1030, 2006.

[18] T. Mens and T. Tourwe. A survey of software refactoring. IEEE Transactions on

Software Engineering, 30(2):126–139, 2004.

[19] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi. Does refactoring improve reusabil-

ity? In ICSR, pages 287–297, 2006.

[20] E. Murphy-Hill, C. Parnin, and A. P. Black. How we refactor, and how we know it. In

ICSE ’09: Proceedings of the 31st International Conference on Software Engineering,

pages 287–297, Washington, DC, USA, 2009. IEEE Computer Society.

[21] A. Orso, N. Shi, and M. J. Harrold. Scaling regression testing to large software systems.

In SIGSOFT ’04/FSE-12: Proceedings of the 12th ACM SIGSOFT twelfth International

Symposium on Foundations of Software Engineering, pages 241–251, New York, NY,

USA, 2004. ACM.

[22] K. Prete, N. Rachatasumrit, N. Sudan, and M. Kim. Template-based reconstruction

of complex refactorings. In Software Maintenance (ICSM), 2010 IEEE International

Conference on, pages 1 –10, Sept. 2010.

27

[23] J. Ratzinger, T. Sigmund, and H. C. Gall. On the relation of refactorings and software

defect prediction. In MSR ’08: Proceedings of the 2008 international working conference

on Mining software repositories, pages 35–38, New York, NY, USA, 2008. ACM.

[24] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley. Chianti: a tool for change im-

pact analysis of java programs. In OOPSLA ’04: Proceedings of the 19th annual ACM

SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-

plications, pages 432–448, New York, NY, USA, 2004. ACM.

[25] D. Roberts, J. Brant, and R. Johnson. A refactoring tool for smalltalk. Theory and

Practice of Object Systems, 3(4):253–263, 1997.

[26] G. Rothermel and M. J. Harrold. A safe, efficient regression test selection technique.

ACM Trans. Softw. Eng. Methodol., 6(2):173–210, 1997.

[27] M. Schaefer and O. de Moor. Specifying and implementing refactorings. In Proceedings

of the ACM international conference on Object oriented programming systems languages

and applications, OOPSLA ’10, pages 286–301, New York, NY, USA, 2010. ACM.

[28] G. Soares, R. Gheyi, D. Serey, and T. Massoni. Making program refactoring safer.

Software, IEEE, 27(4):52 –57, july-aug. 2010.

[29] K. D. Volder. Type-Oriented Logic Meta Programming. PhD thesis, Vrije Universiteit

Brussel, 1998.

[30] P. Weißgerber and S. Diehl. Are refactorings less error-prone than other changes? In

MSR ’06: Proceedings of the 2006 international workshop on Mining software reposito-

ries, pages 112–118, New York, NY, USA, 2006. ACM.

28

[31] P. Weißgerber and S. Diehl. Identifying refactorings from source-code changes. In

ASE ’06: Proceedings of the 21st IEEE/ACM International Conference on Automated

Software Engineering, pages 231–240, Washington, DC, USA, 2006. IEEE Computer

Society.

[32] Z. Xing and E. Stroulia. Umldiff: an algorithm for object-oriented design differencing. In

ASE ’05: Proceedings of the 20th IEEE/ACM International Conference on Automated

Software Engineering, pages 54–65, New York, NY, USA, 2005. ACM.

[33] L. Zhang, M. Kim, and S. Khurshid. Localizing failure-inducing program edits based

on spectrum information. In ICSM, pages 23–32. IEEE, 2011.

29

