66,041 research outputs found

    Differences in the Number of Intrinsically Disordered Regions between Yeast Duplicated Proteins, and Their Relationship with Functional Divergence

    Get PDF
    BACKGROUND: Intrinsically disordered regions are enriched in short interaction motifs that play a critical role in many protein-protein interactions. Since new short interaction motifs may easily evolve, they have the potential to rapidly change protein interactions and cellular signaling. In this work we examined the dynamics of gain and loss of intrinsically disordered regions in duplicated proteins to inspect if changes after genome duplication can create functional divergence. For this purpose we used Saccharomyces cerevisiae and the outgroup species Lachancea kluyveri. PRINCIPAL FINDINGS: We find that genes duplicated as part of a genome duplication (ohnologs) are significantly more intrinsically disordered than singletons (p<2.2(e)-16, Wilcoxon), reflecting a preference for retaining intrinsically disordered proteins in duplicate. In addition, there have been marked changes in the extent of intrinsic disorder following duplication. A large number of duplicated genes have more intrinsic disorder than their L. kluyveri ortholog (29% for duplicates versus 25% for singletons) and an even greater number have less intrinsic disorder than the L. kluyveri ortholog (37% for duplicates versus 25% for singletons). Finally, we show that the number of physical interactions is significantly greater in the more intrinsically disordered ohnolog of a pair (p = 0.003, Wilcoxon). CONCLUSION: This work shows that intrinsic disorder gain and loss in a protein is a mechanism by which a genome can also diverge and innovate. The higher number of interactors for proteins that have gained intrinsic disorder compared with their duplicates may reflect the acquisition of new interaction partners or new functional roles

    Molecular Recognition Features (MoRFs) in three domains of life

    Get PDF
    Intrinsically disordered proteins and protein regions offer numerous advantages in the context of protein–protein interactions when compared to the structured proteins and domains. These advantages include ability to interact with multiple partners, to fold into different conformations when bound to different partners, and to undergo disorder-to-order transitions concomitant with their functional activity. Molecular recognition features (MoRFs) are widespread elements located in disordered regions that undergo disorder-to-order transition upon binding to their protein partners. We characterize abundance, composition, and functions of MoRFs and their association with the disordered regions across 868 species spread across Eukaryota, Bacteria and Archaea. We found that although disorder is substantially elevated in Eukaryota, MoRFs have similar abundance and amino acid composition across the three domains of life. The abundance of MoRFs is highly correlated with the amount of intrinsic disorder in Bacteria and Archaea but only modestly correlated in Eukaryota. Proteins with MoRFs have significantly more disorder and MoRFs are present in many disordered regions, with Eukaryota having more MoRF-free disordered regions. MoRF-containing proteins are enriched in the ribosome, nucleus, nucleolus and microtubule and are involved in translation, protein transport, protein folding, and interactions with DNAs. Our insights into the nature and function of MoRFs enhance our understanding of the mechanisms underlying the disorder-to-order transition and protein–protein recognition and interactions. The fMoRFpred method that we used to annotate MoRFs is available at http://biomine.ece.ualberta.ca/fMoRFpred/

    A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions

    Structural And Intrinsic Disorder In The Regulation Of Protein-Protein Interactions

    Get PDF
    University of Minnesota Ph.D. dissertation. June 2019. Major: Biochemistry, Molecular Bio, and Biophysics. Advisor: David Thomas. 1 computer file (PDF); xx, 174 pages.This thesis applied spectroscopy and molecular dynamics simulation to study the structural biology of actin-binding domains (ABDs) from the spectrin superfamily of proteins as well as an intrinsically disordered region (IDR) of an integral membrane protein called synaptotagmin 1. In the former case, the structural hypothesis being tested was that actin-binding domains exist in distinct conformational states that are either permissive to or inhibitory towards binding of actin filaments. This question was probed using pulsed-EPR, which measured distances between the calponin homology (CH) domains that make up the ABD as proxy for conformation in the presence or absence of actin or with and without disease-causing mutation. The initial hypothesis of a closed compact state being unable to bind actin and an open extended state being binding-competent was largely supported by the data. However, the hypothesis was ultimately refined to conclude that an “open” state is likely to still be a fairly collapsed structure that is dynamically disordered. With this model, future efforts will be able use the model to look for small molecules that perturb the conformational equilibrium of ABDs harboring disease-causing mutations in potentially therapeutically efficacious ways. Moreover, the model can be tested in other ABDs of the protein superfamily to assess similarities and differences in mechanism. In the case of the intrinsically disordered region of synaptotagmin 1, it was hypothesized that a post-translational modification, specifically phosphorylation of a threonine residue, caused a structural change in the IDR that then results in a change in neurotransmitter release. This hypothesis was also tested with spectroscopic methods, mainly FRET and circular dichroism, but also with molecular dynamics. It was found that mimicking the low dielectric environment of the membrane with co-solvents in solution and artificially in silico caused the synaptotagmin 1 IDR to fold into helical structure. The post-translational modification, however, was found to interfere with the formation of helical structure, providing a still incomplete but novel molecular explanation for the effect it has on potentiation of neurotransmitter release observed in vivo. At the very least, the structural model provides a working hypothesis that can be further explored in further work

    Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners

    Get PDF
    Background: Proteins are involved in many interactions with other proteins leading to networks that regulate and control a wide variety of physiological processes. Some of these proteins, called hub proteins or hubs, bind to many different protein partners. Protein intrinsic disorder, via diversity arising from structural plasticity or flexibility, provide a means for hubs to associate with many partners (Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN: Flexible Nets: The roles of intrinsic disorder in protein interaction networks. FEBS J 2005, 272:5129-5148). Results: Here we present a detailed examination of two divergent examples: 1) p53, which uses different disordered regions to bind to different partners and which also has several individual disordered regions that each bind to multiple partners, and 2) 14-3-3, which is a structured protein that associates with many different intrinsically disordered partners. For both examples, three-dimensional structures of multiple complexes reveal that the flexibility and plasticity of intrinsically disordered protein regions as well as induced-fit changes in the structured regions are both important for binding diversity. Conclusions: These data support the conjecture that hub proteins often utilize intrinsic disorder to bind to multiple partners and provide detailed information about induced fit in structured regions

    Computational Analysis and Prediction of Intrinsic Disorder and Intrinsic Disorder Functions in Proteins

    Get PDF
    COMPUTATIONAL ANALYSIS AND PREDICTION OF INTRINSIC DISORDER AND INTRINSIC DISORDER FUNCTIONS IN PROTEINS By Akila Imesha Katuwawala A dissertation submitted in partial fulfillment of the requirements for the degree of Engineering, Doctor of Philosophy with a concentration in Computer Science at Virginia Commonwealth University. Virginia Commonwealth University, 2021 Director: Lukasz Kurgan, Professor, Department of Computer Science Proteins, as a fundamental class of biomolecules, have been studied from various perspectives over the past two centuries. The traditional notion is that proteins require fixed and stable three-dimensional structures to carry out biological functions. However, there is mounting evidence regarding a “special” class of proteins, named intrinsically disordered proteins, which do not have fixed three-dimensional structures though they perform a number of important biological functions. Computational approaches have been a vital component to study these intrinsically disordered proteins over the past few decades. Prediction of the intrinsic disorder and functions of intrinsic disorder from protein sequences is one such important computational approach that has recently gained attention, particularly in the advent of the development of modern machine learning techniques. This dissertation runs along two basic themes, namely, prediction of the intrinsic disorder and prediction of the intrinsic disorder functions. The work related to the prediction of intrinsic disorder covers a novel approach to evaluate the predictive performance of the current computational disorder predictors. This approach evaluates the intrinsic disorder predictors at the individual protein level compared to the traditional studies that evaluate them over large protein datasets. We address several interesting aspects concerning the differences in the protein-level vs. dataset-level predictive quality, complementarity and predictive performance of the current predictors. Based on the findings from this assessment we have conceptualized, developed, tested and deployed an innovative platform called DISOselect that recommends the most suitable computational disorder predictors for a given protein, with an underlying goal to maximize the predictive performance. DISOselect provides advice on whether a given disorder predictor would provide an accurate prediction for a given protein of user’s interest, and recommends the most suitable disorder predictor together with an estimate of its expected predictive quality. The second theme, prediction of the intrinsic disorder functions, includes first-of-its-kind evaluation of the current computational disorder predictors on two functional sub-classes of the intrinsically disordered proteins. This study introduces several novel evaluation strategies to assess predictive performance of disorder prediction methods and focuses on the evaluation for disorder functions associated with interactions with partner molecules. Results of this analysis motivated us to conceptualize, design, test and deploy a new and accurate machine learning-based predictor of the disordered lipid-binding residues, DisoLipPred. We empirically show that the strong predictive performance of DisoLipPred stems from several innovative design features and that its predictions complements results produced by current disorder predictors, disorder function predictors and predictors of transmembrane regions. We deploy DisoLipPred as a convenient webserver and discuss its predictions on the yeast proteome

    Hub Promiscuity in Protein-Protein Interaction Networks

    Get PDF
    Hubs are proteins with a large number of interactions in a protein-protein interaction network. They are the principal agents in the interaction network and affect its function and stability. Their specific recognition of many different protein partners is of great interest from the structural viewpoint. Over the last few years, the structural properties of hubs have been extensively studied. We review the currently known features that are particular to hubs, possibly affecting their binding ability. Specifically, we look at the levels of intrinsic disorder, surface charge and domain distribution in hubs, as compared to non-hubs, along with differences in their functional domains
    corecore